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On the convergence in L' of singular integrals
by

ALBERTO P, CALDERON and OSVALDO N. CAPRI (Buenos Aires, Argentina)

Abstract. It is shown that if 4 singular integral operator such as in [1], see references,
acting on 4 function in L' is in L, then the truncated operator converges to its limit in V.
We begin by stating a known theorem (Theorem A), which plays an

essential role in our article. Let us assume that k(x), xeR", is a Lebesgue
measurable function such that

(i) for ¢ > 0,

[ 1xlk(0ldx < by e,

{x| <e
(i) f
1%l > 20y
(i) for 0 <e < 4,

[k (x—y)—k(x)| dx < b,

| k(x)dx| <bs,

s<|x] <A
(iv) |

e<|x}<1

k{(x)dx
converges as ¢ — 0.

Set k;(x)=k(x) if s<|x|<A and k,,;(x)=0 elsewhere. For
feB(R), 1 < p< o0, let

K:r.ﬂ.(f)(x) = (ku.A *f) (x) = f ku,z(X—Y)f(,V)d%
R

The convolution is well-defined almost everywhere and belongs to
I’(R").

Turorem A, Let k(x) be a singular kernel which satisfies the above
conditions and suppose that feZ(R"), 1 < p <co. Then the limit

lmg Ko (N)0) ="K(f)(x) =F ()

A

exists almost everywhere. Moreover,
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() IffelZ(RY), 1<p<c, then [ =K(eLR), |, < c,llf |l where
¢, is a constant, and Hf*ks'l—fllpﬁo as ¢ >0 and A — .

(2)  If feL}(R"), then there exists a constant ¢y > 0 such that
[ixeR™ (F0l >t} < (cyDf s,

for any t > O (|E| denotes the Lebesgue measure of the set E). In other words,
the operaror K is of weak type (1, 1).

Proof. See Benedek—Calderén—Panzone [1] and Riviére [3] (Theorem
4.1 and Theorem 5.1, respectively). For the homogeneous case see [2].

The main purpose of this note is to prove the following theorem in
which the kernel k,(x) is defined, for any & > 0, by the formula k,(x) = k(x) if
|x| > ¢ and k,(x) =0 if |x| <.

TueoreM 1. If fe I} (R") and e I} (R"), then f %k, L' (R") for each ¢ > 0,
and ||f *k,—f]l; =0 as ¢ = 0.

For the proof we need the following definition and lemmas.

DeFINITION. Suppose that ¢(x) is a fixed function of Cy(R") (here Co(R%)
denotes the set of all continuous functions with compact support) such that
@(x)20,supp ¢ = {[x| <1} and | @(x)dx =1. Let ¢>0 and put ¢,(x)

=g "p(x/s). We define, for each ’gl> 0,

L) 5: (X) = (‘ﬁn (x)'_'kz(x) ae.
LemMma 1. There exists a constant ¢ > 0, such that
(2) ”55”1 = ,f |5c (x)' dx <c
R'l

for every £ > 0. .
Proof. We first suppose that |x| > 2¢. Then, by the Lebesgue dominated
convergence theorem we have

7)) = K (@) (x) = lim [ ksax=y) .0 dy = | k(x—y)p,(y)dy.
l:x R® v Se
Therefore, for |x| > 2,
S, (x) = | lf [k(x=y)—k(x] @, (y) dy.
<z
Hence, by Fubini’s theorem and condition iii) of the kernel k(x), we obtain
o ’IZ |6e(x)rdx<| lJ { | Ik(x=p)—k(x)|dx} g, (v)dy < b,.
x| >2¢ yl<€e  |x|>2e
On the other hand
@ ] Bl [ 1@+ [ k()ldx =1, +1,.

|x[ < 2¢ |x}<2e e<|x| <2
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By Schwarz’s inequality
Il < 2n/29'¥/28n/2{ j’ . Iﬁc(x)lzdx}”z,
|x] < 2¢ .
where Q, denotes the volume of the unit ball of R". Whence, taking into
account that the operator K is of type (2, 2) we obtain
®) I S 2"20,26"-Co { | [, (0] dx}!/? = by,
RM
where b, is a constant. _
Moreovet, by (4) and by condition (i) satisfied by the kernel k(x), we
have

(6 L <(l/e) [ Ixllk(x)dx <2b,.

|x| € 2¢
Finally, from (3), (4), (5) and (6), we obtain (2) with ¢ = 2b, +b,+b,.
- Lemwma 2. () If fe (R, 1< p < w, then, for each &> 0,

(7 FUf (x= )k, (0] d2 < o0,

R”
Jfor almost every x.
(i) If fe(R"), | <p< o, then, for almost every x,

8) Fx) =K (x)= lmg (f # ko) (x).

(i) If fell(RM, 1 < p < 0, then
(9) If *koll, < ¢ lIfl,,  Fel(RY, and ling IIf %k ~fll,= 0.

Proof. (i) By formula (1), k,(x) = @,(x)—d,(x). Therefore
(10) (f 1 lieal) (x) < (18] #1FD G0+ (Bl +1f N ().

We suppose first that p = 1. Then, by Young’s convolution theorem and
by Lemma 1, we have |||6, x|/{||; < ¢|lf]l; < co. Therefore (13, ¥f1)(x) < oo,
ae.

The second convolution which appears on the right-hand member of
(10) is also finite almost everywhere. Indeed

L1 %12 < e2llf 1l llgella-
Now, we suppose that 1 < p < . Then
(18 %171 < SWllx 11 < €SNl
and

1% 1Bdllo < 1AW 1Bl < cqllally 11115
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where g is the conjugate exponent of p. Therefore, both convolutions which
appear on the right-hand member of (10) are finite almost everywhere.
(ii) By the Lebesgue dominated convergence theorem, taking into ac-
count (7), we have
hm Kn,l(f)(>v =1lim [k (x—1) f(0)dt =

A—ro0 gn

(f xk)(x), ae.

Hence, letting ¢ — 0, we obtain
flx) = lim K, ;()(x) = Lim(f *k)(x) ae.
=
(iti) By Theorem A, we have
lim [ (ko3 % f) () —=f(x)|Pdx = 0.

e
Choose now, given >0, a (0 <J < 1), such that

[ ke x /)X =T (a7 dx <

RN
if0<e<dand 1 >5". Letting A — oo and using part (ii) of the lemma and
Fatou’s lemma we conclude that

§ 10k %f)(x

Rn
for 0 <e <. This proves (9).
Lemma 3. If fell (R and geCy(R"), then

11 0=/ *D(x) ae

Proof. By the associative property of the convolution product we have
12 (Frg)xky, =1 (g 5k,

By Theorem A, since f*geI’(R"), we have
(13) 11113 ICf *g) ko3 = (f ) (0)]12 = 0.

A=ron

—f(x)Pdx < n

On the other hand, by Young’s convolution theorem and Theorem A, we
have

(13) 1S (g *ke,2)—

as ¢ -0 and 10
Finally, formula (11) follows from (12), (13) and (13").

Lemma 4. If feL (R") and JeI} (R"), then for each geC,(R"
(14) (0 =(T*9) ()  ae.

Pl < WU NF—g ke allz = 0,

icm°®
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Proof. For every positive integer m and for xeR", we define

(15) ha(X) =Y flx—=1) [ g ar,
kez!t or
where £’ = k/2", k = (ky, ..., k,)e Z" (Z is the set of the integers) and

ky+1 k,,

ky+1
om .

" Ul k
QZ:{(II,...,I,,)GR:ETL,I<11< TS <

We note first that, since the support of g is compact, for any xeR", only
finitely many terms of the series on the right of (15) are non-zero.
We claim that

(16) lim [h,—f *gll; = 0.

In fact, as it is easy to see, for any given ¢ > 0, there exists an m, such
that

=1 *glly < Z j Jf

keZ? Qk R

(x—8)—f (x=)ldx} g (t)l dt < ellgll;,

if m 2 my. From formula (15), since the operator K commutes with trans-
lations we obtain

fn(x) = LT (x=10) | g(0)dr.
Qk

kez?
Then, arguing just as in the proof of (16) we conclude that
an lim ||f,—7 %gll, = 0.

On the other hand, taking into account the weak type (1, 1) of the
operator K, it follows from (16) that the sequence &, converges in measure to
(f *g). Therefore, taking into account formula (17), we see that there exists.an
subsequence h, of h, such that '

(f *gi(x) = 11m 7{

”ﬁj
=(f*g)(x)
for almost every x. This proves the lemma.

LemMa 5. If y&Co(RM, then
(18) lim |lg %d,]l; = 0,

&0

where §,(x) = (3,(x)—k,(x), a.e.

Proof. We first prove that
(19) lim ||g # 8, = 0.

=0
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In fact, by Lemma 3

(g% 3 (%) = (F* @) (x)—(k, xg)(x), ae.

Hence, [lg# 3|, < llg*0,lls ST * @ —gll2+11§—ks *4ll2 > 0 as ¢ —0. Indeed
15 * @, —3ll, — 0, by the fact that ¢, is an approximation of the identity, and
”57_"}*9”2 -0 by Lemma 2.

Now, we suppose that the support of g is included in the ball x| <N
and that 0 <& < N. Then, the support of gx¢, is included in the ball
|xI < 2N. Therefore, by Lemma 3, for |x| > 4N and 0 <& < N, we have

(20) [ k(x—yHo, *a)(ndy.

Iy <2N

Moreover, for |x] 24N and 0 <& <N,

(3% 9)(x) = (@, x g} (x) =

(21 (kexg))= [ k(x—ylg»dy.
Iyl <2N
From (20) and (21), it follows that
(22) (g*0)(x)= | kix—=y)[e*xg)y)—g)dy

ly|S2N

for |x] > 4N and 0<¢ < N. Taking into account that

| o)W —g(y)dy =0,
fyl<2N
we obtain from (22)
(g*d) ()= |

bI<2N

[k (x~y)~k (x)] [, * 9) () ~g ("] dy,

for [x| > 4N and 0 <& < N. Hence, by Fubini’'s Theorem, we have
[ lg*ddlex< | { |

x| Z4N ¥I<2N |x|24N

k(e —y) =k (X dx} (0, %) ()~ g (V)] dy.

Then, by condition (ii) satisfied by the kernel,
(23) f

1x|24N
as £¢—0. On the other hand, by Schwarz's inequality and (19), we obtain
(24) I g *3)(x)ldx < @NY"2 Q2 |lg %8,)), =0,

|x| <4N
as ¢~ 0. Finally, formula (18) of the thesis follows from (23) and (24).
Proof of Theorem 1. We prove first that f*k,eI} (R, for every
&> 0. In fact, by formula (1) and Lemma 4 we have

(25) (k) ¥) = (F*0) (x)—=(f %8) (),

(g * 8l (x)dx < by |l %g—gll; — 0,

a.e.

icm°®
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Hence, by Lemma 1, we conclude that

I *klly < Il +ellf s -

We now prove that ||f xk,~f||; =0 as ¢—0. To this end choose an
n > 0, then there exists a function g e Co (R" such that |jg—f]|, < n. Then, by
formula (25)

I k=TIl < 1T % @u=T N5 + IS~ glly 161 +llg %8, .
Hence, by Lemma 1 and Lemma 5, we obtain

limsup |1/ k=7, < lim I * @, =Ty +cn+lim [lg %8, = en.
[ s o &=0

Then the theorem follows by the arbitrariness of 4 > 0.
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