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Proof. We prove first that if Mf (log™ Mf)* is integrable on B, then it is
also integrable on 2B (ball with center at the origin and radius two).

Considering the region G = {xeR": 1 <|x| <2}, it is enough to prove
that the function under consideration is integrable on G. Now, the transform-
ation x — y given by y = x/|x|* (inversion with respect to the unit sphere |x|
=1) maps G bijectively onto the region Go={x: 1/2 <|x| <1} and
a simple geometrical conmsideration shows that for each xeG we have
Mf(x) < Mf(»).

Taking into account that the Jacobian determinant dx/dy is bounded on
Gy, our assertion follows from the formula for changing variables.

By repeated application of the preceding argument, we see that the
function Mf (log™* Mf)* is locally integrable. Moreover, since Mf (x) tends to
zero as |x| tends to infinity, the set {Mf > A} is bounded and the integral

Mf( o MfY
f T(logT) dx
Mf >

is finite for each positive number -A. Hence Mf eR, and from Theorem 2 it
follows that feR,,. In particular, f belongs to L(log™L)**'. The proof of
the converse is straightforward.
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Two problems in prediction theory*
by
TAKAHIKO NAKAZI (Sapporo)
Abstract. We give an expression in terms of w of the quantities
Ty (W) = i?f1x|1+f|2wd6/2n (n=0,1,2,...),
where f ranges over the trigonometric polynomials with fréquences in the set {—n, —n+1, ...,

——l,vl,'2, ... }. This solves the first prediction problem due to G. Szegt for n = 0 and the second
prediction problem due to A. Kolmogorov for n= co. In case n = 1, the expression is

25 25
T (w) = exp [ logwdd/2n(1+] [ e logw do/an|?).
0 [

1. Introduction. For n=0,1,2,... let S, be the manifold of tri-
gonometric polynomials whose frequences are in the set f—n, —n+1, ...,
—1,1,2, ... }. Let d0 be Lebesgue measure on [0, 2m), and let we L' (d6/2n)
and w > 0. The main result in this paper is a formula giving the distance

" 7, (W) from 1 to S, in IZ(wd/2n), that is,

T, W) = inf {{ |1+ wdo/2m; £ €S,}.
Szegs (cf. [3], p. 44) showed that '
To (W) = exp j" logwd6/2mn
and Kolmogorov (cf. [3], p. 208) showed that

T (W) = (j:w'1 do/2m)*.

Let P, be the manifold of trigonometric polynomials whose frequences
are in the set {n+1, n+2,...} and n> 0. The author and K. Takahashi
[7] got a formula giving the distance o,(w, 2)V? from 1 to P, in
L*(wd0/2m). In this paper we prove ,(w)=p,(w" %, 2! in case
w™le L!(d6/2n). Then a formula giving t,(w) follows from the expression of
0,(w™',2). Moreover, we generalize the expression of g,(w, 2)'? to

—

* This research is partially supported by Kakenhi.
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e,(w, )" (1< p< x) which denotes the distance from 1 to P, in
L?(wd0/2m), that is,

0,(w, p) =inf {[|1+f|Pwdb/2r; feP,}.
This result reduces the prediction problem to an extension problem

previously studied by W. W. Rogosinski and H. S. Shapiro (cf. [1], pp. 139—
142). 1t is known as Szegd’s theorem (cf. [2], p. 136) that

0o (w, p) = exp [log wdb/2m.
In Section 2 we prove an abstract prediction theorem. In Section 3 we
get a formula giving g,(w, p). In Section 4 we get a formula giving 7,(w, 2).
2. The abstract prediction theorem. In this section we shall prove an
abstract prediction theorem which is an extension of the second prediction
theorem. However, the first prediction theorem follows immediately from it.
Let (X, m) be a probability measure space and weL!(m) with w >0 ae.
Suppose w™ ' € L' (m) through the section. If f € L*(wdm) and g e L*(w™ ' dm),
by the Schwarz lemma we have
§Ifgldm < ({117 wdm)'2([lgl* w™* dm)!/>
and so fgeL*(dm). Hence L*(wdm) = L' (dm) since 1 belongs to L*(w™!dm)
and similarly L*(w™!dm) < L! (dm)
ProposiTION 1. Let M be a subspace of {fe L*(wdm); [f dm = O} and set
N={geLl*w™'dm); [gdm=0 and [fgdm=0 for all feM}.
Then
inf [|1+f12wdm = (inf [ |1 +g|*w ™ *dm)~ 1,
SeM geN

Proof. If feM and geN, by the Schwarz inequality we have
(j]l+f|2\fvdm)”2(f[1+g|2w“1dm)”2 2 [I(1+N 1 +gldm > 1.
So
finht;jll—f-ﬂzwdm;(infjll-}—gl’w“dm)“.
& g

eN

To prove the equality choose a unique f, in the closure of M in L%*(wdm)
such that

inf [|1+72wdm = (|1 +fo]* wdm.
JeM
Then, by the minimum property of [|1+fo|> wdm, 1+f, is orthogonal to M

in L*(wdm). Set go = (1+f,)w; then goelI?(w™!dm). Since w™'el!(m), the
infimum taken over M is positive and so

[+fol2wdm = A+ A +fwdm = [(1 +fo)ywdm = fgodm

Two problems in prediction theory 9

and [godm > 0. Set 1+ h, = go/fgodm; then
(Fgodm)? [11+hol>w™" dm = [lgo/*w™ " dm = [[1+fo* wdm = [godm
and so
JIL+fol2 wdm = [ godm = ([11+ hol2w™* dm) .

Since 1+f, is orthogonal to M in L?*(wdm), h, belongs to N. Thus the
equality in proposition follows.

Let B and D be subspaces of {fe L*(m); [ fdm = 0}. Suppose B is in the
orthogonal complement of D in L?(m) and B+ D+ {1} is dense in L?(m). For
any subset § < L*(w™'dm), denote by [S] the closed linear span of S. Then
N =L*(w~'dm)© [w(B+ {1})], that is, N is the orthogonal complement of
[w(B+{1])] in L*(w™*dm).

Lemma 1. If we L* (m), then D = N and N is contained in the closure of D
in L2(m). If Ng = N © [D], then

w Ny € {feL'(m); [fgdm =0 for all geD}.

Proof. D N is clear. Since we L®(m), L*(w™*dm) = L?>(m) and so N
is contained in the closure of D in L?(m). If fe L*(w™'dm), then

[w=f1dm < ([1F12 w2 dm)/2 (fw™ dm)+?

by the Schwarz inequality and hence w™'L*(w™'dm)< L'(m) and so
w™ !Ny < {feL'(m); [fgdm =0 for all geD}.

TheoreM 1. If w™*e L' (m), then

inf {11 +712 wdm > (inf [|1+g]>w™dm)™ 1.
feB geD

If D is dense in N = L*>(w™'dm) @ [w(B+ 1)), then the equality holds. So if’
w, w™teL®(m), then the equality holds.

Proof. Apply Proposition 1 with M =B; then D= N and so the
inequality follows. If D is dense in N, then the equality holds obviously. If
w, w e L*(m), then [D] is the closure of D in I*(m) and so [D] =N by
Lemma 1.

3. The prediction n units of time ahead. In this section, we shall give an
expression in terms of w of the distance g,(w, p)'”* from 1 to P, in
I (wd/2n) (0 < p < 00). We may assume logw is summable because g,(w, p)
=0 for all n in case logw is not summable (cf. [2], p. 136). If logw

x
~ Y a,e" and 0 <p<oo for each j >0, set

n= -0

2

40 = ]

myttmy dTl a;"j
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where Y’ is the summation over all permutations of non-negative integers
my, My, ..., m; wWith my +2m,+ .. +jm; =j. Then

2
Ap,O(W) =1, p.1 w) = (;)ah

Za%

o= (2 2
p2W) = 7 “i""‘ 5 -

THEOREM 2. Suppose we L' (d0/2m), w > 0 and logwe L} (d0/2m). If O < p -

< o0, then

2., p) = exp [logwdf/2minf {[| ¥ A, ;(w)e?+f|" d6/2n; [ e P,}.

Jj=0

For 0 < p < oo, the Hardy space HP is the L?(df/2n)-closure of {1}+ P,
and H® is defined to be the weak-* closure of {1}+ P, in L®(d6/2n). In the
theorem above, it;is called the minimal interpolation problem to estimate

inf [| 3. Ans (W) €01 d0)2m.
~

This problem was solved by Rogosinski and Shapiro (cf. [1], pp. 139-142).
Hence our theorem solves the prediction problem above. By the duality
relation (cf. [1], p. 130), the next corollary follows immediately from
Theorem 2.

CoRrOLLARY 1. With regard to Theorem 2, if 1 < p < oo, then

on(w, p) = exp [logwdf/2nsup| Y. ¢; A, (W),
j=0

where the supremum is taken over all geH® with [|g|'d0/2n <1 and g(z)
=Y ¢z (2 < 1), and 1/p+1/g = 1.
j=0

CoroLLAry 2 (Nakazi and Takahashi [71). With regard to Theorem 3, we
have

0n(w, 2) = exp [logwdf/2n 3 | 4.
j=0

CoroLLARY 3. If 0 < p < o0, then

o1(w, p) =exp J‘logwd9/2'n: x

X inf{ ﬂl + (—215 Je“"’ log wd0/2n) e“’+f]p d6/2w; feP, %

icm
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%

and if p>1, then for 1/p+1/g=1

2 . .
01 (W, p) = exp Jlog wd0/27tsup§ co+(01 - je""logwd@/Zn) &'t

with regard to Corollary 1.

Proof of Theorem 2. Suppose logw ~ Y a,e™. Set

n=— o0
h(2) =ao/p+ Y Qa/pz and k@)= Y Qa/p)z (2] <1);
I=1 1Zn+1
then their radial limits satisfy
w(e'®) = lexp hy ()7 |exp h, (€¥)

a.e. 0 and exp(h; +hy) is an outer function (cf. [6], p. 62). Since Beurling’s
theorem for 0 < p < oo (cf. [2], p. 63) implies that there exist g, e P such that
g, exp(hy+hy) =1 in LP(dO) and exph, = 1+k for some kee"* Vo P,

0n(w, p) = inf { [ exp hy exp h, +f7 d6/2%; f € P,}
= inf{ [lexp h; + kexphy +fFPdf/2m; f € P,}
= inf{[lexp b, +f]7d6/2r; fe P,}.
On the other hand we have

t 2a;
exphy (') = exp%0 exp(Z %e’”’)

=1
ag " 2a, iw)
=exp— || exp| —e
P p 11;[1 ( p
)

_ (2a, /)™ ... (2a,€"/p)™
“e"p}?z myl ... m,!

2

where the m; ranges independently over non-negative integers. Thus
0w, p) =einf{[| Y A4,;"+f|Fdb/2n; feP,}.
Jj=0

4. The general prediction theorem. In this section, we shall study
a general prediction problem which connects the first prediction problem and
the second one. That is, we shall determine t,(w), using the results in
Sections 2 and 3. In this section we shall assume that the probability
measure space (X, m) in Section 2 is ([0, 2r), d6/2x). The manifold P,+ {1} +
+8, is the set of all trigonometric polynomials and S, = P,. Let P, be the
manifold of trigonometric polynomials whose frequences are in the set
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{1, 2, ..., n}. The proof of Corollary 4 is an elegant alternative proof based
on Theorem 2.
CoRrOLLARY 4 (Szegd). If we L'(d0/2n) and w = O, then

To(W) = exp [logw db/2r.
If logw is not summable, t,(W) is zero.
Proof. Apply Theorem 2 with B =S, and D = P,; then
inf [|1+/1> wd0/2n = (inf []1+g|*w™'d6/2n)""
feSo 780

in case w, w1t e L' (d6/2n) because So = Py. By the inequality of arithmetic
and geometric means and Jensen’s inequality (cf. [1], p. 23), for f, g&S,
J11+f12wdb/2n = exp [log wdb/2n
and
fI1+f>w™1d0/2n > exp [logw™do/2n.

Hence if w, w™'eL®(df/2n), then to(w)= exp [logwd0/2rn. For any‘

we L' (d9/2n), we can prove the theorem by a well-known argument.

CoroLLARY 5 (Kolmogorov). If we L!(d8/2n) and w = 0, then
T (W) = (w1 d6/2m)" 1.
If w™ is not summable, t (W) is zero.
Proof. Apply Theorem 2 with B =S, and D = {0}. Then the corollary
follows since N = L*(w™'d6/2m) © [w(S,+{1})] = 0.
LeMMA 2. Suppose we L*(d0/2n) and w™'eL*(d0/2n) and

N = L*(w™'d/2m) © [w(P,+{1})],

then S, is dense in N.
Proof. Apply Lemma 1 with B= P, and D =S,; then §, = N and
Nce A4+ 9P, and w™' Ny < ™ DO H 4 (1), So if feNg, then
w"l |f"leei0 H1/2+ 53"
and w™lf|2 > 0. By [5), p. 11, w™'|f|* is a trigonometric polynomial and
fw=t|f|*df/2m = 0. Thus Ny = {0} and so §, is dense in N.

ProposITION 2. Suppose we L'(d6/2r) with w > 0 and w™*eL*(d0/2n).
Then

(W) = Qn(wmla 2)—1

icm
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and
(fw=tdo/2m)™" =1, (W) < 7,(w)
< 7o(W) = @0 (W, 2) = exp [logwdf/2n
< Qm(wa 2) < [ (W) = de0/27E

Moreover, 0n(W, 210, (W, 2) as m— oo and t,(w)T1,,(W) as n — oo.

Proof. Since (w-+¢)"'eL*®(d0/2n) for any ¢ >0, by Theorem 1 and
Lemma 2, ¢,(w+&"", 2) = 1,(w+e)" ! < 1,(w) " ! < g,(w*, 2). By Corollary
2, 0{(w+e)" 1, 2) = @,(w™", 2) as ¢ — 0 and hence 7, (w) = g,(w™!, 2" !, It is
known ([4], p. 22) that ¢, (w, 2T e, (w, 2) as m— oo and $0 7,(w) | 7, (W) as
n— o0. Now Corollaries 4 and 5 imply this theorem.

Now we shall prove the main theorem which contains Corollaries 4
and 5. If log w~ Y a,e™, for cach j

n= -

m

myq Tt

Fotmydy . G
Bw=§’—1ml‘ Sl
5 (%) (=) my!.oml’

where )’ is the summation over all permutation of non-negative integers
my, My, ..., m; wWith my +2my+ ... +jm;=j. Then By(w) =1, B, (W) = —a;,
B, (W) = a}/2—a,.

THEOREM 3. Suppose we L' (d0/2r) with w = 0 and w™' e L' (d6/2n). Then

Tn (W) = exp [logw df/2r( io 1:7 )

Proof is clear by Theorem 2 and Proposition 2.
COROLLARY 6. With regard to Theorem 3, we have

7y (w) = exp [log wd0/2m(1+|[ e log w d6/2nf*)™*.
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Random integrals of Banach space valued functions
by '
J. ROSINSKI (Wroclaw)

Abstract. In this paper we study random integrals of the form JfdM, where f is
a deterministic Banach space valued function and M an independently scattered random
measure. Random integrals of this type are a natural generalization of random series with
Banach space valued coefficients. We prove an analogon of the Ito-Nisio theorem for random
integrals, a comparison theorem and some contraction principles. Results are applied for stable
measures on Banach spaces.

1. Introduction. The present paper is devoted to a study of random
integrals of the form [ f dM, where fis a deterministic function taking values
in a Banach space E and M is an independently scattered random measure.
Random integrals of this type are a natural generalization of random series
with Banach space valued coefficiénts. It is well known that the assymptotic
behaviour of such series depends also on some geometric properties of the
Banach space. Analogously, the existence of certain bounded linear operators
on appropriate function spaces which we call random integrals, depends in
general on a geometric structure of E. Hoffmann-Jgrgensen and Pisier [7]
defined Gaussian random integrals for spaces of type 2. Marcus and
Woyczyhski [14] and Okazaki [15] considered p-stable random integrals
assuming that E is of stable type p. Woyczyniski [26] investigated Poissonian
random integrals for spaces of Rademacher type p.

In this article we define and study random integrals without any
restrictions on a geometry of E, per an analogy to the theory of random
series with Banach space valued coefficients. Such approach for Gaussian
random integrals was presented in [6] and [19] and for stable random
integrals in [ 18]. It permits to have a non-trivial class of integrable functions in
each Banach space which was impossible under the classical approach (see
[27]). A general theory of bilinear random integrals is developed in [17].

In Section 2 we consider preliminary facts concerning a random integral.
An analogon of the well-known Ito-Nisio theorem for symmetric summands
(see fe. [3], Chap. 3, Th. 2.10) is proved in Section 3 (Theorem 3.4). Namely,
if for every x*eE* the real random integral f(x*, f>dM exists and there

-exists a Radon probability measure y on E such that

x*e E*,

A(x*) = Eexp {i [ (x*, f>dM]},
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