$(m_N)_{N=1}^{\infty}$ be an increasing sequence of integers such that $\log(m_N/2) - 1 \ge N^3$. Let $Y_N(t) = NV_{m_N}(t)$ so that $q(Y_N) \le 1/N^2$. The sequence $(\Phi_n)_{n=1}^{\infty}$ defined by $\Phi_n = \sum_{N=1}^{\infty} Y_N$ is thus a Cauchy sequence with respect to the seminorm q.

If W is complete, then there exists a function Φ in Weak L^1 such that $q(\Phi - \Phi_n) \to 0$. For each t > 0, $\Phi_n(t) = \Phi_n^*(t) \le (\Phi_n - \Phi)^*(t/2) + \Phi^*(t/2)$. (See e.g. [2], p. 253.)

Consequently $\max(\Phi_n(t) - \Phi^*(t/2), 0) \leq (\Phi_n - \Phi)^*(t/2)$ and since $\Phi^*(t/2) \leq c/t$ for some constant c we deduce that $q(\max(Y_N(t) - c/t, 0)) = 0$ for all N. However, for N sufficiently large, $N(2 + m_N)/m_N > c$ and, by the preceding lemma, $q(\max(Y_N(t) - c/t, 0)) > 0$. This contradiction shows that W cannot be complete.

References

- M. Cwikel and C. Fefferman, Maximal seminorms on Weak L¹, Studia Math. 69 (1980), 149-154.
- [2] R. A. Hunt, On L(p, q) spaces, Enseignement Math. (2) 12 (1966), 249-276.

DEPARTMENT OF MATHEMATICS
TECHNION, I. I. T., HAIFA 32000, ISRAEL
DEPARTMENT OF MATHEMATICS
PRINCETON UNIVERSITY, PRINCETON N. J. 08540, U.S.A.

Received August 17, 1982 (1791)

A further generalization of Ky Fan's minimax inequality and its applications

by

MAU-HSIANG SHIH* and KOK-KEONG TAN**

Abstract. The celebrated 1972 Ky Fan's minimax inequality is slightly generalized simultaneously to non-compact convex settings and to a pair of functions. This extension includes Brézis-Nirenberg-Stampacchia's minimax inequality. Applying the generalized minimax inequality, Dugundji-Granas' variational inequality in reflexive Banach spaces, which is an extension of Hartman-Stampacchia variational inequality, is generalized simultaneously to set-valued maps and to non-compact convex sets in topological vector spaces. The generalized variational inequality in the single-valued case is in turn used to obtain fixed point theorems for pseudocontractive and non-expansive maps on a non-weakly compact subset of a Hilbert space, generalizing the well-known Browder's fixed point theorem.

1980 Mathematical Subject Classifications. Primary 49A29, 49A40; Secondary 47H10, 52A07.

Key words and phrases, KKM-map, minimax inequality, variational inequality, pseudo-contractive map, non-expansive map, monotone operator, Hausdorff topological vector space, fixed point, set-valued maps.

1. Introduction. We begin with the celebrated 1972 Ky Fan's minimax inequality [117].

[KY FAN'S MINIMAX INEQUALITY]. Let X be a non-empty compact convex set in a Hausdorff topological vector space. Let φ be a real-valued function defined on $X \times X$ such that:

- (a) For each fixed $x \in X$, $\varphi(x, y)$ is a lower semicontinuous function of y on X.
- (b) For each fixed $y \in X$, $\varphi(x, y)$ is a quasi-concave function of x on X. Then the minimax inequality

$$\min_{y \in X} \sup_{x \in X} \varphi(x, y) \leqslant \sup_{x \in X} \varphi(x, x)$$

holds.

^{*} The work was done while the author was visiting at Dalhousie University, and was partially supported by NSERC of Canada.

^{**} The author was partially supported by NSERC of Canada under grant number A-8096.

Here, a real-valued function φ defined on a convex set X is said to be quasi-concave if for every real number t the set $\{x \in X: \varphi(x) > t\}$ is convex. Ky Fan's minimax inequality is an important tool in non-linear functional analysis [11], game theory and economic theory [1]. On the other hand, among the various extensions of Ky Fan's minimax inequality, an important one is due to Brézis, Nirenberg and Stampacchia [3]. In the present paper, we shall follow Brézis-Nirenberg-Stampacchia's idea to prove a general minimax inequality in Theorem 1. As an intrinsic application of Theorem 1, Dugundji-Granas' variational inequality [8] and [9], pp. 75-76, which is an extension of Hartman-Stampacchia's variational inequality [12], is generalized simultaneously to set-valued maps and to non-compact convex sets in a topological vector space. The generalized variational inequality in the single-valued case is in turn used to obtain fixed point theorems for pseudocontractive maps and non-expansive maps on a non-weakly compact convex subset of a Hilbert space, generalizing the well-known Browder's fixed point theorem for non-expansive maps [4], Theorem 1.

2. Minimax inequalities. Let E be a vector space. We shall denote by 2^E the set of all subsets of E and by $\operatorname{conv}(A)$ the convex hull of $A \in 2^E$. Let X be an arbitrary non-empty subset of E. A map $F: X \to 2^E$ is called a KKM-map [8] and [9], p. 72, if $\operatorname{conv}\{x_1, \ldots, x_n\} \subset \bigcup_{i=1}^n F(x_i)$ for each finite subset $\{x_1, \ldots, x_n\}$ of X.

We shall establish the following:

THEOREM 1. Let X be a non-empty closed convex set in a Hausdorff topological vector space E. Let φ and ψ be two real-valued functions on $X \times X$ having the following properties:

- (a) $\varphi(x, y) \leq \psi(x, y)$ for all $(x, y) \in X \times X$.
- (b) For each fixed $x \in X$, $\varphi(x, y)$ is a lower semicontinuous function of y on the intersection of X with any finite-dimensional subspace of E.
 - (c) For each fixed $y \in X$, the set $\{x \in X : \psi(x, y) > 0\}$ is convex.
- (d) Whenever $x, y \in X$ and $(y_{\alpha})_{\alpha \in \Gamma}$ is a net in X converging to y, then the inequalities $\varphi(tx+(1-t)y, y_{\alpha}) \leq 0$ for all $\alpha \in \Gamma$ and for all $t \in [0, 1]$ imply $\varphi(x, y) \leq 0$.
- (e) There exist a non-empty compact (not necessarily convex) subset K of E and $x_0 \in X \cap K$ such that $\varphi(x_0, y) > 0$ for all $y \in X \setminus K$.

Then either there exists a point $\hat{x} \in X$ such that $\psi(\hat{x}, \hat{x}) > 0$ or there exists a point $\hat{y} \in X \cap K$ such that $\varphi(x, \hat{y}) \leq 0$ for all $x \in X$.

The proof of Theorem 1 is based on the following important lemma of Brézis-Nirenberg-Stampacchia [3] which is an extension of Ky Fan's gen-

eralization [10] of Knaster-Kuratowski-Mazurkiewicz's geometric result [13]:

Lemma (Brézis-Nirenberg-Stampacchia). Let X be an arbitrary non-empty set in a Hausdorff topological vector space E. Let $F\colon X\to 2^E$ be a KKM-map such that:

- (a) $\overline{F(x_0)}$ is compact for some $x_0 \in X$.
- (b) For every $x \in X$, the intersection of F(x) with any finite-dimensional subspace is closed.
 - (c) For any convex subset D of E we have

$$\left(\bigcap_{x\in X\cap D}F(x)\right)\cap D=\left(\bigcap_{x\in X\cap D}F(x)\right)\cap D.$$

Then $\bigcap_{x \in X} F(x) \neq \emptyset$.

Proof of Theorem 1. For each $x \in X$, let

$$F(x) = \{ y \in X : \ \varphi(x, y) \le 0 \}, \quad G(x) = \{ y \in X : \ \psi(x, y) \le 0 \}.$$

If $G: X \to 2^E$ is not a KKM-map, then for some choice $\{u_1, \ldots, u_n\} \subset X$ and $\alpha_j \ge 0$ $(1 \le j \le n)$ with $\sum_{j=1}^n \alpha_j = 1$, we have $\sum_{j=1}^n \alpha_j u_j \notin \bigcup_{i=1}^n \psi(u_i)$, i.e., $\psi(u_i, \sum_{j=1}^n \alpha_j u_j) > 0$ for $1 \le i \le n$, so that by (c), $\psi(\sum_{j=1}^n \alpha_j u_j, \sum_{j=1}^n \alpha_j u_j) > 0$ and hence the conclusion of Theorem 1 holds by taking $\hat{x} = \sum_{j=1}^n \alpha_j u_j$. Thus we may assume $G: X \to 2^E$ is a KKM-map. By (a), $G(x) \subset F(x)$ for each $x \in X$, so that $F: X \to 2^E$ is also a KKM-map, and we have:

- (i) By (e), $F(x_0) \subset X \cap K$; hence $\overline{F(x_0)} \subset K$ and so $\overline{F(x_0)}$ is compact.
- (ii) Let $x \in X$ and L be any finite-dimensional subspace of E. By (b),

$$F(x) \cap L = \{ y \in X \cap L \colon \varphi(x, y) \leq 0 \}$$

is closed.

(iii) Let D be any convex subset of E. Let $y \in \bigcap_{x \in X \cap D} F(x) \cap D$; then $y \in D$ and there exists a net $(y_{\alpha})_{\alpha \in I}$ in $\bigcap_{x \in X \cap D} F(x)$ such that $y_{\alpha} \to y$. Thus

(*)
$$\varphi(x, y_{\alpha}) \leq 0$$
 for all $\alpha \in \Gamma$ and for all $x \in X \cap D$.

Since X is closed (this is an essential condition for our proof), $y \in X \cap D$. As $x, y \in X \cap D$ and $X \cap D$ is convex, $tx + (1-t)y \in X \cap D$ for all $t \in [0, 1]$; it follows from (*) that

$$\varphi(tx+(1-t)y, y_{\alpha}) \leq 0$$
 for all $\alpha \in \Gamma$ and for all $x \in X \cap D$.

By (d), $\varphi(x, y) \le 0$ for all $x \in X \cap D$, so that $y \in F(x)$ for all $x \in X \cap D$ and hence $y \in (\bigcap_{x \in X \cap D} F(x)) \cap D$. Therefore,

$$\overline{\left(\bigcap_{x\in X\cap D}F(x)\right)}\cap D=\left(\bigcap_{x\in X\cap D}F(x)\right)\cap D.$$

Now applying Brézis-Nirenberg-Stampacchia's lemma to F, we have

$$\bigcap_{x\in X}F(x)\neq\emptyset.$$

Choose an $\hat{y} \in \bigcap_{x \in X} F(x)$; then $\varphi(x, \hat{y}) \leq 0$ for all $x \in X$, and the proof is complete. \square

Observe that in the case where X is compact, condition (e) in Theorem 1 is satisfied with K=X. In the case $\varphi=\psi$, Theorem 1 reduces to Brézis-Nirenberg Stampacchia's inequality [3]. Note that Theorem 1 implicitly implies the following minimax inequality:

THEOREM 2. Let X be a non-empty closed convex set in a Hausdorff topological vector space E. Let φ_1 and φ_2 be two real-valued functions on $X \times X$ having the following properties:

- (a) $\varphi_1(x, y) \leq \varphi_2(x, y)$ for all $(x, y) \in X \times X$.
- (b) For each fixed $x \in X$, $\varphi_1(x, y)$ is a lower semicontinuous function of y on the intersection of X with any finite-dimensional subspace of E.
 - (c) For each fixed $y \in X$, the set $\{x \in X : \varphi_2(x, y) > 0\}$ is convex.
- (d) Whenever $x, y \in X$ and $(y_{\alpha})_{\alpha \in \Gamma}$ is a net in X converging to y, then the inequalities $\varphi_1(tx+(1-t)y,y_{\alpha}) \leq 0$ for all $\alpha \in \Gamma$ and for all $t \in [0,1]$ imply $\varphi_1(x,y) \leq 0$.
- (e) There exist a non-empty compact (not necessarily convex) subset K of E and $x_0 \in X \cap K$ such that whenever $\sup_{x \in X} \varphi_2(x, x) < \infty$, $\varphi_1(x_0, y) > \sup \varphi_2(x, x)$ for all $y \in X \setminus K$.

Then the minimax inequality

$$\inf_{y \in K} \sup_{x \in X} \varphi_1(x, y) \leqslant \sup_{x \in X} \varphi_2(x, x)$$

holds.

Proof. Let $t = \sup_{x \in X} \varphi_2(x, x)$. Clearly, we may assume that $t < +\infty$. Applying Theorem 1 to

$$\varphi(x, y) = \varphi_1(x, y) - t, \quad \psi(x, y) = \varphi_2(x, y) - t,$$

the conclusion follows.

Observe that if $\varphi_1(x, y)$ is a lower semicontinuous function of y on X, then $\sup_{x \in Y} \varphi_1(x, y)$ is also a lower semicontinuous function of y on X, and

therefore its minimum $\min_{y \in K} \sup_{x \in X} \varphi_1(x, y)$ on the compact set K exists. In the case where X is compact and $\varphi_1(x, y)$ is a lower semicontinuous function of y on X, by setting K = X and $\varphi_1 = \varphi_2$, Theorem 2 reduces to Ky Fan's minimax inequality, and by setting K = X, Theorem 2 reduces to [14], Theorem 1.

3. Variational inequalities. In [8] and [9], pp. 75-76, Dugundji and Granas gave a fairly general version of Hartman-Stampacchia's variational inequality [12]. Below, by using Theorem 1 directly, Dugundji-Granas' variational inequality in reflexive Banach spaces is generalized simultaneously to set-valued maps and to non-compact sets in a topological vector space.

Let E be a Hausdorff topological vector space. We shall denote by E' the dual space of E (i.e., the vector space of all continuous linear functionals on E). We denote the pairing between E' and E by $\langle w, x \rangle$ for $w \in E'$ and $x \in E$. Let X be any non-empty subset of E; a (single-valued) map $f: X \to E'$ is said to be monotone on X if $Re \langle f(y) - f(x), y - x \rangle \geqslant 0$ for all $x, y \in X$. A set-valued map $f: X \to 2^{E'}$ is said to be monotone on X [7], p. 79, if for all x and y in X, each u in f(x), and each w in f(y), $Re \langle w - u, y - x \rangle \geqslant 0$. Let X and X be two topological spaces. A set-valued map X is said to be lower semicontinuous on X [2], p. 109, if for every $X \in X$ and any open set X in X such that X such that X in X in X in other words, X is lower semicontinuous on X if for every open set X in X is lower semicontinuous on X if for every open set X in X in X is expected by X is open in X.

THEOREM 3. Let X be a non-empty closed convex set in a Hausdorff topological vector space E and $f: X \to 2^E$ be a set-valued map such that for each $x \in X$, f(x) is a non-empty subset of E', and that f is monotone. Assume that for each one-dimensional flat $L \subset E$, $f \mid L \cap X$ is lower semicontinuous from the topology of E to the weak*-topology $\sigma(E', E)$ of E' and that there exist a non-empty weakly compact (not necessarily convex) subset K of E and $y_0 \in K \cap X$ such that for each $x \in X \setminus K$, there exists $u \in f(x)$ with $\operatorname{Re} \langle u, y_0 - x \rangle > 0$. Then there exists a point $\widehat{y} \in X \cap K$ such that

$$\sup_{w \in f(\hat{y})} \operatorname{Re} \langle w, \hat{y} - x \rangle \leq 0 \quad \text{for all } x \in X.$$

Proof. By monotonicity of f, for each x, $y \in X$, $u \in f(x)$ and $w \in f(y)$ we have

$$\operatorname{Re}\langle u, y-x\rangle \leqslant \operatorname{Re}\langle w, y-x\rangle.$$

Thus

$$\sup_{u \in f(x)} \operatorname{Re} \left\langle u, \, y - x \right\rangle \leqslant \inf_{w \in f(y)} \left\langle w, \, y - x \right\rangle \quad \text{ for all } x, \, y \in X.$$

For each $x, y \in X$, define

$$\varphi(x, y) = \sup_{u \in f(x)} \operatorname{Re} \langle u, y - x \rangle, \quad \psi(x, y) = \inf_{w \in f(y)} \operatorname{Re} \langle w, y - x \rangle.$$

Then

- (i) $\varphi(x, y) \leq \psi(x, y)$ for all $x, y \in X$, and $\psi(x, x) = 0$ for all $x \in X$.
- (ii) It is easy to check that for each fixed $x \in X$, $\varphi(x, y)$ is a weakly lower semicontinuous functions of y on X.
- (iii) For each fixed $y \in X$, it is easy to see that $\{x \in X : \psi(x, y) > 0\}$ is convex.
- (iv) By hypothesis, there exist a non-empty weakly compact subset K of E and $y_0 \in K \cap X$ such that, for each $x \in X \setminus K$, there exists $u \in f(x)$ with $\text{Re } \langle u, y_0 x \rangle > 0$; it follows that for each $x \in X \setminus K$

$$\varphi(x, y_0) = \sup_{u \in f(x)} \operatorname{Re} \langle u, y_0 - x \rangle > 0.$$

(v) Suppose that $x, y \in X$, $(y_{\alpha})_{\alpha \in \Gamma}$ is a net in X with $y_{\alpha} \to y$ weakly such that

$$\varphi(tx+(1-t)y, y_{\alpha}) \le 0$$
 for all $\alpha \in \Gamma$ and for all $t \in [0, 1]$.

Then $\varphi(x, y_{\alpha}) \leq 0$ for all $\alpha \in \Gamma$; by (ii), $\varphi(x, y) \leq 0$.

We now equip E with the weak topology and we find that all the conditions in Theorem 1 are satisfied; therefore there exists a point $\hat{y} \in K \cap X$ with $\varphi(x, \hat{y}) \leq 0$ for all $x \in X$; in other words,

(**)
$$\sup_{u \in f(x)} \operatorname{Re} \langle u, \hat{y} - x \rangle \leq 0 \quad \text{for all} \quad x \in X.$$

Let $x \in X$ be arbitrarily fixed, let $z_t = tx + (1-t)\,\hat{y} \equiv \hat{y} - t\,(\hat{y} - x)$ for $t \in [0, 1]$. As X is convex, we have $z_t \in X$ for $t \in [0, 1]$. Therefore, by (**) we have

$$\sup_{u \in f(z_t)} \operatorname{Re} \langle u, \hat{y} - z_t \rangle \leq 0 \quad \text{for all} \quad t \in [0, 1],$$

so that $t \cdot \sup_{u \in f(x_t)} \operatorname{Re} \langle u, \hat{y} - x \rangle \leq 0$ for all $t \in [0, 1]$ and it follows that

$$(*^**) \qquad \sup_{u \in f(z_t)} \operatorname{Re} \langle u, \hat{y} - x \rangle \leq 0 \quad \text{for all} \quad t \in (0, 1].$$

Let $w_0 \in f(\hat{y})$ be arbitrarily fixed. For each $\varepsilon > 0$, let

$$U_{w_0} = \{ w \in E' : |\langle w_0 - w, \hat{y} - x \rangle| < \varepsilon \};$$

then U_{w_0} is a $\sigma(E', E)$ -neighbourhood of w_0 . Since f is lower semicontinuous, and $U_{w_0} \cap f(\hat{y}) \neq \emptyset$, there exists a neighbourhood $N(\hat{y})$ of \hat{y} such that $z \in N(\hat{y})$ implies $f(z) \cap U_{w_0} \neq \emptyset$. Note that $z_t \to \hat{y}$ as $t \to 0^+$, thus there exists $\delta \in (0, 1)$ such that for all $t \in (0, \delta)$, we have $z_t \in N(\hat{y})$. But then

$$\operatorname{Re} \langle w_0, \hat{y} - x \rangle < \operatorname{Re} \langle u, \hat{y} - x \rangle + \varepsilon.$$

By (***), $\operatorname{Re}\langle w_0, \hat{y} - x \rangle < \varepsilon$. Since $\varepsilon > 0$ is arbitrary, $\operatorname{Re}\langle w_0, \hat{y} - x \rangle \leqslant 0$. As $w_0 \in f(\hat{y})$ is arbitrary,

$$\sup_{w \in f(\hat{y})} \operatorname{Re} \langle w, \hat{y} - x \rangle \leq 0 \quad \text{for all} \quad x \in X.$$

This completes the proof.

It would be of some interest to compare Theorem 3 with the following Browder's variational inequality [6], Theorem 6:

Theorem 4 (Browder). Let X be a non-empty compact convex subset of a locally convex Hausdorff topological vector space E and let $f: X \to 2^{E'}$ be upper semicontinuous such that for each $x \in X$, f(x) is a non-empty compact convex subset of E'. Then there exist $\hat{y} \in X$ and $\hat{w} \in f(\hat{y})$ such that

$$\operatorname{Re}\langle \hat{w}, \hat{y} - x \rangle \geqslant 0$$
 for all $x \in X$.

Here, given topological spaces X and Y, a set-valued map $f: X \to 2^Y$ is said to be *upper semicontinuous* [2] if for any point $x_0 \in X$ and any open set U in Y such that $f(x_0) \subset U$, there exists a neighbourhood W of x_0 such that $f(x) \subset U$ for all $x \in W$.

The following result is the single-valued case of Theorem 3 which we shall need in Section 4:

Theorem 5. Let X be a non-empty closed convex set in a Hausdorff topological vector space E and let $f: X \to E'$ be monotone. Assume that for each one-dimensional flat $L \subset E$, $f|L \cap X$ is continuous from the topology of E to the weak*-topology $\sigma(E', E)$ of E' and that there exist a non-empty weakly compact (not necessarily convex) subset K of E and $y_0 \in K \cap X$ such that for each $x \in X \setminus K$, $\operatorname{Re} \langle f(x), y_0 - x \rangle > 0$. Then there exists a point $\hat{y} \in X \cap K$ such that

$$\operatorname{Re} \langle f(\hat{y}), \hat{y} - x \rangle \leq 0$$
 for all $x \in X$.

4. Fixed point theorems. Let E be a normed linear space with norm $\|\cdot\|$ and let X be a non-empty subset of E. A map $f: X \to E$ is said to be *pseudo-contractive* [5] if for all $x, y \in X$ and for all r > 0,

$$||x-y|| \le ||(1+r)(x-y)-r(f(x)-f(y))||.$$

A map $f: X \to E$ is said to be non-expansive if for all $x, y \in X$,

$$||f(x)-f(y)|| \le ||x-y||.$$

It is obvious that if f is non-expansive, then f is pseudo-contractive since

$$||(1+r)(x-y)-r(f(x)-f(y))|| \ge (1+r)||x-y||-r||f(x)-f(y)||.$$

The main interest in pseudo-contractive maps stems from the firm connection which exists between these maps and the important class of accretive operators [5], Proposition 1.

We can now establish the following new fixed point theorem by applying Theorem 5.

Theorem 6. Let X be a non-empty closed convex subset of a Hilbert space $(H, \langle \cdot, \cdot \rangle)$ and let $f \colon X \to H$ be pseudo-contractive. Suppose that $f \mid L \cap X$ is continuous for each one-dimensional flat $L \subset H$ and that there exist a non-empty weakly compact (not necessarily convex) subset K of E and $y_0 \in K \cap X$ such that for each $x \in X \setminus K$, $\text{Re}(x - f(x), y_0 - x) > 0$. Then there exists a point $\hat{y} \in K \cap X$ such that

$$\operatorname{Re}\langle \hat{y} - f(\hat{y}), \hat{y} \rangle = \underset{x \in X}{\operatorname{Min}} \operatorname{Re}\langle \hat{y} - f(\hat{y}), x \rangle.$$

In particular, if f is a self-map on X, then \hat{y} is a fixed point of f.

Proof. According to a result [5], Proposition 1, of Browder, I-f is monotone. Applying Theorem 5 to I-f, there exists a point $\hat{y} \in K \cap X$ such that

$$\operatorname{Re}\langle \hat{y} - f(\hat{y}), \hat{y} - x \rangle \leq 0$$
 for all $x \in X$.

Hence we have

$$\operatorname{Re}\langle \hat{y} - f(\hat{y}), \hat{y} \rangle = \underset{x \in X}{\operatorname{Min}} \operatorname{Re}\langle \hat{y} - f(\hat{y}), x \rangle.$$

In particular, if f is a self-map on X, it follows that

Re
$$\langle \hat{y} - f(\hat{y}), \hat{y} - f(\hat{y}) \rangle \leq 0$$
,

so that \hat{y} is a fixed point of f. This completes the proof. \Box

As an immediate consequence, we obtain

THEOREM 7. Let X be a non-empty closed convex subset of a Hilbert space $(H, \langle \cdot, \cdot \rangle)$ and let $f \colon X \to H$ be non-expansive. If there exist a non-empty weakly compact (not necessarily convex) subset K of E and $y_0 \in K \cap X$ such that for each $x \in X \setminus K$, $\text{Re}(x - f(x), y_0 - x) > 0$. Then there exists a point $\hat{y} \in K \cap X$ such that

$$\operatorname{Re}\langle \hat{y}-f(\hat{y}), \hat{y}\rangle = \underset{x \in X}{\operatorname{Min}} \operatorname{Re}\langle \hat{y}-f(\hat{y}), x\rangle.$$

In particular, if f is a self-map on X, then \hat{y} is a fixed point of f.

In the case X is bounded and f is a self-map on X, by setting K = X, Theorem 7 reduces to Browder's fixed point theorem [4], Theorem 1.

References

- [1] J. P. Aubin, Mathematical methods of game and economic theory, North-Holland, Amsterdam 1979.
- [2] C. Berge, Topological spaces, Oliver and Boyd, Edinburgh and London 1963.
- [3] H. Brézis, L. Nirenberg and G. Stampacchia, A remark on Ky Fan's minimax principle, Boll. Unione Mat. Ital. (4) 6 (1972), 293-300.
- [4] F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1272-1279.
- [5] -, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
- [6] -, The fixed point theory of multi-valued mappings in topological vector spaces. Math. Ann. 177 (1968), 283-301.
- [7] -, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. in Pure Math., Vol. 18, Part 2, Amer. Math. Soc., Providence, R.I., 1976.
- [8] J. Dugundji and A. Granas, KKM maps and variational inequalities, Ann. Scuola Norm. Sup. Pisa (Ser. 4) 5 (1978), 679-682.
- [9] -, -, Fixed point theory, Vol. 1, Warszawa 1982.
- [10] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.
- [11] -, A minimax inequality and applications, Inequalities III, (Edited by O. Shisha), Academic Press, New York and London 1972.
- [12] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential equations, Acta Math. 115 (1966), 271-310.
- [13] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), 132-137.
- [14] C. L. Yen, A minimax inequality and its applications to variational inequalities, Pacific J. Math. 97 (1981), 477-481.

DEPARTMENT OF MATHEMATICS, CHUNG YUAN UNIVERSITY, CHUNG-LI, TAIWAN 320, TAIWAN

DEPARTMENT OF MATHEMATICS, DALHOUSIE UNIVERSITY, HALIFAX, NOVA SCOTIA, CANADA B3H 4H8

Received September 30, 1982

(1803)