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Removability of ideals in commutative Banach algebras
by
VLADIMIR MULLER (Praha)

Abstract. A countable family of removable ideals in a commutative Banach algebra is
removable, ; R

Introduction. Let 4 be a commutative Banach algebra with unit. An ideal
Iin A is called removable if there exists a superalgebra B> A (ie, B is a
commutative Banach algebra with unit and there is an isometric unit
preserving isomorphism f: A — B) such that I is not contained in a proper
ideal in B. A family {I;};., is called removable if there is a superalgebra B o 4
such that I; is not contained in a proper ideal in B for every jeJ.

These notion were introduced by R. Arens [1] where also the following
question was raised:” Is every (every finite) family of removable ideals
removable? )

In general the answer is negative as was shown by B. Bollobds [2]. He
presented an example of an uncountable family of removable ideals which is
not removable. There was also shown that we can adjoin inverses to any
countable. family of elements of A which are not permanently singular (ie.
which are not topological divisors of zero). .

Removable ideals were further studied, e.g. in [4] and [5].

For finite families the answer to the question of R. Arens is affirmative.
This was shown in [3] as a consequence of the characterization of non-
removable ideals: an ideal I is non-removable if and only if it consists of
joint topological divisors of zero (i.e., for every x;, ..., x,€l there exists a
sequence {z,}2, < 4, ||lzd| =1, klim ¥zl = 0).

—o =1

The aim of this paper is to fill the gap, namely to consider the countable
case (see also Problem 3 of [4]). We show that any countable family of
removable ideals is removable. )

THeorEM 1. Let A be a commutative Banach algebra with unit, ler py,
P2, ... be positive integers and K., K,, ... positive real numbers such that
2€p<I4+1, KPP, pit <4-1(1=1, 2, ..) (these conditions are only tech-
nical). Let ued, Jlu =1 (r=1,2,..., 1<s<p,) and

Pr
) I <K, 3 lteexl]  =1,2, ..., xeA).
s=1
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Then - there exist a superalgebra B> A and elements b,eB (r
Pr

=1,2,..., 1 <s<p,) such that Y u.b,=1(=12..)

s=1
Proof. Denote by N the set of non-negative integers, and T = {r, 9, r
=1,2,..., 1<5<p}, D={k: TN, k((r,s)) # 0 only for finite number
of ( r s)eT}. For k. jeD, le{l,2,...} and (r, s)e T denote k,, = k((r, 9), M,

—Zk,, and (k+jeD, (k+jhs =ke+is We write k<j if

ra \.]rs ((r S)E T)
Put R, =2""°(1=1,2 ..).
let V be the I' algebra over A and adjoined elements b, ((r, s)eT)

such that ||b,Jly = R, ie. the elements of V are of the form y =73 a,b,
keD

such that [}yl = " llaJ| R¥, where a,e A (keD), b* stands for [] b and
keD

(r,8)eT

RM =TT R (all products are finite).

=1

Multiplication in V is defined by
(X ab)(X ) =3 b( )
ieh jeh keD i-j=k
Then V is a commutative Banach algebra, 4 < V. Let I be the closed ideal in
Py
V generated by the clements z, =1— Y wu,b,, (r=1,2,...). Write B = V|I.
=1
Py

Obviously, T = Z @D, r=1,2,..), where ?=v+IeB for veV. It is
=1
sufficient to prove that 4 is a suba]gebra of B, ie., ||all4 = ||@|s = inf |la+vl}y

vel

for each acA. Putting v =0, we get ||al|,>1|dllz. Finite sums of the

o0
form Y ;Y ab are dense in I, so we are to prove that |jall,
I=1 ieD

< |la+ Z z(Y, a” )|y (a, ae A4 and both sums are finite). We have
I=1 isD

lat ¥ 53 d By =+ ¥ T (1= 5 wbi)d bl
I=1  ien s=1

1=1 ieh

=la+ Z a’+ Z by = |la+ z a4+ Y 1Al R

>'HH|L4—”Z a},"||+ > AR,
=1 i#0

Removability of ideals 299

where

.fl: = Z alw" Z Z aw“" and Ju = ilt_-ls Jrs = Ipss
=1 I=1 1<1p
if#0
for (r,s) # (I, 1) (f depends on l and 1).
It is sufficient to prove ||Z afl| < Z [Ifill4 R® (all sums are finite).
Suppose the contrary. Let a‘“eA = 1 2, ..., ieD. Suppose that only

finite number of them is non-zero, ”Z a{,””A =1and Y |fil4R*"<1 In
t=1 i=0

particular, [|f]l, < R™ =TT R, ™ (ieD, i  0) and of = 0 if either I > I, or
=1

lil, # O for some r > I,.

In the rest of the proof we are going to prove that this leads to a
contradiction. The proof is divided into seven parts.

I. First we need some results of [3]. For ceN, ¢ > 1 and keN" (n > 1),

WI'ltC
_(}kl+c—l K1
Bk =\ oLy )kll...k,,!’

where |kl = Y. k,. The following lemmas were proved in [3] (see Lemmas 3

=1
and 4):

d
Lemma L1 Y ¥ o,<8n' (d=1,2,..).

c=1 keN"

k<t
LemMma 1.2, ack-—z Uyt gy (€2 2, kEN"), where, for j, keN",
J<k means that j, < k (1 <n) and (k—j)eN" is defined by (k—j),

=k,—Ji.
To apply these results to our situation, write
. . . . . . . . . -1
o (i, ) = (i1 =Juys -+ T15-1 “Jhs—1s s 1 —hs+ 15 oo s ll,p(_]l,pl)ENpl
(le{l,2,..}, 1<s<p, i, jeD, iy =j, for t #5).
II. It will be convenient to consider linear combinations of a{’s as
formal expressions. From this reason we introduce the following notations:
Let W be the free additive group with generators a’# (i, jeD,
lefl, 2, ..., l,}). (Here we consider 4 # as one symbol; there is no mhltipli-

cation in W.)
Define the additive mapping P: W — Aby P8 #) = a® . LetI: W - W
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be the identical mapping. Define further the following additive mappings acting
in W

Let i, keD, k>i, I, me(l,2, ..., Lo}, deN. Put

@ ifli,=d
G0 g =47 me
Hopg (0" @) %0 otherwise,
) = G @) =0 for T
Fn@ @)= 3 &'a
jeMim
where
(2) Mi,m = {i = {jrs}ED’ there exist t, 1 <t < Pm> jmr = inu"'lﬁjrs = irs
for (r, 5) # (m, D)},
Fr (@@ % =0 for r#1 and, for 1<s<p, ki Z i+ +1,

Gu(@# =3 (- 1)’“ Ty g )

jely
where
(€ A
and ay, oy 3T€ the numbers defined in part L

We put G, (8" a*") =0 if either r #1 or kj < iy+|i,+1.

LemMa 2. Let m, m, 11,2, ..., L}, d, d'eN. Then

(8) Hypg Hysr = Hppse Hypsy

(b) Hmd Ty = Rt Hmd’

©) FinFiw = Fip Fi,

(d) Fom Tum = Ty F s

(€) HpyGiy = G Hpy (I m, 1 < p)s

®) FinGi =G Fp 1 #m, 1<5< Pt),

(g) FlmHm'd =HmllFlm (l#m m# m’)

(h F,G @@ )Y =a"# "' (1<s<p,ikeD, k=i, k,>
Proof. Relations (a)-(g) easily follow from the deﬁmtlon&

(h) We have

F”GI (a(l) o n) — Z ( l)jl.\"“‘ls 1, 0y 18 (U) Z a“) "k—]

{.’ = l.]rsIED jr( - lr! for r# l ]lt ll! fOI' t# s and |j|l = Il|l+1}

iig+il+1).

jely J'eMj
where
o lmi=1)!
1, i) = . »
T i
1st<sp
t#Es

the index sets J;, M;, are defined in (2) aﬁd (3). Let jeM

icm°®

.1, Where jeJ,.
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Then ‘]Il’“]]ll—'l"lilla Ju<ju<iy for t#5 For such a j, j'#1i the

coefficient at & @~/ is equal to
(_1)jis_ils (]ls"ils)- Z _l)jig-ils—l (j;s_ils_l)!
H (ilr _jit) ! t#£s H (ilx _j;t') ! (ilr _j;r— l)!
t#s e <ipe t#ts

= !
=(— l)jls ls%hh(lh———;))—'[h_ Z (ln'—Ju)] 0.

t#Es Jlt<'lt

This gives (h) since one can easily see that for j/ =i the corresponding
coefficient 1s equal to 1.

III. Define

lo

@ fi= Y ana-

m=1

so that P(f#) =fu'.

lo
2 Fund™# (i, jeD)
m=1

Lemma 3.1, Let i, keD, k=i, 1e{1,2,..., 1o}, L <5< p), kiy = i+ il +
+1. Then
A = = 3 (=0T 0 fE T+ Gu@ # Y+
jely
+ 3w (1= Fy) Gy (@ @)
rEL
Proof. Using (4) and the definition of G, we have
z (_I)fls_“ls_l__al.nb(wf;ﬁk—‘j
jely
lo
= Z Ty Gy (87 8~ Z (= 1)“'v i %1,055(i) Z nrszm(awuk )]
jelq
= Gy (@ @)+ Z yp G, (3" @)~
&
- Z Tim F i G5 (@° @) = Fyy Gy (3 #79).
m#l
Lemma 3.1 now follows from Lemma 2.1 (h).
Define now Z;,: W~ W (le{l,2,..., 1}, 1<s<p) by Z (D) = G0+

+ ¥ Ty (I —Fp) G5+ Z T O (ueW) Then we can rewrite Lemma 3.1
m#l
as follows: .

(D) sk () rk—i s g~ 1" P ki
R =Z,@ @)=Y (=0T a0 fE T
jely
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hence
Ak —i A il l
CoROLLARY 3.2. ||P[aP # ~'—Z, (@ @] < Z o oin Ri
jely
Remark 33. If |, =0, then Y a4y =1 and there is only R['* on

jelq

the right-hand side.

IV. Lemma 4.1. Let k,ieD, k>i,
cefl,2,...), k=i +i+c. Then

Gi@Pa =y (=1
js‘lt i

where Jr,i = {j= {j,,}ED, Ju =1y (r# D, ju <
is the c-th power of Gy).

Proof. For ¢ =1, the statement of Lemma 4.1 is the definition of G,.
Suppose that the statement is true for some c. Then

PO Jrg=lg—¢ (1) k-
Gy @t = Gls[ Z (=1 %e,044(i) a)(’) it j]

le{l,2, ...}, 1<s<p,

Jis T ils— ¢ A k=i
Le,0p5p B W,

iy (t #5) and |jl, = |il;+c} (G5

jelei .
J1s = is = ¢ Jis ~J1s~ ke
Z (=1 s &e,0550if) Z (== al.als(jj) aj(’l) at-i
i€l Jj'ely Ni
=Y Bafir
j'eb

for some integers .. Obviously, f. =0 for j'¢J, ;. If j"eJ,,;, then

= JIs— s ¢ Jis~Jig— 1
ﬂj" = ;} (_ 1) s almls(i,l)(— 1) s~ Jls alﬂ{s(ly/”)’
J
where

J={i={n}teD, ju=ji ¢ #D, iy 2ju2ji (t #3) and [ +1=["),}.
By Lemma 1.2 we have

_ Jis—ig—c—1
Z oo Ftoi) = Fet topin A0 fp= (=178 Ty o

jeJ
This finishes the induction step.
LemMa 4.2, Let i, k, 1, s, ¢ be as above. Then

POS! Jis—ig—c¢ A
Zu@ @) = ¥ (=1 g @
485

X Y T (=0T g, o (= Fod (@7 @),

m#lc'=1 ]E\]c:’i

Proof. For § = & ii*

@i .

~' we can easily prove by induction on ¢ that

<
Zi0 = Gio+ ) mp(I~Fy) Y Gid

m#l =1

icm
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and the statement follows from the previous lemma and Lemma 2.1 (f).
Lemma 4.3. Let i, k, I, s, ¢ be as above. Then, for § = a® a*~,

z 5 (~ l)ns‘ils""ac,'ols@fiﬁkﬁ_
=1 jelei
ig '
Proof. Substitute fa*~= ¥ (I—- F) (@™ #~%) into the right-hand

m=1

side. Comparing with Lemma 4.2 it is sufficient to prove

J1s—ig—c &
Z(__l)s s ao(z,[)asl)k] U
Jjeled

¢

=Y ¥ (=), U—FaP et

=1 jelg;
in other words,
(G—Di= 3 (I-Fy)Gid.
=1

This follows from Lemma 2.1 (h).

COROLLARY 4.4. Let i, k, I, s, ¢ be as above. Then, for & = aP &',
PIPG=Z0I< Y Y o R M
¢=1 jelgy
® If il # 0, ¢ = |il;, then
1P (5~ 25, 9)l < 8" (p, ~ 1)"1R; 7Y,
Proof. 1° follows from the estimate [|P(f #)| = Ilf;u*~| < L5l < R, ™.

2° follows from Lemma 1.1,

V. Let keD, deN, me{l,2, ...} and GeW,
!
) 5= i o0, 50 =Y a0
=1 i<k

where y{""s are integers. Then deg, § = d (deg,, 7 < d) means |i,, = d (|i|,, < d)
whenever 7" % 0 for some le{l, 2, ..., lo}.

Lemma 5.1. Let ke D, le{l,2, ..., lo}, 1 s < pp, my, 1y, -, €N, Let
GeW be of form (5), ki = is+il,+1 whenever Y #0 and the following
condirions are satisfied:

1° deg, ¥ < n,, deg, 8™ =n, (m=1,2, ..., lp), deg, 7 =0 (m > L);

2 (I =Fpy) 8™ = Hpp 8™, P, degp(I—F, i) D™ = R, fOr every
mm;

3° Hyppo ) = e Hyw o, 5™ (1< m,m <o) (ie, the parts of 5™ and
™) with maximal born deg, and deg, are equal up to the upper index).”
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Io
Put  Ww=2Z,5 ie, w= Y W @0 =G 5 =gy

Ty (I = Fiy) G 0 for m # 1.
Then W satisfies conditions 1°=3° of this Jemma with ny replaced by n,+ 1
(n,, does not change for m #1).
Proof. 1° degw" = deg, G, &'
m# | we have deg, #™ = n,, and
degm Tim (I_'_Flm) Gls ﬁ(” = degm Gls (I —Flm ﬁ(”

= degm Gls Hm. A(l)

h =m+1 by the definition of G,,. For

degmHmn CL\D() = Ny,

by property 2° and Lemma 2.1,
The rest of 1° is clear.

2° (a) Let m, m' £ 1, m # m'. Then
(I = F ) W™ = (I = F ) [ 4 7010, (1 == F 1) G D]
=Hpy ., B 4 721 (= F ) (I = F ) G v®
=Hpy,, 7+ 0y (I~ Fp) Gig Hy oV
(b) Let m I Then

® = H,,, W,

(I Flm) W(l) = (I Flm Gls = ls Hm,nm ﬁ(l) = I-Im,n"l Gls E“) =': Hm,nm W(l)’
(c) Let m # I. Then )
(I=F )%™ = (I~ Fpp) [0 + %y (I = F 1) G s 3]

= Hy 0" + 1y (1= F 1)) (I = F ) Gy o
= Hl mt )+n1m(1 F!m)(GIs_I)ﬁm
=nlmHm,nmv +nlm(Gls_I)Hm.nmﬁm

— 1
= Ty Gy Hup,n,, ol
and

Hyppg W = Hy s 1 [0 + 70 (I = F) Gy 0]
= Ty (I — F,) Hl:n,+ 16t = Tt (I = F ) Gy, 50
Al

= Ty Gls H”'v"m ﬁm

{we used the fact that G, increases deg)).

3 (@) m#m, m,m 1. Then
My [ﬁ(m + (1 '—Flm) Gls ﬁ(”]
= Hm,nm ﬁm') + Tomm' Toim Gls Hm’,nm: (I ”‘Flm) a(”

ot Hot gy, W™ = Tl Hop.

icm
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== Hm.nm ﬁ(m)'f'n:lm Glx Hm’,nm/ H ﬁ“)

=Hp,p, [#™) +m,,. G, H
(b) m. I. Then
™ = 1y Hy 1 [0 + Ty (I — F i) Gpp 7]
= Tt iy Hi 41 Gs (I~Fpp) 7 = Hl,n,+1 Gis Hp,n,, o
=H,,, G 7 = H,,,,,‘MW"’.
‘o

VL. For deW,i=73 ¥ i =
) I=1
Further, let, for g > 1 and n,, n,, .. ,n,oeN L I— —maxllPUII, thre
the maximum is taken over all elements 5eW of form (5) satisfying con-
ditions 1°-3° of Lemma 5.1 (with the numbers n,, n,, ..., n,, and with some
keD, k=i whenever y® 50 for some le{l, 2, ..., lo}) such that || <q.

Lemma 6.1. We have

"y

0 < (m’
g 071 = Hyp 997,

Temt Hr,n,-u w

}: Wala write |9 = max Z 41

@ R—1 (2q)
Sn ventt] e 1,0, 4 ERELIPY < Kl 141 [qu +sn1. nl-l,l,n1+1....,n|0]'

Proof. Let feW, Iv|
the numbers ny, n,, ..

(1,

144
IPdll < K; Z (PD)u,ll < K,

q satisfies conditions 1°-3° of Lemma 5.1 with
s Moty 0y Mgy oo My and with some keD. Then, by

pr

’ Z (”P[ﬁ'ilr'—zh(ﬁﬁu)]“+||Per(5ﬁlr)n)s

=1

where ||P[9d,— Z, (5d,)]ll < qR; ! by Remark 3.3 and Z, (3d)- satlsﬁes con-
ditions 1°-3° of Lernma 5.1 with the numbers ny, ..., g, L mpy, <o myg It
remains to prove that |Z, (i) < 2q. Since

le (aﬁlr) = Gh (ﬁ(l) ﬁh) + Z [ﬁ(m Uy + Tim (I _Flm) Gls (5([) ah]r

mil
|Gy 8 iy

and, for m # 1, |p™] < 19|,
[t (I = F 1) Gy 7 | = |Gy, Hp, o, 0 ] <

we conclude that |Z, (0i,)] < 2|0 <

< lﬁa) alrl < ,ﬁl

iGll 6”) alrl < ]ﬁl,

Lemma 6.2
2mp) an ny np—m—1 (2113"1(”" 1
S‘n?...,n. < K] (8" (1" R ™ " S 1 2 g )

Proof. Let i € Wsatisfy 1°-3° of Lemma 5.1 with the numbers n,, ..., ri,o.
Then, using (1) repeatedly, we infer
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(2m py)
an Z [I(PD) “u “12 xp,“““““l‘"l“]

. pl'

IIPdl < K

Py

where the sum is taken over all ey, ..., ¢, Wwith Z e = 2n, p;. It follows from

this that e, > 2, for some s, l <5< p, in each of p "l summands and

I(POYs? ..l < CP) i = 1P| < IPZll+ ([P (o — Zit )

where W =dip’. Further, |P(h—Z@w)<q 8" (m—1"R ™" by
Corollary 4.4 and Z/}w satisfies conditions 1" 3* of Lemma 5.1 for

. Ny -~
Myyoons Mioyy 2, Myyqs ..., . We have to estimate 1Z\}w|. We have

n
ZH = Ga0+ Y [W 4y, (1= Fp) Y Gow]
m#l c=1
"

Z Gi W],

W 18 the part of W with the upper index m. Thus

= G;:l W(l) + Z [w(m) + Tim Hm'"m

m#l

where W™ =

|Zi Wl < 1l + Z IG5 #l < ¢ +8"(pi—1)"q < 28" (p— 1)

(248"1(1:, 1M

'l -~
Hence ”Ple W” < nl.m,nl-1,2n,4n1+1....,n10'

COROLLARY 6.3.55,‘11’,__”,,10 <A™ I R s 528’ ”;l’)l |

VII. Define h = s(z",”_1'2,_2'“_.2,1'0“"’o for 0<r<ly and &
= sg’,').l‘z,_z"_‘.z,_,o for r > I, where g, =223

Lewa 7.1, < 2 2T RIY TR YT L LR
+R, 1.

Proof. This estimate can easily be proved by using Lemmas 6.2 and 6.1
repeatedly (we also use -the estimate 1-21/2.3U4 /27!
22r+4 h

g2ite

< 8 for every r).

ar+5

COROLLARY 7.2, h, < 27

Proof. Substitute R, =

Proof of Theorem 1. By induction we get hy,<2-2" +272%+
+...<27% (as k=0 for r>1l). On the other hand, hy=: ‘2’0
~~rn::tx[le]],whelre Wwe W satisties conditions 1" 3° of Lemma 5.1 (with n,
=..=m;=0 and W <2%. Put w- Z ad. Clearly, > || P
»
=||¥ 4’| =1, a contradiction.

=1

icm°®
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THEOREM 2. A countable family of removable ideals in a commutative
Banach alyebra with unit is removable.

Proof. Let A be a commutative Banach algebra with unit, I, I, ...
removable ideals in 4. Then, for r =1, 2, ..., there exist a positive integer

D @ pos;tlve constant K, and elements u,l, Upz, ..., Uy, €I, such that
r

Ixl < K, Z [Ixu,f| (xeA). We may assume without loss of generality that
=1

the conditions 2 < r-H K <r and p,” < 4r are satisfied for each r.

Then, by Theorem 1, Z U, b, =1 in some B o 4. This means that I, is
t=1
removed in B for r=1, 2, ...
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