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(my)R-, be an increasing sequence of integers such that log(my/2)—1 = N3,
Let Yy(r) = NV, (1) so that ¢(¥y) < 1/N? The sequence ($,),%, defined by

®,= Y Yy is thus a Cauchy sequence with respect to the seminorm g.
N=1
If Wis complete, then there exists a function ¢ in Weak ' such that
q(®~,) 0. For each t >0, ¢,(t) = ¥ (t) < (D,—D)*(t/2) + D*(2/2). (See
eg. [2]), p- 253)

. Consequently  max(®,()—d*(1/2), 0) < (P,—P)*(t/2) and  since
@*(1/2) < ¢/t for some constant ¢ we deduce that q(max(YN(r)—c/r, 0)) =0
for all N. However, for N sufficiently large, N(2+my)/my > ¢ and, by the
preceding lemma, q(max( Yy (t)—cft, 0)) > 0. This contradiction shows that W
cannot be complete.
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A further generalization of Ky Fan’s minimax
inequality and its applications

by
MAU-HSIANG SHIH* and KOK-KEONG TAN**

Abstract. The celebrated 1972 Ky Fan's minimax inequality is slightly generalized simul-
taneously to non-compact convex settings and to a pair of functions. This extension includes
Brézis-Nirenberg-Stampacchia’s minimax inequality. Applying the generalized minimax inequal-
ity, Dugundji~Granas® variational inequality in reflexive Banach spaces, which is an extension of
Hartman-Stampacchia variational inequality, is generalized simultaneously to set-valued maps
and to non-compact convex sets in topological vector spaces. The generalized variational
inequality in the single-valued case is in turn used to obtain fixed point theorems for pseudo-
contractive and non-expansive - maps on a non-weakly compact subset of a Hilbert space,
generalizing the well-known Browder’s fixed point theorem.
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1. Introduction. We begin with the celebrated 1972 Ky Fan's minimax
inequality [11].

[Ky FANS MINIMAX INEQUALITY]. Let X be a non-empty compact convex
set in a Hausdorff topological vector space. Let ¢ be a real-valued function
defined on X xX such that:

(a) For each fixed xeX, @(x, y)is a lower semicontinuous function of y
on X. )

(b) For each fixed ye X, @(x, y) is a quasi-concave function of x on X.
Then the minimax inequality

min sup ¢(x, y) <sup @(x, x)
yeX xeX xeX

holds.

* The work was done while the author was visiting at Dalhousie University, and was
partially supported by NSERC of Canada.

** The author was partially supported by NSERC of Canada under grant number A-
8096.
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Here, a real-valued function ¢ defined on a convex set X is said to be
quasi-concave if for every real number ¢ the set {xeX: ¢(x) > 1} is convex.
Ky Fan's minimax inequality is an important tool in non-linear functional
analysis [11], game theory and economic theory [1]. On the other hand,
among the various extensions of Ky Fan’s minimax inequality, an important
one is due to Brézis, Nirenberg and Stampacchia [3]. In the present paper,
we shall follow Brézis-Nirenberg-Stampacchia’s idea to prove a general
minimax inequality in Theorem 1. As an intrinsic application of Theorem 1,
Dugundji-Granas’ variational inequality [8] and [9], pp. 75-76, which is an
extension of Hartman-Stampacchia's variational inequality [12], is gen-
eralized simultaneously to set-valued maps and to non-compact convex sets
in a topological vector space. The generalized variational inequality in the
single-valued case is in turn used to obtain fixed point theorems for pseudo-
contractive maps and non-expansive maps on a non-weakly compact convex
subset of a Hilbert space, generalizing the well-known Browder’s fixed point
theorem for non-expansive maps [4], Theorem 1.

2. Minimax inequalities. Let E be a vector space. We shall denote by 2%
the set of all subsets of E and by conv(A) the convex hull of 4 2F. Let X be
an arbitrary non-empty subset of E. A map F: X —2F is called a KK M-map

*[8] and [9], p. 72 if convix,,..., x,} © U F(x;) for each finite subset
i=1

{15 s x,) of X.
We shall establish the following:

TueoreM 1. Ler X be a non-empty closed convex set in a Hausdorff
topological vector space E. Let ¢ and \ be two real-valued functions on X x X
having the following properties:

(@) @(x, y) < Y(x, y) for all (x, y)eXxX.

(b) For each fixed xe X, @(x, y) is a lower semicontinuous function of y
on the intersection of X with any finite-dimensional subspace of E.

(c) For each fixed ye X, the set {xeX: y(x, y) > 0} is convex.

(d) Whenever x, ye X and (y)er is a net in X converging to y, then the
inequalities @ (tx+ (1—1)y, 3) <0 for all el and for all t[0, 17 imply
o(x, ) <0.

(€) There exist a non-empty compact (not necessarily convex) subset K of
E and xoe X nK such that ¢(xq, y) > 0 for all yeX\K.

Then either there exists a point £€X such that (%, %) >0 or there
exists a point ye X N K such that ¢(x, )< 0 for all xeX.

The proof of Theorem 1 is based on the following important lemma of
Brézis-Nirenberg-Stampacchia [3] which is an extension of Ky Fan’s gen-
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eralization [10] of Knaster-Kuratowski-Mazurkiewicz's geometric result
[13]:
LeMMA (Brézis—Nirenberg—Stampacchia). Let X be an arbitrary non-

empty set in a Hausdorff ropological vector space E. Let F: X — 2E he a
KKM-map such that:

(a) F(xo) is compact for some x,eX.

(b) For every xeX, the intersection of F(x) with any finite-dimensional
subspace is closed.

(c) For any convex subset D of E we have

( ﬂDF(x))nD=(

xeX N

Then () F(x) # O.

xeX
Proof of Theorem 1. For each xeX, let
Fx)={yeX: o(x,5) <0}, GXx ={yeX: y(x,y <0}
If G: X — 2% is not a KKM-map, then for some choice {ug, .y w,} = X and

N F(x))nD.

xeXnD

420 (1<j<sn) with Y o;=1, we have Y oju;¢ ) (), ie.
i=1 j=1 i=1
Wi, 3 %) >0for 1<i<n, sothat by (), (Y oyu;, Y aju;)>0 and
J=1 Ji=1 Jj=1

hence the conclusion of Theorem 1 holds by taking % = > o;u;. Thus we
i=t

may assume G: X ~ 2F is a KKM-map. By (a), G(x) = F(x) for each xeX,

so that F: X — 2% is also a KKM-map, and we have:

(i) By (e), F(xo) = X N K; hence F(x,) < K and so F(x,) is compact.
(i) Let xeX and L be any finite-dimensional subspace of E. By (b),

F(x)nL={yeXnL: ¢(x,y) <0}
is closed.

(iii) Let D be any convex subset of E. Let ye () F(x)nD;then yeD
xeXnD
and there exists a net (Yo in [} F(x) such that y, —y. Thus

xeXnD
(%)

Since X is closed (this is an essential condition for our proof), ye X nD. As
x,yeXnD and XD is convex, tx+ (1—1)yeX D for all tef0, 1]; it
follows from () that

¢@(x, y,) <0 for all el and for all xe XN D,

@(tx+(1=1)y, y,) <0 for all ¢el" and for all xeX N D.

3 Studia Mathematica LXXVIIL3
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By (d), @(x, ) <0 for all xeX N D, so that yeF(x) for all xeX nD and
hence ye( () F(x))n D. Therefore,

D

xeXn

(N Fex)nD=( ) F@x)nD.

xeXnD xeXnD
Now applying Brézis—Nirenberg-Stampacchia’s lemma to F, we have
NFx#0
. xeX
Choose an ye [} F(x); then ¢(x, §) <0 for all xeX, and the proof is

xeX
complete. [] .

Observe that in the case where X is compact, condition (¢) in Theorem 1
is satisfied .with K = X. In the case ¢ =y, Theorem 1 reduces to Brézis-
Nirenberg Stampacchia’s inequality [3]. Note that Theorem 1 implicitly
implies the following minimax inequality:

Tueorem 2. Let X be a non-empry closed convex set in a Hausdorff
topological vector space E. Let ¢, and ¢, be two real-valued functions on
X x X having the following properties:

(@ @i(x,¥) < @z(x, y) for all (x,y)eX xX.

(b) For each fixed xe X, ¢,(x, y) is a lower semicontinuous function o y
on the intersection of X with any finite-dimensional subspace of E.

(c) For each fixed yeX, the set {xeX: ¢,(x, y) >0} is convex.

(d) Whenever x, ye X and (y)ser is a net in X converging to y, then the
inequalities @ (tx+(1—1)y, y,) <0 for all xel" and for all re[0, 1] imply
(41 (x: J’) < 0'

(e) There exist a non-empty compact (not necessarily convex) subset K of

E and xoeXnK such that whenever sup @;(x,X)< o0, ¢1(xo,))
. xeX
> sup @,(x, x) for all ye X \K.
xeX
Then the minimax inequality
inf sup ¢, (x, y) < sup @, (x, x)
yeK xeX xeX
holds.
Proof. Let t =sup ¢@,(x, x). Clearly, we may assume that < +0.
xeX

Applying Theorem 1 to
e(x, ) =@ (x, y)—1,

the conclusion follows. [

Observe that if ¢, (x, y) is a lower semicontinuous {unction of y on X,

then sup ¢, (x, v) is also a lower semicontinuous function of y on X, and
xeX . .

Y(x, y)= @y (x, )1,
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therefore its minimum min sup @, (x, y) on the compact set K exists. In the
yeK xeX

case where X is .compact and ¢, (x, y) is a lower semicontinuous function of
y on X, by setting K = X and ¢, = ¢,, Theorem 2 reduces to Ky Fan's

minimax inequality, and by setting K =X, Theorem 2 reduces to [14],
Theorem 1. '

3. Variational inequalities. In [8] and [9], pp. 75-76, Dugundji and
Granas gave a fairly general version of Hartman-Stampacchia’s variational
inequality [12]. Below, by using Theorem 1 directly, Dugundji-Granas’
variational inequality in reflexive Banach spaces is generalized simul-
taneously to set-valued maps and to non-compact sets in a ‘topological
vector space.

Let E be a Hausdorff topological vector space. We shall denote by E’
the dual space of E (i.e., the vector space of all continuous linear functionals
on E). We denote the pairing between E' and E by (w, x) for weE’ and
xeE. Let X be any non-empty subset of E; a (single-valued) map /: X — E'
is said o be monorone on X if Re {f (y)~f(x), y—x> = 0 for all x, ye X. A
set-valued map f: X — 2 is said to be monotone on X [7], p. 79, if for all x
and y in X, each u in f(x), and each w in f(y), Re {(w—u, y—x> > 0. Let X
and Y be two topological spaces. A set-valued map f: X — 2 is said to be
lower semicontinuous on X [2], p. 109, if for every x,€ X and any open set G
in Ysuch that f(xo) "G # ©, there is a neighbourhood U of x, in X such
that f(x) "G # @ for every xeU. In other words, f: X —2¥ is lower
semicontinuous on X if for every open set G in Y, the set
{xeX: f(x) "G # O} is open in X.

TueoreM 3. Let X be a non-empty closed convex set in a Hausdorff
topological vector space E and f: X —2F be a set-valued map such thar for
each xeX, f(x) is a non-empty subset of E', and that f is monotone. Assume
that for each one-dimensional flat Lc E,f|LnX is lower semicontinuous
Jrom the topology of E to the weak*-topology o(E', E) of E' and thar there
exist a non-empty weakly compact (not necessarily convex) subser K of E and
Yo€K N X such that for each xe X \K, there exists uef (x) with Re u, yo—
—x)» > 0. Then there exists a point je€ X " K such that

sup Re{w, j—x><0 for all xeX.
wef'(§) .

Proof. By monotonicity of f, for each x, ye X, uef(x) and wef (y) we

have ‘

Re <u1 ,V’“x> <Re <W9 ,V“'X><
Thus

sup Redu, y—x) < inf <w,y—x> forall x, yeX.

uef(x) wef(y)


GUEST


284 Mau-Hsiang Shih and Kok-Keong Tan

For each x, ye X, define
@(x, y) = sup Re{u, y—x3,

¥ (x, y)= inf Redw, y—x}.

uefix) we/f(y)
Then

(i) o(x, y) <W¥(x,y for all x, yeX, and Y(x, x) = 0 for all xeX.

(ii) It is easy to check that for each fixed xeX, @(x, y) is a weakly
lower semicontinuous functions of y on X,

(ili) For each fixed yeX, it is easy to see that {xeX: ¥ (x, y) > O} is
convex.

(iv) By hypothesis, there exist a non-empty weakly compact subset K of
E and y,eK nX such that, for each xe X \K, there exists uef(x) with
Re {u, yo—x> > 0; it follows that for each xe X\K

@ (x, yo) = sup Re Cu, yo—x) > 0.
uef(x)

(v} Suppose that x, y€X, (Juher is a net in X with y, = y weakly such

that

@(tx+ 1=y, y)<0 forall uel and for all te[0, 1].

Then ¢(x, y,) <0 for all @el'; by (i), ¢(x, » <0

We now equip E with the weak topology and we find that all the
conditions in Theorem 1 are satisfied; therefore there exists a point je K n X
with @(x, ) <0 for all xeX; in other words,

(+x) sup Re<u, j—x> <0 forall xeX.

uef(x)
Let xeX be arbitrarily fixed, let z =tx+(1—1j=j—t(j—x) for
te[0, 1]. As X is convex, we have z,€ X for re[0, 1]. Therefore, by () we
have

sup Redu, j—z)<0 forall tef0,1],
uef(zy)
so that ¢- sup Re{u, j—x)> <0 for all re[0, 1] and it follows that
uef(zg)
(%*x) sup Redu, j—x> <0 forall re(0,1].

uef(zy)

Let woef () be arbitrarily fixed. For each ¢ > 0, let
Uy = (WEE" [{wo—w, §—x)| <&}

then U, is a o(E', E)-neighbourhood of w,. Since fis lower semicontinuous,
and U, nf() # O, there exists a neighbourhood N(§) of j such that
zeN(j) implies f ()" U, # 0. Note that z, » § as t =07, thus there exists
0€(0,1) such that for all te(0,5), we have z,eN($). But then

- ©
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f(z)n Uy, # O for 1€(0, 8); take any uef(z,) N Uy, we have [{wo—u, j—
— x> <e¢. This implies

Re (wp, J—x) < Re (u, j~x>+e.

By (#*x), Re{wy, —x> <. Since & > 0 is arbitrary, Re {(wy, —x> < 0. As
woef () is arbitrary,
sup Redw, j—x> <0
wef ()
This completes the proof. (J .

It would be of some interest to compare Theorem 3 with the following
Browder’s variational inequality [6], Theorem 6:

TueOREM 4 (Browder). Let X be a non-empty compact convex subset of a
locally convex ' Hausdorff" topological vector space E and let f: X —2F be
upper semicontinuous such that for each xeX, f(x) is a non-empty compact
convex subset of E'. Then there exist jeX and Wwef (§) such that

ReW, $~x>=20 forall xeX.

Here, given topological spaces X and Y, a set-valued map f: X —2¥ is
said to be upper semicontinuous [2] if for any point x,€X and any open set
U in Y such that f'(x,) < U, there exists a neighbourhood Wof x, such that
f(x)<= U for all xeW.

The following result is the single-valued case of Theorem 3 which we
shall need in Section 4:

TueoreM 5. Let X be a non-empty closed convex set in a Hausdorff
topological vector space E and let f: X — E' be monotone. Assume that for
each one-dimensional flat L = E, f|LnX is continuous from the topology of
E to the weak*-topology o(E', E) of E' and thar there exist a non-empty
weakly compact (not necessarily convex) subset K of E and y,eK N X such
thar for each xeX\K, Re{f(x), yo—x> > 0. Then there exists a point
yeX nK such that

Re{f(H), §—x><0 for all

4. Fixed point theorems. Let E be a normed linear space with norm |||l
and let X be a non-empty subset of E. A map f: X — E is said to be pseudo-
contractive [5] if for all x, yeX and for all r >0,

=yl < (L4 x = =r (£ ) ~=F W)
A map f: X —E is said to be non-expansive if for all x, yeX,
I1F G =1 WIE< llx =yl
It is obvious that if f is non-expansive, then f is pseudo-contractive since

I +1 (=) =r (S =7 O] = A+9 Ix= Yl =7 ILf (D =f O

forall xeX.

xeX.
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The main interest in pseudo-contractive maps stems from the. firm connec-
tion which exists between these maps and the important class of accretive
operators [5], Proposition 1.

We can now establish the following new fixed point theorem by apply-
ing Theorem 5.

THEOREM 6. Let X be a non-empty closed convex subset of a Hilbert space
(H, {+,">) and let f: X — H be pseudo-contractive. Suppose that f| LN X is
continuous for each one-dimensional flar L < H and that there exist a non-
empty weakly compact (not necessarily convex) subset K of E and yoe K nX
such that for each xe X\ K, Re (x—f(x), yo—x) > 0. Then there exists a point
ye KnX such that

Re(y—f (), > = Man Re<j~f(9), x.

In. particular, if f is a self-map on X, then ¥ is a fixed point of f.
Proof. According to a result [5], Proposition 1, of Browder, I—f is
monotone. Applying Theorem 5 to I —J, there exists a point § € K m X such that

Re(F—f(9), y—x><0 forall xeX.

Hence we have
Re—f (9, 9> = Mlxn Re (G—f (), x>.

In particular, if f is a self-map on X, it follows that
Re 5~/ (3, 5—f (1> <0,

so that y is a fixed point of f. This completes the proof. [J

As an immediate consequence, we obtain

TueoreM 7. Let X be a non-empty closed convex subset of a Hilbert space
(H, ) and let f: X -+ H be non-expansive. If there exist a non-empry
weakly compact (not necessarily convex) subset K of E and yoe K N X such
that for each xe X'K, Re{(x—f(x), yo—x) > 0. Then there exists a point
7eKnX such that

ReJ—f(9), 9> = Mixn Re (J~f (), x.
In particular, if f is a self-map on X, then  is a fixed point of f.

In the case X is bounded and f is a self-map on X, by setting K = X,
Theorem 7 reduces to Browder’s fixed point theorem [4], Theorem 1.
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