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Inclusion operators in Bergman spaces on bounded
symmetric domains in C"

by
T. M. WOLNIEWICZ (Warsaw)

Abstract. Let Z be a sequence of points of a bounded symmetric domain D in C" and
TP the “inclusion” operator appearing in the problem of interpolation in Bergman spaces, In
this paper we give a characterization of sequences Z < D for which the operator T§*P acting
from the Bergman space A%(D) to M is bounded.

1. Introduction. Let D be a domain in C", K, its Bergman function and
AE(D) the Bergman space consisting of all functions analytic in D and such
that

J 1@ Kp(2)™*dv(z) < o0
b

where v is the 2n-dimensional Lebesgue measure on C".
For fe AL(D} and Z = {z,,} ¢ D define the “inclusion” operator as

Tp*P(f) = {f (20 Kp (zm) " P},

In this paper we assume that D is biholomorphic to a bounded
symmetric domain in C" and characterize sequences Z = D for which the
operator Tf*? is bounded from 4%(D) to /. Our theorem extends the results
of P. J. McKenna [2] and A. Zabulionis [5] obtained for the case of the unit
disc, « =0 and g =p. We also show that the operator TP*~" cannot be
compact and as a result give a motivation for the choice of the exponent in
the definition of the operator.

The proof of the main result uses a modification of a technique
originating from McKenna and later used by Zabulionis.

Finally [ would like to thank Prof. P. Wojtaszezyk for many stimulating
discussions.

2. Notation and definitions, Everywhere in the sequel D will stand for a
domain in C".

We say that D is circular if tzeD whenever zeD and reC, Jt| = 1, and
completely circular if all reC, || <1 can be admitted. :
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If &: D~ C" is a holomorphic mapping, then by &' we will denote its
complex Jacobi matrix and by J& = |det @2 its real Jz.xcobi.an.

A mapping &: D — D, will be called biholomorphic if ® is }-1 and onto
and both @ and ®~* are holomorphic. In particular, for a biholomorphic
mapping we have J@(z) # 0 (zeD). An automorphism of D ig a bi1}010~
morphic mapping from D onto itself. The group of all such mappings will be
denoted by Aut(D).

A domain D is called symmetric if it is homogeneous (i.e, Aut(D) acts
transitively on D) and each point of D is a fixed point of an involution from
Aut(D). (The homogeneity is in fact implied by the second assumption.)
Everywhere in the sequel we will additionally assume that a symmetric
domain means a domain biholomorphic to a bounded symmetric one.

Kp(z, w) and Kp(2) = Kp(z, z) will stand for the Bergman kernel and
the Bergman function for D. In symmetric domains Kp(z, w) does not vanish
(see Lemma 2), and so we can define the weight functions

W@ =Kp(@)™% 202 =K@ Y (zeD)
and a function measuring, in a way, the distance between points in D
op(z, W) = Kp(2) Kp(W) [Kp(z, wI™?  (z, weD).

The Bergman norm of a function f is
1f lpaep = ([ 1f17 12 V)
D

for pe(0, o) and ae(wp, 00), where oy is the infimum of those « for which
the space AZ(D) is non-trivial. o, does not depend on p (cf. Corollary 2).
The inclusion operator becomes

24P (f) = {f (zn) 87 (z) "} -

We will say that the domain D; is model for D if

1° D, is biholomorphic to D,

2 D, is bounded, symmetric and complete circular,

3 y(Dy) =1,

1t is well known that every domain which is symmetric (in our sense) is
biholomorphic to a Cartesian product of domains called irreducible Cartan
domains, which are bounded and completely circular. Thus for every sym-
metric domain there exists a model one. For an exhaustive discussion of
homogeneous and symmetric domains see [4].

A distance d on D will be called invariant if o€ AutD and z, we D imply
d(z, w) = d(¢(2), ¢(w)) and the topology induced by d coincides with the
usual topology of D. There are many examples of such distances, e.g,
Bergman, Kobayashi or Gleason distances.
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For an invariant distance d we put

M(d) =sup{r: B,(z, 1) is compact},

M(d) obviously does not depend on z and is always positive.

If d is a distance on D and Z = {z,,} c D, then we say that Z is (6, d)-
separated if

inf{d(zy, zn): k, meN, k #m} > 5.

As can be observed there will be many indices to be dealt with; so in

situations where there is no danger of confusion some of them will be
omitted.

In the sequel, powers of non-vanishing holomorphic functions will often
be taken. They should be understood as any holomorphic branch of the
power.

3. Main result.
THEOREM. Let D be a symmetric domain with an invariant distance d.
Then the following conditions are equivalent;
(a) TP (42(D)) < P,
(b) there exists a qe(0, ) such that Tp*P(42(D)) < B,
(¢) Z satisfies the following condition:
3 sup Z QD(ZIU Zm)—" < oo,
n>0

m

(d) for every 6e(0, M(d)), Z is a finite union of (5, d)-separated
subsequences,

(e) there exists a & > 0 such that Z is a finite union of (8, d)-separated
subsequences.

By the closed graph theorem conditions (a) and (b) of the theorem imply
the boundedness of the operators in question.

4. Preliminary lemmas. :

LemMa 1. Assume that D is a complete circular domain and G < D is
circular. Then for every function f: D — R plurisubharmonic in D we have

) O <vG)! g.f(Z)dv(Z)-

The proof is done by a simple use of the Fubini theorem. As a corollary

we obtain that if f: D — C is pluriharmonic, then we have equality in (1).
Below we list the main properties of the Bergman kernel Kp.
Lemma 2.

() K(z, w) = K(w, z) and K(z, w) is holomorphic in z in D;
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(i) for every feA%(D) and zeD we have
F@=[fWK(z, wydv(w);
D

(iii) if ®: D — D, is biholomorphic, then for all z, weD
Kp(z, w) = Kp, (®(2), ®(w)) det &' (2) det &'(w),

and in particular
Kp(2) = Kp, (2(2))J(2);

{iv) if D is model, then for every zeD we have K(z,0) =1, K(z) 2 1 and
K(z)=1ifz=0;

(v) if D is symmetric, then jor z, weD, K(z, w) # 0.

Proof. (i}-(iii) are standard and can be found in most texts on several
complex variables. In (iv), to show that K(z, w)=1 we use the remark
following Lemma 1 and (ii). K(z) > 1 follows by the extremal property of K,
according to which |f (z)]?> € K(2)||f 2,0 Substitution f = I shows what we
need. K (z) is strictly plurisubharmonic, and so if it attains its minimum, then
it is at exactly one point, and we have shown that O is such a point. (v)
follows from (iv) by (iii) and the homogeneity of D.

CoroLLARY 1. If D is symmetric and ®: D — D; — biholomorphic, then
for z, weD

QD(Z’ W) = QDl ((P(;’), @(W)),
and if D is model, then
ap(z, 0) = Kp(2).

Lemma 3. Let ®: D— Dy be a biholomorphic mapping. Then for every
pe(0, ), ae(up,, ) there exist operators U%*: AL(D,)— AL(D) and
V&= RY = RY such that UB®* is an isometry of AZ(D,) onto AP(D), V& =
an isometry of I onto itself for all ¢ >0 and if Z = D, then

v = VEro Tp=Po Ul

Proof. Put
UZA(f) = f o d(det @')2+1ip,

It is easily checked that U%* is an isometry and -

Ug* D(y=f Dy i?t?ﬂ 20t 1)/p
(UE* N2 () =1 (8(2)s, (""z’)(met v

Hence we only have to define

. det & (z,) e+ e
ot ={(Sa))

“
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CoROLLARY 2.

(i) ap is a biholomorphic invariant,

(i) op <0,

(iii) if D is model, then for o > ay, the space AE(D) contains the constants.

Proof. (i) and (ii) are evident, and so we prove only (iii).

Suppose A{(D) does not contain the constants and feAL(D). Then
2’

W lan = [ 1f (2P K(2)"%dv(z) = 12r [ [ |f(e"2)PK (e z)~*dr dv(z)
0

D D
n
=1/2m [ [1F AP K ) *drdv(@) > 11 OF - [ K () dv(a).
D

The integral in the last expression is equal to the p-th power of the norm of
the function I in A%(D) and thus is infinite. Hence we must have S0 =0for
every feAL(D). But if we take any @eAut(D), then (U,f)(0) = 0 and so
f(#(0)) = 0. By homogeneity it follows that f = 0.

We will now define auxiliary functions Wh e for a model domain D, We
put

b _ !((2, W)Z (a+ 1)/p
wWapha (Z) - ( K(W) ) .

Then we have
Lemma 4.
() W (@) 5 (2)'7 = @(z, w)~ @+ Din,
(i) 1l = M2 .
Proof. (i) is just an easy verification. For (ii) observe that if ¢ eAut (D)
and @(w) = 0, then
W @F pa(2) = T (2) e (9 (2)),

which gives the desired equality. By Corollary 2 (iii) the right-hand side is
finite.
Lemma 5. Let H: NxN— R, be a function satisfying

sup Y H(k, m) =M < 0.
kK m

The{z Jor every B >0 there exist subsets Ny N (i =1, ..., L) such that N
=) N, and
I=1

(2 (k, meN,, k # m)=H(k, m) < p.

Proof.Choose Le Nso that LS > M, We will assign natural numbers to the
sets N; by induction. For m < Lwe put meN,,.
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Now assume that we have made the assignment up to k, so that (2) holds.
Then, by the choice of L, there exists an io such that for m < k, me N, we have
H(k+1, m) < B. Thus we assign k+1 to N

5. Proof of the main result. First we will reduce the problem to the case
of model domains.

If D is symmetric and d an invariant distance on D, then we choose a
model domain D, for D and &#: D =D, biholomorphic. For z, weD, we
define i

dy(z, wy =d(®*(2), D™ (W)
Then d, is an invariant distance on Dy and M (dy) = M(d). We have also
shown that o, gp are invariant under biholomorphic mappings. If we put
the above remarks together with Lemma 3, we see that the theorem for
(D, d) can be derived from the theorem for (Dy, dy).

Let us assume that D is model.

(a=>b) and (d=>¢) are evident.

(b=-c) As we have already remarked, (b) implies the boundedness of
Tp~P: A% B. Then, by Lemma 4 (i), we have

12N < CIUITEp-
On the other hand, by Lemma 4 (i),

ITZ*WllE =Y o(w, z,)” " V9P,

Thus, after substituting w = z,, we obtain the desired estimate.

(c=>d) Fix zoeD and let & < M(d). Then B,(zq, 8) is compact. Since
o(z, z,) is a continuous function in D, there exists a constant C such that if
zeB,(zg, 8), then o(z, zo) < C. Because of the invariance of d and ¢ we get

3 oz, w)> C=d(z, w) > 4.

Now take H(k, m) = o(z, z,)~" By Lemma 5, we split Z into subse-
quences Z; such that

(2, Zm€Z;, k # M) =0(z720) 7" < C7"5
thus, by (3), d(z;, zm) > 8.

(e =a) Let B, stand for B,(0, r). It is easily seen that B, is circular. Fix
weD and take peAut(D) such that ¢(0) =w. Then

Lf )P 5 (w) = £ WP K (w, W)™+ D = 0 9P (Q)IK (-, W)™ 2 0 0" (O) K (w)* ™.

Since the function on the right-hand side above is plurisubharmonic, we get
by Lemma 1

Lf WP s, w) <V(B)™! [ fPo@@|K (@), w) 2@ VK (w)f™ dv(2).
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Further, observe that

. - K K o+ 1 _
Kot e ko = TR Kooy
=K@ K(o(2) " m(e(2)

K
K (;2» K@ i (0(2) = T @) (o () K @

Thus we have

(4) Lf (W) s, (W) < v(B)™' sup {K(2)*: zeB,} |
By(w,r)
Clearly it is enough to prove (a) under the assumption that Z is (6, d)-
separated. In this case, taking r < min{6/2, M(d)}, we ensure that the balls
B,(z,., ) are pairwise disjoint and the supremum apearing in the right-hand
side of (4) is finite. Hence, substituting w = z,, in (4) and summing over m, we
get a bound on the P-norm of TZ*°(f).

6. Final remarks. R. Rochberg proved in [3] that if Z is a (8, dy)-
separated sequence in a symmetric domain D, d, being the Bergman distance
in D, and & is large enough, then the operator TP*P: A2(D)—F has a
continuous right inverse for all pe(0, o0). Looking a little more carefully at
the proof of our theorem, we can prove Rochberg’s result in the case p< 1
and with any invariant distance in place of dy.

Using both Rochberg’s theorem and our own, we can easily obtain the
following result, which, for a = 0 and D equal to either the unit ball or the
polydisc, was proved by E. Amar in [1].

CoRroLLARY 3. Suppose Z < D is a sequence separated with respect to
some invariant distance. Then Z can be split into a finite number of subse-
quences Z, with the property that TZ‘:.""D is right invertible.

[f1P s dv.

Proof. If Z is separated with respect to some invariant distance then for
every & < M (de), Z is a finite union of (8, do)-separated subsequences. Since
M (do) = =, we have no restriction on d and so may use the theorern of Rochberg.

As another application of our theorem we get a result on the boundary
behaviour of the Bergman function.

COROLLARY 4. If D is a bounded symmetric domain and Z = {z,} =D a
sequence with no cluster points in D, then

G

lim Kp(z,) = 0.

m-— o
This result is known, but since it will be needed in the sequel, we sketch the
proof.
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Take any invariant distance d in D. It is easily seen that d is complete.
Thus every infinite subsequence of Z contains an infinite d-separated sub-
sequence. For such a subsubsequence Z' we have, by the theorem,

TP (el or ¥ Kp(z,)~! < co, which proves (5).

Remark 1. The operator T§*P: AE(D)— I is compact if and only if Z
is finite.

Proof. First observe that, again, Lemma 3 allows us to reduce the
proof to the case of a model domain.

By Lemma 4 (i), we have

Il//w (W)Sa (W)I/p_ Wz (W) Sq (w)“Pl Z 1- Q(Z, w)—(a+ l)/p‘
Suppose Z is infinite and TP*P(4%) < M. Then (c) of the theorem holds.

As in the proof of (c=>d), we can find an infinite subsequence Z’ of Z such
that if z, z,€Z’ and k ¢ m, then ¢(z, z,,) ™" < f < 1. And thus

7 1—o(z, z¢) " @7 >y > 0.
From (6) and (7) we infer that if z,, z, are as before then

“ T;’G'D(wzk - d’:m)“q > Y

and, since the norms of iy, are all equal, T3P cannot be compact.

Remark 2. As an application of the results obtained we would like to
give a motivation for the choice of the exponent in the definition of the
operator ‘Tf*P. For this purpose define

WEP(f) = {f @m) K (20) ™ .

Suppose Z is an infinite sequence in D; then the following hold:

(i) if W£(45) < ¥ for some ge(0, o), then f§ = (a+1)/p,

(i) if W£(4E) > I# for some ge(0, o), then f < (a+ 1)/p.

Thus if we want an operator W§*? whose image could be exactly equal
to some J, and this is what we are usually looking for, then T§*? is the only
choice, and in that case g must be equal to p.

For the proof we may assume as usual that D is model.

©

Let y = (a+1)/p—p and define an operator S}: RY — RY as
S%({xm}) = {K (zm)“vxm}m-
TP = Sy o W§.

To prove (i) suppose the contrary, i, y > 0. It is evident that Z cannpt
have any cluster points in D; thus, by Corollary 4, K(z,)— o0 and so S,

Then
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considered as acting from ¥ to I is compact. But since, by Remark 1, 5 is
not compact, we get a contradiction.

Now suppose y < 0. If Wf(42) = and Z' = Z, then WE(A2) > I as
well. As before, one can see that Z has no cluster points in D, and 80, as in
the proof of Corollary 4, we can find an infinite subsequence Z' of Z
separated with respect to some invariant distance. Then, by the theorem,
T7°(Af) < I, but this means that S77() > [, which is impossible and this
contradiction proves (ii).

Finally I would like to remark that one might regard the Bergman
spaces Af(D), D as a Cartesian product of domains D, = C" and « as a
multiindex, with the norm

1
”f”p.'l,l) = (g fzes ozl I:Il KD,-(ZI)—midV(Zn caey Zt))1/p~

One also gets a natural generalization of the “inclusion” operator.

All the results presented, except Corollary 4, can be extended without
much effort to this Setting. Corollary 4 can also be extended under the
assumption p <1, where we can use our proof of Rochberg’s theorem. It
seems to be certain that the whole of Rochberg’s result can be extended as well,
and so Corollary 4 should hold in full generality.
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