L. Maligranda

[3] S. G. Krein, Yu. I. Petunin and E. M. Semenov, Interpolation of linear operators (in Russian), Nauka, Moskva 1978.

[4] J.L. Lions, Some remarks on variational inequalities, Proc. Internat. Conf. Functional Analysis and Related Topics (Tokyo 1969), Univ. of Tokyo Press, Tokyo 1970, 269-282.

- [6] -, Banach's problem 87 of the Scottish Book, The Scottish Book edited by D. Mauldin, Birkhäuser-Verlag, 1981, 161-170.
- [7] J. Peetre, Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj) 12 (1970), 325-334.
- [8] L. Tartar, Interpolation non linéaire et régularité, J. Funct. Anal. 9 (1972), 469-489.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES POZNAN, POLAND

296

Received September 30, 1982

(1805)

STUDIA MATHEMATICA, T. LXXVIII. (1984)

Removability of ideals in commutative Banach algebras

by

VLADIMÍR MÜLLER (Praha)

Abstract. A countable family of removable ideals in a commutative Banach algebra is removable.

Introduction. Let A be a commutative Banach algebra with unit. An ideal I in A is called removable if there exists a superalgebra $B \supset A$ (i.e., B is a commutative Banach algebra with unit and there is an isometric unit preserving isomorphism $f \colon A \to B$) such that I is not contained in a proper ideal in B. A family $\{I_j\}_{j \in I}$ is called removable if there is a superalgebra $B \supset A$ such that I_i is not contained in a proper ideal in B for every $i \in I$.

These notion were introduced by R. Arens [1] where also the following question was raised: Is every (every finite) family of removable ideals removable?

In general the answer is negative as was shown by B. Bollobás [2]. He presented an example of an uncountable family of removable ideals which is not removable. There was also shown that we can adjoin inverses to any countable family of elements of A which are not permanently singular (i.e., which are not topological divisors of zero).

Removable ideals were further studied, e.g. in [4] and [5].

For finite families the answer to the question of R. Arens is affirmative. This was shown in [3] as a consequence of the characterization of non-removable ideals: an ideal I is non-removable if and only if it consists of joint topological divisors of zero (i.e., for every $x_1, \ldots, x_n \in I$ there exists a sequence $\{z_k\}_{k=1}^{\infty} \subset A$, $\|z_k\| = 1$, $\lim_{k \to \infty} \sum_{i=1}^{n} \|z_k x_i\| = 0$).

The aim of this paper is to fill the gap, namely to consider the countable case (see also Problem 3 of [4]). We show that any countable family of removable ideals is removable.

THEOREM 1. Let A be a commutative Banach algebra with unit, let p_1 , p_2 , ... be positive integers and K_1, K_2, \ldots positive real numbers such that $2 \leq p_l \leq l+1$, $K_l^{p_l} \leq l$, $p_l^{p_1} \leq l$ ($l=1,2,\ldots$) (these conditions are only technical). Let $u_{rs} \in A$, $||u_{rs}|| = 1$ ($r=1,2,\ldots,1 \leq s \leq p_r$) and

(1)
$$||x|| \leqslant K_r \sum_{s=1}^{p_r} ||u_{rs}x|| \quad (r=1, 2, ..., x \in A).$$

Then there exist a superalgebra $B\supset A$ and elements $b_{rs}\in B$ $(r=1,\,2,\,\ldots,\,1\leqslant s\leqslant p_r)$ such that $\sum_{s=1}^{p_r}u_{rs}\,b_{rs}=1$ $(r=1,\,2,\,\ldots).$

Proof. Denote by N the set of non-negative integers, and $T = \{(r, s), r = 1, 2, ..., 1 \le s \le p_r\}$, $D = \{k: T \to N, k((r, s)) \ne 0 \text{ only for finite number of } (r, s) \in T\}$. For $k, j \in D$, $l \in \{1, 2, ...\}$ and $(r, s) \in T$ denote $k_{rs} = k((r, s)), |k|_l$ $= \sum_{l=1}^{p_1} k_{ll}$ and $(k+j) \in D$, $(k+j)_{rs} = k_{rs} + j_{rs}$. We write $k \le j$ if $k_{rs} \le j_{rs}$ $((r, s) \in T)$. Put $R_l = 2^{2l+6}$ (l = 1, 2, ...).

Let V be the l^1 algebra over A and adjoined elements b_{rs} $((r,s)\in T)$ such that $||b_{rs}||_V = R_r$, i.e., the elements of V are of the form $y = \sum_{k\in D} a_k b^k$, such that $||y||_V = \sum_{k\in D} ||a_k|| R^{|k|}$, where $a_k \in A$ $(k \in D)$, b^k stands for $\prod_{(r,s)\in T} b_{rs}^{k_{rs}}$ and $R^{|k|} = \prod_{l=1}^{\infty} R_l^{|k|}$ (all products are finite).

Multiplication in V is defined by

$$\left(\sum_{\mathbf{i}\in\mathcal{D}} a_{\mathbf{i}} \, \mathbf{b}^{\mathbf{i}}\right) \left(\sum_{\mathbf{j}\in\mathcal{D}} a_{\mathbf{j}}' \, \mathbf{b}^{\mathbf{j}}\right) = \sum_{\mathbf{k}\in\mathcal{D}} \mathbf{b}^{\mathbf{k}} \left(\sum_{\mathbf{i}\cdot\mathbf{j}=\mathbf{k}} a_{\mathbf{i}} \, a_{\mathbf{j}}'\right).$$

Then V is a commutative Banach algebra, $A \subset V$. Let I be the closed ideal in V generated by the elements $z_r = 1 - \sum_{s=1}^{p_r} u_{rs} b_{rs}$ $(r = 1, 2, \ldots)$. Write B = V | I. Obviously, $\overline{1} = \sum_{s=1}^{p_r} \overline{u}_{rs} \overline{b}_{rs}$ $(r = 1, 2, \ldots)$, where $\overline{v} = v + I \in B$ for $v \in V$. It is sufficient to prove that A is a subalgebra of B, i.e., $||a||_A = ||\overline{a}||_B = \inf_{v \in I} ||a + v||_V$ for each $a \in A$. Putting v = 0, we get $||a||_A \geqslant ||\overline{a}||_B$. Finite sums of the form $\sum_{l=1}^{\infty} z_l \sum_{i \in D} a_i^{(l)} b^i$ are dense in I, so we are to prove that $||a||_A \leqslant ||a + \sum_{l=1}^{\infty} z_l \sum_{i \in D} a_i^{(l)} b^i||_V$ $(a, a_i^{(l)} \in A \text{ and both sums are finite)}$. We have

$$\begin{aligned} \|a + \sum_{l=1}^{\infty} z_{l} \sum_{i \in \mathbb{N}} a_{l}^{(l)} \mathbf{b}^{l}\|_{V} &= \|a + \sum_{l=1}^{\infty} \sum_{i \in \mathbb{N}} \left(1 - \sum_{s=1}^{p_{r}} u_{ls} b_{ls}\right) a_{l}^{(l)} \mathbf{b}^{l}\|_{V} \\ &= \|a + \sum_{l=1}^{\infty} a_{0}^{(l)} + \sum_{\substack{i \in \mathbb{N} \\ l \neq 0}} \mathbf{b}^{l} f_{i}\|_{V} = \|a + \sum_{l=1}^{\infty} a_{0}^{(l)}\|_{A} + \sum_{i \neq 0} \|f_{i}\|_{A} \mathbf{R}^{[i]} \\ & \geqslant \|a\|_{A} - \|\sum_{l=1}^{\infty} a_{0}^{(l)}\| + \sum_{i \neq 0} \|f_{i}\| \mathbf{R}^{[i]}, \end{aligned}$$

where

$$f_i = \sum_{l=1}^{\infty} a_i^{(l)} - \sum_{l=1}^{\infty} \sum_{\substack{1 \le r \le p_l \\ l_{ll} \ne 0}} a_j^{(l)} u_{ll} \quad \text{and} \quad j_{ll} = i_{ll} - 1, \quad j_{rs} = i_{rs},$$

for $(r, s) \neq (l, t)$ (j depends on l and t).

It is sufficient to prove $\|\sum_{l=1}^{\infty} a_0^{(l)}\|_A \leqslant \sum_{i\neq 0} \|f_i\|_A R^{[i]}$ (all sums are finite). Suppose the contrary. Let $a_i^{(l)} \in A$, $l=1,2,\ldots,i\in D$. Suppose that only finite number of them is non-zero, $\|\sum_{i=1}^{\infty} a_0^{(i)}\|_A = 1$ and $\sum_{i\neq 0} \|f_i\|_A R^{[i]} < 1$. In particular, $\|f_i\|_A < R^{-[i]} = \prod_{l=1}^{\infty} R_l^{-[i]_l}$ ($i \in D$, $i \neq 0$) and $a_i^{(l)} = 0$ if either $l > l_0$ or $|i|_r \neq 0$ for some $r > l_0$.

In the rest of the proof we are going to prove that this leads to a contradiction. The proof is divided into seven parts.

I. First we need some results of [3]. For $c \in \mathbb{N}$, $c \ge 1$ and $k \in \mathbb{N}^n$ $(n \ge 1)$, write

$$\alpha_{c,k} = {|\mathbf{k}|+c-1 \choose c-1} \frac{|\mathbf{k}|!}{k_1! \dots k_n!},$$

where $|k| = \sum_{i=1}^{n} k_i$. The following lemmas were proved in [3] (see Lemmas 3 and 4):

Lemma 1.1.
$$\sum_{c=1}^{d} \sum_{\substack{k \in N^n \\ |k| < l}} \alpha_{c,k} \leq 8^d n^d \ (d = 1, 2, \ldots).$$

Lemma 1.2. $\alpha_{c,k} = \sum_{j \leqslant k} \alpha_{c-1,j} \cdot \alpha_{1,k-j} \ (c \geqslant 2, \ k \in N^n)$, where, for $j, \ k \in N^n$, $j \leqslant k$ means that $j_t \leqslant k_t \ (1 \leqslant t \leqslant n)$ and $(k-j) \in N^n$ is defined by $(k-j)_t = k_t - j_t$.

To apply these results to our situation, write

$$o_{ls}(\mathbf{i}, \mathbf{j}) = (i_{l,1} - j_{l,1}, \dots, i_{l,s-1} - j_{l,s-1}, i_{l,s+1} - j_{l,s+1}, \dots, i_{l,p_l} - j_{l,p_l}) \in \mathbb{N}^{p_l - 1}$$

$$(l \in \{1, 2, \dots\}, 1 \leq s \leq p_l, \mathbf{i}, \mathbf{j} \in D, i_{l_l} \geq j_{l_l} \text{ for } t \neq s).$$

II. It will be convenient to consider linear combinations of $a_i^{(0)}$'s as formal expressions. From this reason we introduce the following notations:

Let W be the free additive group with generators $\hat{a}_i^{(l)}\hat{u}^j$ $(i, j \in D, l \in \{1, 2, ..., l_0\})$. (Here we consider $\hat{a}_i^{(l)}\hat{u}^j$ as one symbol; there is no multiplication in W.)

Define the additive mapping $P: W \to A$ by $P(\hat{a}_i^{(l)} \hat{u}^j) = a_i^{(l)} u^j$. Let $I: W \to W$

be the identical mapping. Define further the following additive mappings acting in W:

Let
$$i, k \in D, k \ge i, l, m \in \{1, 2, ..., l_0\}, d \in N$$
. Put

$$H_{md}(\hat{a}_i^{(l)}\,\hat{\boldsymbol{u}}^{k-i}) = \begin{cases} \hat{a}_i^{(l)}\,\hat{\boldsymbol{u}}^{k-i} & \text{if } |\boldsymbol{i}|_m = d, \\ 0 & \text{otherwise,} \end{cases}$$

$$\begin{split} \pi_{lm}(\hat{a}_i^{(l)}\,\hat{u}^{k-i}) &= \hat{a}_i^{(m)}\,\hat{u}^{k-i}, & \pi_{lm}(\hat{a}_i^{(r)}\,\hat{u}^{k-i}) = 0 & \text{for } r \neq l, \\ F_{lm}(\hat{a}_i^{(l)}\,\hat{u}^{k-i}) &= \sum_{j \in M_{lm}} \hat{a}_j^{(l)}\,\hat{u}^{k-j}, \end{split}$$

where

(2)
$$M_{i,m} = \{j = \{j_{rs}\} \in D, \text{ there exist } t, 1 \le t \le p_m, j_{mt} = i_{mt} - 1, j_{rs} = i_{rs} \}$$
 for $(r, s) \ne (m, t)\},$

$$F_{lm}(\hat{a}_{i}^{(r)} \hat{u}^{k-1}) = 0 \text{ for } r \neq l \text{ and, for } 1 \leqslant s \leqslant p_{l}, \ k_{ls} \geqslant i_{ls} + |\hat{i}|_{l} + 1,$$

$$G_{ls}(\hat{a}_{i}^{(l)} \hat{u}^{k-1}) = \sum_{i \in I_{1}} (-1)^{j_{ls} - i_{ls} - 1} \cdot \alpha_{1, o_{ls}(ij)} \hat{a}_{i}^{(l)} \hat{u}^{k-1},$$

where

(3)
$$J_1 = \{j = \{j_{rs}\} \in D, j_{rt} = i_{rt} \text{ for } r \neq l, j_{lt} \leqslant i_{lt} \text{ for } t \neq s \text{ and } |j|_l = |i|_l + 1\}$$
 and $\alpha_{1, \rho_{lt}(i)}$ are the numbers defined in part I.

We put $G_{ls}(\hat{a}_{i}^{(r)}\hat{u}^{k-1}) = 0$ if either $r \neq l$ or $k_{ls} < i_{ls} + |i|_{l} + 1$.

LEMMA 2. Let $m, m', l \in \{1, 2, ..., l_0\}, d, d' \in \mathbb{N}$. Then

- (a) $H_{md} H_{md'} = H_{md'} H_{md}$
- (b) $H_{md} \pi_{lm'} = \pi_{lm'} H_{md}$,
- (c) $F_{lm}F_{lm'} = F_{lm'}F_{lm}$
- (d) $F_{mm'} \pi_{lm} = \pi_{lm} F_{lm'}$,
- (e) $H_{md} G_{ls} = G_{ls} H_{md} \ (l \neq m, 1 \leq s \leq p_l)$
- (f) $F_{lm}G_{ls} = G_{ls}F_{lm} \ (l \neq m, 1 \leq s \leq p_l),$
- (g) $F_{lm}H_{m'd} = H_{m'd}F_{lm} \ (l \neq m, m \neq m'),$
- (h) $F_{il}G_{ls}(\hat{a}_{i}^{(l)}\hat{u}^{k-i}) = \hat{a}_{i}^{(l)}\hat{u}^{k-i}$ $(1 \le s \le p_{l}, i, k \in D, k \ge i, k_{ls} \ge i_{ls} + |i|_{l} + 1).$

Proof. Relations (a)-(g) easily follow from the definitions.

(h) We have

$$F_{ll} G_{ls}(\hat{a}_{i}^{(l)} \hat{u}^{k-l}) = \sum_{j \in J_{1}} (-1)^{j_{ls}-i_{ls}-1} \cdot \alpha_{1,o_{ls}(i,j)} \sum_{j' \in M_{j,l}} \hat{a}_{j'}^{(l)} \hat{u}^{k-j'},$$

where

$$\alpha_{1,o_{ls}(i,j)} = \frac{(j_{ls} - i_{ls} - 1)!}{\prod_{\substack{1 \le t \le p_l \\ t \ne s}} (i_{lt} - j_{lt})!},$$

the index sets J_1 , $M_{j,l}$ are defined in (2) and (3). Let $j' \in M_{j,l}$, where $j \in J_1$.

Then $|j'|_l = |j|_l - 1 = |i|_l$, $j'_{li} \le j_{li} \le i_{li}$ for $t \ne s$. For such a j', $j' \ne i$, the coefficient at $\hat{a}_i^{(l)} \hat{u}^{k-j'}$ is equal to

$$\begin{split} (-1)^{j_{ls}^{\prime}-i_{ls}} \frac{(j_{ls}^{\prime}-i_{ls})!}{\prod\limits_{t\neq s} (i_{lt}-j_{lt}^{\prime})!} + \sum\limits_{\substack{t\neq s\\j_{lt}^{\prime}< i_{lt}}} (-1)^{j_{ls}^{\prime}-i_{ls}-1} \frac{(j_{ls}^{\prime}-i_{ls}-1)!}{\prod\limits_{t^{\prime}\neq i_{t,s}} (i_{lt}-j_{lt}^{\prime})! (i_{lt}-j_{lt}^{\prime}-1)!} \\ = (-1)^{j_{ls}^{\prime}-i_{ls}} \frac{(j_{ls}^{\prime}-i_{ls}-1)!}{\prod\limits_{t^{\prime}\neq s} (i_{lt}^{\prime}-j_{lt}^{\prime})!} \left[j_{ls}^{\prime}-i_{ls}-\sum\limits_{\substack{t\neq s\\j_{lt}^{\prime}< i_{lt}}} (i_{lt}-j_{lt}^{\prime})\right] = 0. \end{split}$$

This gives (h) since one can easily see that for j'=i the corresponding coefficient is equal to 1.

III. Define

(4)
$$\hat{f}_i \hat{u}^j = \sum_{m=1}^{l_0} \hat{a}_i^{(m)} \hat{u}^j - \sum_{m=1}^{l_0} F_{mm} \hat{a}_i^{(m)} \hat{u}^j \quad (i, j \in D)$$

so that $P(\hat{f}_i \hat{u}^j) = f_i u^j$.

Lemma 3.1. Let $i, k \in D, k \geqslant i, l \in \{1, 2, ..., l_0\}, 1 \leqslant s \leqslant p_l\}, k_{ls} \geqslant i_{ls} + |i|_l + 1$. Then

$$\begin{split} \hat{a}_{i}^{(l)} \, \hat{u}^{k-l} &= - \sum_{j \in J_{1}} \, (-1)^{j_{ls} - i_{ls} - 1} \, \alpha_{1, o_{ls}(ij)} \, \hat{f}_{j} \, \hat{u}^{k-j} + G_{ls}(\hat{a}_{i}^{(l)} \, \hat{u}^{k-i}) + \\ &+ \sum_{l' \neq l} \, \pi_{ll'}(I - F_{ll'}) \, G_{ls}(\hat{a}_{i}^{(l)} \, \hat{u}^{k-i}). \end{split}$$

Proof. Using (4) and the definition of G_{ls} , we have

$$\begin{split} &\sum_{j \in J_1} \left(-1\right)^{j_{ls}-i_{ls}-1} - \alpha_{1,o_{ls}(i,j)} \, \hat{f}_{j} \, \hat{u}^{k-j} \\ &= \sum_{m=1}^{l_0} \, \pi_{lm} \, G_{ls} (\hat{a}_{i}^{(l)} \, \hat{u}^{k-i}) - \sum_{j \in J_1} \, \left(-1\right)^{j_{ls}-i_{ls}-1} \alpha_{1,o_{ls}(i,j)} \, \sum_{m=1}^{l_0} \, \pi_{lm} \, F_{lm} (\hat{a}_{i}^{(l)} \, \, \hat{u}^{k-i}) \\ &= G_{ls} (\hat{a}_{i}^{(l)} \, \hat{u}^{k-i}) + \sum_{l' \neq l} \, \pi_{ll'} \, G_{ls} (\hat{a}_{i}^{(l)} \, \hat{u}^{k-i}) - \\ &- \sum_{m \neq l} \, \pi_{lm} \, F_{lm} \, G_{ls} (\hat{a}_{i}^{(l)} \, \hat{u}^{k-i}) - F_{ll} \, G_{ls} (\hat{a}_{i}^{(l)} \, \hat{u}^{k-i}). \end{split}$$

Lemma 3.1 now follows from Lemma 2.1 (h).

Define now Z_{ls} : $W \to W$ $(l \in \{1, 2, ..., l_0\}, 1 \le s \le p_l)$ by $Z_{ls}(\hat{v}) = G_{ls}\hat{v} + \sum_{m \neq l} \pi_{lm} (I - F_{lm}) G_{ls} \hat{v} + \sum_{m \neq l} \pi_{mm} \hat{v}$ $(\hat{v} \in W)$. Then we can rewrite Lemma 3.1 as follows:

$$\hat{a}_{i}^{(l)}\,\hat{u}^{k-l} = Z_{ls}(\hat{a}_{i}^{(l)}\,\hat{u}^{k-l}) - \sum_{j \in I_{1}} (-1)^{j_{ls}-i_{ls}-l'} \alpha_{1,o_{ls}(i,j)}\,\hat{f}_{j}\,\hat{u}^{k-j};$$

hence

Corollary 3.2. $||P[\hat{a}_{i}^{(l)}\hat{u}^{k-l} - Z_{ls}(\hat{a}_{i}^{(l)}\hat{u}^{k-l})]|| \leq \sum_{j \in J_{1}} \alpha_{1,o_{ls}(i,j)} R_{l}^{-|i|_{l}-1}$.

Remark 3.3. If $|i|_l = 0$, then $\sum_{j \in J_1} \alpha_{1,o_{ls}(i,j)} = 1$ and there is only R_l^{-1} on the right-hand side.

IV. Lemma 4.1. Let ${\bf k}, {\bf i}\!\in\! {\bf D}, {\bf k}\!\geqslant\! {\bf i}, l\!\in\!\{1,\,2,\,\ldots,\,l_0\}, 1\leqslant s\leqslant p_l, c\in\!\{1,\,2,\,\ldots\}, k_{ls}\!\geqslant\! i_{ls}\!+\!|{\bf i}|_l\!+\!c.$ Then

$$G_{ls}^{c}(\hat{a}_{i}^{(l)}\,\hat{\boldsymbol{u}}^{k-i}) = \sum_{j \in J_{c,i}} (-1)^{j_{ls}-i_{ls}-c} \alpha_{c,o_{ls}(i,j)}\,\hat{a}_{j}^{(l)}\,\hat{\boldsymbol{u}}^{k-j},$$

where $J_{c,i} = \{j = \{j_{rl}\} \in D, j_{rl} = i_{rl} \ (r \neq l), j_{ll} \leqslant i_{ll} \ (t \neq s) \ and \ |j|_{l} = |i|_{l} + c\} \ (G_{ls}^{c})$ is the c-th power of G_{ls}).

Proof. For c=1, the statement of Lemma 4.1 is the definition of G_{ls} . Suppose that the statement is true for some c. Then

$$\begin{split} G_{ls}^{c+1}\left(\hat{a}_{l}^{(l)}\,\hat{\pmb{u}}^{k-i}\right) &= G_{ls}\Big[\sum_{j\in J_{c,i}}\left(-1\right)^{j_{ls}-i_{ls}-c}\alpha_{c,o_{ls}(i,j)}\,\hat{a}_{j}^{(l)}\,\hat{\pmb{u}}^{k-j}\Big] \\ &= \sum_{j\in J_{c,i}}\left(-1\right)^{j_{ls}-i_{ls}-c}\alpha_{c,o_{ls}(i,j)}\sum_{j'\in J_{1,j}}\left(-1\right)^{j_{ls}-j_{ls}-1}\cdot\alpha_{1,o_{ls}(i,j)}\,\hat{a}_{j'}^{(l)}\,\hat{\pmb{u}}^{k-j'} \\ &= \sum_{j''\in D}\beta_{j''}\,\hat{a}_{j}^{(l)}\,\hat{\pmb{u}}^{k-j''} \end{split}$$

for some integers $\beta_{i''}$. Obviously, $\beta_{i''} = 0$ for $j'' \notin J_{c+1,i}$. If $j'' \in J_{c+1,i}$, then

$$\beta_{j''} = \sum_{j \in J} (-1)^{j_{ls} - i_{ls} - c} \alpha_{c,o_{ls}(i,j)} (-1)^{j''_{ls} - j_{ls} - 1} \alpha_{1,o_{ls}(i,j'')},$$

where

 $J = \{j = \{j_{rs}\} \in D, \ j_{rt} = j_{rt}'' \ (r \neq l), \ i_{lt} \geqslant j_{lt} \geqslant j_{lt}'' \ (t \neq \hat{s}) \ \text{and} \ |j_{lt} + 1 = |j''|_{l}\}.$

By Lemma 1.2 we have

$$\sum_{i \in J} \alpha_{c,o_{ls}(i,j)} \alpha_{1,o_{ls}(i,j')} = \alpha_{c+1,o_{ls}(i,j)} \quad \text{and} \quad \beta_{j'} = (-1)^{j'_{ls} - i_{ls} - c - 1} \alpha_{c+1,o_{ls}(i,j'')}.$$

This finishes the induction step.

LEMMA 4.2. Let i, k, l, s, c he as above. Then

$$\begin{split} Z_{ls}^{c}(\hat{a}_{i}^{(l)}\,\hat{\pmb{u}}^{k-l}) &= \sum_{j \in J_{c,i}} \left(-1\right)^{j_{ls}-i_{ls}-c} \alpha_{c,o_{ls}(i,j)}\,\hat{a}_{j}^{(l)}\,\hat{\pmb{u}}^{k-j} + \\ &+ \sum_{m \neq l} \sum_{c'=1}^{c} \sum_{j \in J_{c',i}} \left(-1\right)^{j_{ls}-i_{ls}-c'} \alpha_{c',o_{ls}(i,j)} \left(I - F_{mm}\right) (\hat{a}_{j}^{(m)}\,\hat{\pmb{u}}^{k-j}). \end{split}$$

Proof. For $\hat{v} = \hat{a}_i^{(l)} \hat{u}^{k-i}$ we can easily prove by induction on c that

$$Z_{ls}^{c}\,\hat{v}=G_{ls}^{c}\,\hat{v}+\sum_{m\neq l}\,\pi_{lm}(I-F_{lm})\sum_{c'=1}^{c}\,G_{ls}^{c'}\,\hat{v}$$



and the statement follows from the previous lemma and Lemma 2.1 (f). Lemma 4.3. Let i, k, l, s, c be as above. Then, for $\hat{v} = \hat{a}_i^{(l)} \hat{u}^{k-i}$,

$$Z_{ls}^{c} \hat{v} - \hat{v} = \sum_{c'=1}^{c} \sum_{j \in Jc', i} (-1)^{j_{ls} - i_{ls} - c'} \alpha_{c', o_{ls}(i, j)} \hat{f}_{i} \hat{u}^{k-j}.$$

Proof. Substitute $\hat{f}_j \hat{u}^{k-j} = \sum_{m=1}^{t_0} (I - F_{mm}) (\hat{a}_j^{(m)} \hat{u}^{k-j})$ into the right-hand side. Comparing with Lemma 4.2 it is sufficient to prove

$$\begin{split} \sum_{j \in J, c, i} \left(-1 \right)^{j_{ls} - i_{ls} - c} \alpha_{c, o_{ls}(i,j)} \, \hat{a}_{i}^{(l)} \, \hat{u}^{k-j} - \hat{v} \\ &= \sum_{c' = 1}^{c} \sum_{i \in J, c'} \left(-1 \right)^{j_{ls} - i_{ls} - c'} \alpha_{c', o_{ls}(i,j)} \left(I - F_{il} \right) \hat{a}_{i}^{(l)} \, \hat{u}^{k-j}; \end{split}$$

in other words,

$$(G_{ls}^c - I)\hat{v} = \sum_{c'=1}^c (I - F_{il})G_{ls}^{c'}\hat{v}.$$

This follows from Lemma 2.1 (h).

COROLLARY 4.4. Let i, k, l, s, c be as above. Then, for $\hat{v} = \hat{a}_i^{(l)} \hat{u}^{k-1}$,

$$1^{\circ} ||P(\hat{v} - Z_{ls}^{c} \hat{v})|| \leq \sum_{c'=1}^{c} \sum_{i \in J_{c'}} \alpha_{c',o_{ls}(i,j)} R_{l}^{-|i|_{l'-c'}}.$$

$$2^{\circ}$$
 If $|\mathbf{i}|_1 \neq 0$, $c = |\mathbf{i}|_1$, then

$$||P(\hat{v}-Z_{ls}^c\hat{v})|| \le 8^{|i|_l}(p_1-1)^{|i|_1}R_l^{-|i|_l-1}$$

Proof. 1° follows from the estimate $||P(\hat{f}_i\hat{u}^{k-j})|| = ||f_ju^{k-j}|| \le ||f_j|| < R_l^{-|j|}|_l$.

2° follows from Lemma 1.1.

V. Let $k \in D$, $d \in N$, $m \in \{1, 2, ...\}$ and $\hat{v} \in W$,

(5)
$$\hat{v} = \sum_{l=1}^{l_0} \hat{v}^{(l)}, \quad \hat{v}^{(l)} = \sum_{i \le k} \gamma_i^{(l)} \hat{a}_i^{(l)} \hat{u}^{k-i},$$

where $\gamma_i^{(l)}$'s are integers. Then $\deg_m \hat{v} = d \ (\deg_m \hat{v} \leqslant d)$ means $|\mathbf{i}|_m = d \ (|\mathbf{i}|_m \leqslant d)$ whenever $\gamma_i^{(l)} \neq 0$ for some $l \in \{1, 2, ..., l_0\}$.

Lemma 5.1. Let $k \in D$, $l \in \{1, 2, ..., l_0\}$, $1 \le s \le p_l$, $n_1, n_2, ..., n_{l_0} \in N$. Let $\hat{v} \in W$ be of form (5), $k_{ls} \ge i_{ls} + |i|_l + 1$ whenever $\gamma_i^{(l)} \ne 0$ and the following conditions are satisfied:

1°
$$\deg_m \hat{v} \leq n_m$$
, $\deg_m \hat{v}^{(m)} = n_m \ (m = 1, 2, ..., l_0)$, $\deg_m \hat{v} = 0 \ (m > l_0)$;

$$2^{\circ} (I - F_{mm'}) \, \widehat{v}^{(m)} = H_{m', n_{m'}} \, \widehat{v}^{(m)}, \quad i.e., \quad \deg_{m'} (I - F_{mm'}) \, \widehat{v}^{(m)} = n_{m'} \quad for \quad every \\ m \neq m' :$$

3° $H_{m,n_m}\hat{v}^{(m')} = \pi_{mm'}H_{m',n_m}\hat{v}^{(m)}$ $(1 \leq m, m' \leq l_0)$ (i.e., the parts of $\hat{v}^{(m)}$ and $\hat{v}^{(m')}$ with maximal both \deg_m and $\deg_{m'}$ are equal up to the upper index).

Put
$$\hat{w} = Z_{ls} \hat{v}$$
, i.e., $\hat{w} = \sum_{m=1}^{l_0} \hat{w}^{(m)}$, $\hat{w}^{(l)} = G_{ls} \hat{v}^{(l)}$, $\hat{w}^{(m)} = \hat{v}^{(m)} +$

 $+\pi_{lm}(I-F_{lm})G_{ls}\hat{v}^{(l)}$ for $m \neq l$.

Then \hat{w} satisfies conditions 1°-3° of this lemma with n_1 replaced by n_1+1 $(n_m \text{ does not change for } m \neq 1)$.

Proof. 1° $\deg_l \hat{w}^{(l)} = \deg_l G_{ls} \hat{v}^{(l)} = n_l + 1$ by the definition of G_{ls} . For $m \neq l$ we have $\deg_m \hat{v}^{(m)} = n_m$ and

$$\begin{split} \deg_m \pi_{lm}(I - F_{lm}) \, G_{ls} \, \hat{v}^{(l)} &= \deg_m G_{ls} \, (I - F_{lm}) \, \hat{v}^{(l)} \\ &= \deg_m G_{ls} \, H_{m,n_m} \, \hat{v}^{(l)} = \deg_m H_{m,n_m} \, G_{ls} \, \hat{v}^{(l)} = n_m \end{split}$$

by property 2° and Lemma 2.1.

The rest of 1° is clear.

2° (a) Let $m, m' \neq l, m \neq m'$. Then

$$\begin{split} (I - F_{mm'}) \, \widehat{w}^{(m)} &= (I - F_{mm'}) \, [\widehat{v}^{(m)} + \pi_{lm} (I - F_{lm}) \, G_{ls} \, \widehat{v}^{(l)}] \\ &= H_{m',n_{m'}} \, \widehat{v}^{(m)} + \pi_{lm} (I - F_{lm'}) (I - F_{lm}) \, G_{ls} \, v^{(l)} \\ &= H_{m',n_{m'}} \, \widehat{v}^{(m)} + \pi_{lm} (I - F_{lm}) \, G_{ls} \, H_{m',n_{m'}} \, v^{(l)} = H_{m',n_{m'}} \, \widehat{w}^{(m)}. \end{split}$$

(b) Let $m \neq l$. Then

$$(I - F_{lm}) \, \hat{w}^{(l)} = (I - F_{lm}) \, G_{ls} \, \hat{v}^{(l)} = G_{ls} \, H_{m,n_m} \, \hat{v}^{(l)} = H_{m,n_m} \, G_{ls} \, \hat{v}^{(l)} = H_{m,n_m} \, \hat{w}^{(l)}$$

(c) Let $m \neq l$. Then

$$\begin{split} (I - F_{ml}) \, \hat{w}^{(m)} &= (I - F_{ml}) \left[\hat{v}^{(m)} + \pi_{lm} (I - F_{lm}) \, G_{ls} \, \hat{v}^{(l)} \right] \\ &= H_{l,n_l} \hat{v}^{(m)} + \pi_{lm} (I - F_{ll}) (I - F_{lm}) \, G_{ls} \, v^{(l)} \\ &= H_{l,n_l} \, \hat{v}^{(m)} + \pi_{lm} (I - F_{lm}) (G_{ls} - I) \, \hat{v}^{(l)} \\ &= \pi_{lm} \, H_{m,n_m} \, \hat{v}^{(l)} + \pi_{lm} (G_{ls} - I) \, H_{m,n_m} \, \hat{v}^{(l)} \\ &= \pi_{lm} \, G_{ls} \, H_{m,n_m} \, \hat{v}^{(l)} \end{split}$$

and

$$\begin{split} H_{l,n_l+1} \; \hat{w}^{(m)} &= H_{l,n_l+1} \left[\hat{v}^{(m)} + \pi_{lm} \left(I - F_{lm} \right) G_{ls} \, v^{(l)} \right] \\ &= \pi_{lm} (I - F_{lm}) \, H_{l,n_l+1} \, G_{ls} \, v^{(l)} = \pi_{lm} \left(I - F_{lm} \right) G_{ls} \, \hat{v}^{(l)} \\ &= \pi_{lm} \, G_{ls} \, H_{m,n_m} \, \hat{v}^{(l)} \end{split}$$

(we used the fact that G_{ls} increases \deg_{l}).

 3° (a) $m \neq m'$, m, $m' \neq l$. Then

$$\begin{split} \pi_{mm'} H_{m',n_{m'}} \hat{w}^{(m)} &= \pi_{mm'} H_{m',n_{m'}} \big[\hat{v}^{(m)} + \pi_{lm} (I - F_{lm}) \, G_{ls} \, \hat{v}^{(l)} \big] \\ &= H_{m,n_{m}} \hat{v}^{(m')} + \pi_{mm'} \, \pi_{lm} \, G_{ls} \, H_{m',n_{m'}} (I - F_{lm}) \, \hat{v}^{(l)} \end{split}$$

$$\begin{split} &= H_{m,n_m} \hat{v}^{(m')} + \pi_{lm} \, G_{ls} \, H_{m',n_{m'}} \, H_{m,n_m} \, \hat{v}^{(l)} \\ &= H_{m,n_m} \big[\hat{v}^{(m')} + \pi_{lm'} \, G_{ls} \, H_{m',n_{m'}} \hat{v}^{(l)} \big] = H_{m,n_m} \, \hat{w}^{(m')}. \end{split}$$

(b) $m \neq l$. Then

$$\begin{split} \pi_{ml} H_{l,n_l+1} \, \hat{w}^{(m)} &= \pi_{ml} H_{l,n_l+1} \left[\hat{v}^{(m)} + \pi_{lm} (I - F_{lm}) \, G_{ls} \, \hat{v}^{(l)} \right] \\ &= \pi_{ml} \, \pi_{lm} H_{l,n_l+1} \, G_{ls} (I - F_{lm}) \, \hat{v}^{(l)} = H_{l,n_l+1} \, G_{ls} \, H_{m,n_m} \, \hat{v}^{(l)} \\ &= H_{m,n_m} \, G_{ls} \, \hat{v}^{(l)} = H_{m,n_m} \, \hat{w}^{(l)}. \end{split}$$

VI. For
$$\hat{v} \in W$$
, $\hat{v} = \sum_{l=1}^{l_0} \hat{v}^{(l)}$, $\hat{v}^{(l)} = \sum_{i \in D} \gamma_{ij}^{(l)} \hat{a}_i^{(l)} \hat{u}^j$ write $|\hat{v}| = \max_{l} \sum_{i \in D} |\gamma_{ij}^{(l)}|$.

Further, let, for $q \ge 1$ and $n_1, n_2, \ldots, n_{l_0} \in \mathbb{N}$, $s_{n_1, n_2, \ldots, n_{l_0}} = \max \|P\widehat{v}\|$, where the maximum is taken over all elements $\widehat{v} \in W$ of form (5) satisfying conditions $1^{\circ}-3^{\circ}$ of Lemma 5.1 (with the numbers $n_1, n_2, \ldots, n_{l_0}$ and with some $k \in D$, $k \ge i$ whenever $\gamma_i^{iD} \ne 0$ for some $l \in \{1, 2, \ldots, l_0\}$) such that $|\widehat{v}| \le q$.

LEMMA 6.1. We have

$$s_{n_1,\ldots,n_{l-1},0,n_{l+1},\ldots,n_{l_0}}^{(q)} \leq K_l p_l \left[q R_l^{-1} + s_{n_1,\ldots,n_{l-1},1,n_{l+1},\ldots,n_{l_0}}^{(2q)} \right].$$

Proof. Let $\hat{v} \in W$, $|\hat{v}| \le q$ satisfies conditions $1^{\circ}-3^{\circ}$ of Lemma 5.1 with the numbers $n_1, n_2, \ldots, n_{l-1}, 0, n_{l+1}, \ldots, n_{l_0}$ and with some $k \in D$. Then, by (1),

$$||P\hat{v}|| \leq K_{l} \sum_{t=1}^{p_{l}} ||(P\hat{v}) u_{lt}|| \leq K_{l} \sum_{t=1}^{p_{l}} (||P[\hat{v}\hat{u}_{lt} - Z_{lt}(\hat{v}\hat{u}_{lt})]|| + ||PZ_{lt}(\hat{v}\hat{u}_{lt})||),$$

where $||P[\hat{v}\hat{u}_{lt}-Z_{lt}(\hat{v}\hat{u}_{lt})]|| \leq qR_l^{-1}$ by Remark 3.3 and $Z_{lt}(\hat{v}\hat{u}_{lt})$ satisfies conditions 1°-3° of Lemma 5.1 with the numbers $n_1, \ldots, n_{l-1}, 1, n_{l+1}, \ldots, n_{l_0}$. It remains to prove that $|Z_{lt}(\hat{v}\hat{u}_{lt})| \leq 2q$. Since

$$Z_{lt}(\widehat{v}\widehat{u}_{lt}) = G_{lt}(\widehat{v}^{(l)}\,\widehat{u}_{lt}) + \sum_{m \neq l} \left[\widehat{v}^{(m)}\,\widehat{u}_{lt} + \pi_{lm}(I - F_{lm})\,G_{ls}(\widehat{v}^{(l)}\,\widehat{u}_{lt}\right],$$

$$|G_{l}, \hat{v}^{(l)} \hat{u}_{ll}| \leq |\hat{v}^{(l)} \hat{u}_{ll}| \leq |\hat{v}|$$

and, for $m \neq l$, $|\hat{v}^{(m)}| \leq |\hat{v}|$,

$$|\pi_{lm}(I - F_{lm}) G_{li} \, \hat{v}^{(l)} \, \hat{u}_{li}| = |G_{li} \, H_{m,n_m} \, \hat{v}^{(l)} \, \hat{u}_{li}| \leq |G_{li} \, \hat{v}^{(l)} \, \hat{u}_{li}| \leq |\hat{v}|,$$

we conclude that $|Z_{ll}(\hat{v}\hat{u}_{ll})| \leq 2|\hat{v}| \leq 2q$.

LEMMA 6.2.

$$s_{n_1,...,n_{l_0}}^{(q)} \leq K_l^{2n_l p_l} p_l^{2n_l p_l} [q 8^{n_l} (p_l - 1)^{n_l} R_l^{-n_l - 1} + s_{n_1,...,n_{l-1},2n_l,n_{l+1},...,n_{l_0}}^{(2q 8^{n_l} (p_l - 1)^{n_l})}].$$

Proof. Let $\hat{v} \in W$ satisfy $1^{\circ}-3^{\circ}$ of Lemma 5.1 with the numbers n_1, \ldots, n_{l_0} . Then, using (1) repeatedly, we infer

$$||P\hat{v}|| \leq K_{l}^{2n_{l}p_{l}} \sum ||(P\hat{v}) u_{l1}^{e_{1}} u_{l2}^{e_{2}} \dots u_{l,p_{l}}^{e_{p_{l}}}|| \frac{(2n_{l}p_{l})!}{e_{1}! \dots e_{p_{l}}!},$$

where the sum is taken over all e_1, \ldots, e_{p_l} with $\sum_{i=1}^{p_l} e_i = 2n_l p_l$. It follows from this that $e_s \ge 2n_l$ for some $s, 1 \le s \le p_l$, in each of $p_l^{2n_l p_l}$ summands and

$$||(P\hat{v})u_{l_1}^{e_1}\dots u_{l_lp_l}^{e_{p_l}}|| \leq ||(P\hat{v})u_{l_s}^{2n_l}|| = ||P\hat{w}|| \leq ||PZ_{l_s}^{n_l}\hat{w}|| + ||P(\hat{w} - Z_{l_s}^{n_l}\hat{w})||,$$

where $\hat{w} = \hat{v}\hat{u}_{ls}^{2n_l}$. Further, $\|P(\hat{w} - Z_{ls}^{n_l}\hat{w})\| \le q \cdot 8^{n_l}(p_l - 1)^{n_l}R_l^{-n_l - 1}$ by Corollary 4.4 and $Z_{ls}^{n_l}\hat{w}$ satisfies conditions 1°-3° of Lemma 5.1 for $n_1, \ldots, n_{l-1}, 2n_l, n_{l+1}, \ldots, n_{l_0}$. We have to estimate $|Z_{ls}^{n_l}\hat{w}|$. We have

$$\begin{split} Z_{ls}^{n_l} \hat{w} &= G_{ls}^{n_l} \hat{w}^{(l)} + \sum_{m \neq l} \left[\hat{w}^{(m)} + \pi_{lm} (I - F_{lm}) \sum_{c=1}^{n_l} G_{ls}^c \hat{w}^{(l)} \right] \\ &= G_{ls}^{n_l} \hat{w}^{(l)} + \sum_{m \neq l} \left[\hat{w}^{(m)} + \pi_{lm} H_{m,n_m} \sum_{c=1}^{n_l} G_{ls}^c \hat{w}^{(l)} \right], \end{split}$$

where $\hat{w}^{(m)} = \pi_{mm} \hat{w}$ is the part of \hat{w} with the upper index m. Thus

$$|Z_{ls}^{n_l} \widehat{w}| \leq |\widehat{w}| + \sum_{c=1}^{n_l} |G_{ls}^c \widehat{w}| \leq q + 8^{n_l} (p_l - 1)^{n_l} q \leq 2 8^{n_l} (p_l - 1)^{n_l} q.$$

Hence $||PZ_{ls}^{n_l} \widehat{w}|| \le s_{n_1, \dots, n_{l-1}, 2n_l, n_{l+1}, \dots, n_{l_0}}^{(2q8^{n_l}(p_l-1)^{n_l})}$

 $\text{Corollary 6.3.} \ s_{n_1, \dots, n_{l_0}}^{(q)} \leqslant 4^{4n_l} \, l^{4n_l} \, [q 8^{n_l} \, l^{n_l} \, R_l^{-n_l-1} + s_{n_1, \dots, n_{l-1}, 2n_l, n_{l+1}, \dots, n_{l_0}}^{(2q 8^{n_l} l^{n_l})}].$

VII. Define $h_r = s_{2^{r-1},2^{r-2},\dots,2,1,0,\dots,0}^{(q_r)}$ for $0 \le r \le l_0$ and $h_r = s_{2^{r-1},2^{r-2},\dots,2,1,0,\dots,0}^{(q_r)}$ for $r > l_0$, where $q_r = 2^{2^{r+3}}$.

Lemma 7.1. $h_r \leqslant 2^{2^{r+4}} \cdot h_{r+1} + 2^{2^{r+5}} \left[R_1^{-2^{r-1}-1} + R_2^{-2^{r-2}-1} + \ldots + R_r^{-2} + R_{r+1}^{-1} \right].$

Proof. This estimate can easily be proved by using Lemmas 6.2 and 6.1 repeatedly (we also use the estimate $1 \cdot 2^{1/2} \cdot 3^{1/4} \dots r^{(1/2)^{r-1}} \le 8$ for every r).

Corollary 7.2. $h_r \leq 2^{2^{r+4}} h_{r+1} + 2^{-2^{r+5}}$

Proof. Substitute $R_l = 2^{2^{l+6}}$.

Proof of Theorem 1. By induction we get $h_0 \le 2^{-2^5} + 2^{-2^6} + \dots \le 2^{-31}$ (as $h_r = 0$ for $r > l_0$). On the other hand, $h_0 = s_{0,...0}^{(2^8)} = \max \|P\hat{w}\|$, where $\hat{w} \in W$ satisfies conditions $1^{\circ} - 3^{\circ}$ of Lemma 5.1 (with $n_1 = \dots = n_{l_0} = 0$ and $|\hat{w}| \le 2^8$). Put $\hat{w} - \sum_{l=1}^{l_0} \hat{a}_0^{(l)}$. Clearly, $h_0 \ge \|P\hat{w}\| = \|\sum_{l=1}^{l_0} a_0^{(l)}\| = 1$, a contradiction.

THEOREM 2. A countable family of removable ideals in a commutative Banach algebra with unit is removable.

Proof. Let A be a commutative Banach algebra with unit, I_1, I_2, \ldots removable ideals in A. Then, for $r=1, 2, \ldots$, there exist a positive integer p_r , a positive constant K_r and elements $u_{r1}, u_{r2}, \ldots, u_{rp_r} \in I_r$ such that $||x|| \leq K_r \sum_{i=1}^{p_r} ||xu_{ri}|| \ (x \in A)$. We may assume without loss of generality that the conditions $2 \leq p_r \leq r+1$, $K_r^{p_r} \leq r$ and $p_r^{p_r} \leq 4r$ are satisfied for each r. Then, by Theorem 1, $\sum_{r=1}^{p_r} u_{rr} b_{rr} = 1$ in some $B \supset A$. This means that I_r is removed in B for $r=1,2,\ldots$

References

- [1] R. Arens, Extensions of Banach algebras, Pacific J. Math. 10 (1960), 1-16.
- [2] B. Bollobás, Adjoining inverses to commutative Banach algebras, Trans. Amer. Math. Soc. 181 (1973), 165-179.
- [3] V. Müller, Non-removable ideals in commutative Banach algebras, Studia Math. 74 (1982), 97-104.
- [4] W. Żelazko, On some classes of ideals in commutative Banach algebras, Rend. Mat. Fis. Milano 48.
- [5] -, A characterization of LC-non-removable ideals in commutative Banach algebras (in preparation).

Received October 5, 1982 (1811)