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Random integrals of Banach space valued functions
by '
J. ROSINSKI (Wroclaw)

Abstract. In this paper we study random integrals of the form JfdM, where f is
a deterministic Banach space valued function and M an independently scattered random
measure. Random integrals of this type are a natural generalization of random series with
Banach space valued coefficients. We prove an analogon of the Ito-Nisio theorem for random
integrals, a comparison theorem and some contraction principles. Results are applied for stable
measures on Banach spaces.

1. Introduction. The present paper is devoted to a study of random
integrals of the form [ f dM, where fis a deterministic function taking values
in a Banach space E and M is an independently scattered random measure.
Random integrals of this type are a natural generalization of random series
with Banach space valued coefficiénts. It is well known that the assymptotic
behaviour of such series depends also on some geometric properties of the
Banach space. Analogously, the existence of certain bounded linear operators
on appropriate function spaces which we call random integrals, depends in
general on a geometric structure of E. Hoffmann-Jgrgensen and Pisier [7]
defined Gaussian random integrals for spaces of type 2. Marcus and
Woyczyhski [14] and Okazaki [15] considered p-stable random integrals
assuming that E is of stable type p. Woyczyniski [26] investigated Poissonian
random integrals for spaces of Rademacher type p.

In this article we define and study random integrals without any
restrictions on a geometry of E, per an analogy to the theory of random
series with Banach space valued coefficients. Such approach for Gaussian
random integrals was presented in [6] and [19] and for stable random
integrals in [ 18]. It permits to have a non-trivial class of integrable functions in
each Banach space which was impossible under the classical approach (see
[27]). A general theory of bilinear random integrals is developed in [17].

In Section 2 we consider preliminary facts concerning a random integral.
An analogon of the well-known Ito-Nisio theorem for symmetric summands
(see fe. [3], Chap. 3, Th. 2.10) is proved in Section 3 (Theorem 3.4). Namely,
if for every x*eE* the real random integral f(x*, f>dM exists and there

-exists a Radon probability measure y on E such that

x*e E*,

A(x*) = Eexp {i [ (x*, f>dM]},
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then [ fdM exists. Urbanik and Woyczynski [24] characterized the spaces of
all real-valued M-integrable functions as certain Orlicz spaces. Section 4
begins with a generalization of their result (Theorem 4.1). Unfortunately the
full analogon of the Urbanik—Woyczynski result is true only when E is a
Hilbert space. Hence we consider the following question: knowing the
parameters of two random measures is it possible to compare the spaces of
integrable functions? As the main result of Section 4 we prove a comparison
theorem for random integrals (Theorem 4.5). Section 5 deals with contrac-
tions principles for random integrals. We study two types of contractions.
The first is given by the multiplication of M-integrable function by a
bounded real-valued function and the second is defined by a conditional
integral. In Section 6 we apply the results of previous sections to stable
random integrals. We establish an isomorphism between the space of all
functions integrable with respect to p-stable random measure and the space
of operators generating p-stable measures on E which was introduced and
studied by Linde [12], D. H. Thang and N. Z. Tien [22], and in an
equivalent form for 1 < p <2, by Linde, Mandrekar and Weron [13]. We
prove that the set of all stable measures with the discrete spectral measures
lies densely in the set of all stable measures on a Banach space (Theorem
6.6). Every p-stable probability measure on E can be represented as the

distribution of a p-stable random integral j fdM,,, which follows by Theorem
0

6.7. Thus we get an analogon of the well-known fact that Gaussian measures
on E are represented as distributions of random series ij ¢y, where x,;€E
and ¢; are independent N(0,1).

2. Random integral. Let (7, 2) be a measurable space and (2, #,P) be a
probability space. A function

M: 2 - L%Q,Z,P)

such that for every pairwise disjoint sets A,eX random variables M(A,) are

© o
independent, n=1,2,..., and M( | 4,)= Y M(4,) as. is called an inde-
n=1 n=1

pendently scattered random measure. Every independently scattered random
measure M may be decomposed into two independent, independently scat-
tered random measures M = M,+ M,, where M, is pure atomic and M, is
atomless (as vector measures in L°). M, is completely described by a sequence
{&,} of independent random variables such thas ¥ ¢, unconditionaly con-
verges a.s. The atomless part M, has the property that, for every 4 € X, M,(A)
has an infinitely divisible distribution, In this paper we shall consider
independently scattered random measures generated by one infinitely divis-
ible law.

icm
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- DermNrrioN 2.1 Let (L X,4) be a finite measure space and v be an
infinitely divisible distribution on R. We say that a set function

M: £ ~1°Q, #, P)

is a random measure on (T, X, 1) generated by v if M is independently
scattered and, for every AeX,

(M(A)) = vvri.(A)7
where ¥ denotes the pth convolution power of v.

T'he existence of a random measure on every measure space generated by
every infinitely divisible law follows from Daniell-K olmogorov’s consistency
_theorem.

In the sequel we assume that v is symmerric. Thanks to this restriction
we avoid some technical difficulties with non-linear centering and we get -
more clear theory of random integral. A general situation including the case
when v is arbitrary is investigated in [17]. Therefore we can write

(2.1) Eexp(iuM(4)) = exp[ —A(4) K ()],
v‘vhere
(2.2)‘ K(u) = }c?u?+ Df (l—cbs uv)m(du)

whjlc m is a symmetric o-finitt measure on R such that m({0}) = 0 and
j min (1, v¥) m(dv) < co. We shall write M ~ ~ [6?, m] if (2.1) and (2.2) hold.

M ~[1, 0] is a so-called white noise on (T, X, ).
Let E be a Banach space. For every simple measurable function
n
fi T-E, f=Y% leAj, where 4;eX are pairwise disjoint, x;€E, j=1,...,n,

j=1
we set

jfdM T x, M4, A),
=1

AeX.

Dermirion 2.2. A function /i T— E is said to be M-integrable if there

.exist simple measurable functions f,: T— E such that

@) f, —f A-ae. as n—o0;
tii) for every AeX the sequence {[ f,dM} converges in plf‘obabi.lity
If f'is M-integrable, then we put ‘

[7dM = P—lim [ f,dM.

4 "o 4

2~ Studia Math. 78.1
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Using the Hahn-Saks-Vitali theorem (see [4], Ch. 3.7, Th. 2) we
establish that the random integral is well defined. Moreover, [ fdM has an
A

infinitely divisible law on E with the characteristic functional

23) Eexp{i<x*,jfdM>}‘=¢Xp{—5K(<x*,f(r)>)1(dr)},
x*eE* AeX. The symmetry and independence assumptions 1mply that for
every simple measurable function f: T—E and AeX

P{|l£fdM|| >e} < 2P {||E£fdM]| >g}, &>0.

Hence condition (if) in Definition 2.2 is equivalent to
(iii) the sequence {j J,dM} converges in probability.
T

We note that even in the case when M is a white noise on T'= [0, 1] the
stochastic integral of Bartle-Ito type, in general, does not exist. This fact, for
E =C[0, 1], was observed by Yor [27] (for more information see [6] and
[19]). Our approach permit to define and study a random integral for every
Banach space.

Let Z; (M) denote the linear subspace of LY = L% (T, Z, A) consisting of
all M-integrable functions. £g(M) is a complete rnetrlzable vector space with
an F-norm

I1fllag = f min {1, ||f (I} 2(de)+ Emin {1, || | f dM]]}.
T T
A random measure M ~ [¢2, m] is said to be a Poissonian if 6% = 0 and
m(R) < co.
ProposiTiON 2.3. If M is a Poissonian random measure on (T, X, 1), then
Z E(M) = L%'
Proof. We may assume that m(R) > 0. Put

Hu) = T min {ulv|, L}m{dv), u>=0.

-

Then

s 5 £ Fo
Emin {ulM(A)! 1} = ¢~ Ham® Z J‘mm {ulv], 1} m**(dv)

SH@WAMA), uz0.
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n
Hence, for every simple measurable function f'= )" x;1, o We have
i ji=1

i | {am]. 1} < i E min {|jxj [M(4)), 1}

_ﬁ H(lIxj) A(4)
H(1S () A(d).

Since f +— [ H(||f])}dA is an F-norm on LY norming the convergence in 4, the
T

proposition is proved.

Remark 24. Since the statements of this paper do not depend on
a concrete form of M but depend, in fact, on finite dimensional distributions
of a stochastic process {M(4): AeZX}, we can choose such versions of M
which are convenient for proofs. Often we shall use the following version of a
random measure generated by [o?, m]. Let M, and M, be independent
random measures on (7, £, 1) such that M, ~ [62, mo} and M, ~ [0, m,],
where my(By=m(Bn[—1,1]), and mB)=mBn[-1,1T), Be#Bx.
Define M(A) = My(A)+M,(4), AeZ. Then M is a random measure on
(T, X, A) such that M ~ [¢%, m] and its components M, and M, are such
that My (T) has all moments and M, is a Poissonian random measure.

Distributions of random integrals are infinitely divisible hence we shall
need some results on infinitely divisible laws on Banach spaces which can be
found in [3] and [2]. The following fact, proved in a more general form in
[1], [9] and [11], will be frequently used.

ProPOSITION 2.5. Let u be an infinitely divisible probability measure on
a Banach space E and v be its Lévy measure. Then for every p > 0 [||x][P u(dx)

E

<oo if and only if | [Ix|Pv(dx) < 0.

{ll=ll >1}
3. Characterization of M-integrable functions. Let f: T— E be a strongly
measurable - function such that for every x*eE* jK %, (1)) A(dD) < 0.
Since x* —jK ({x*, f>)dA is negative definite and continuous on every

finite dlmensmnal subspace of E*, there exists a cyhndncal measure v, on E
such that

B (x*) = cxp{—-iK((x*,f})d}t}, x* e B*,

(see [20] and [25]). In this section we prove that v, has the extension to
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a Radon measure if and only if f is M-integrable. The extension of v is an
infinitely divisible probability law on E.

The following lemma establishes the form of prediction in
{M(A): AeZ}.

LeMMA 3.1. Assume that E|M(T)| < co. Then for every A, BeX, A B

A(A4)
E[M(A)M(B)] = I(—BSM(B) a.s
Proof. It is enough to prove that
A(A4)
7(B)
for every teR. We have for every CeZ and teR
' AE™M©)
dt

EM(A) eitM(B) EM(B) irM(B)

=]
EM(C)e™© = —i =id(C)[o*t+ [ vsin(t)m(dr)] Ee™©.

Thus
EM (A)e™® = EM (4) e"™M A EeitME\4)

=ii(4) [ t+ T vsin (to) m(dv)] Ee"M®

_A4
A(B)

For every sub-o-field X, of £ and f € L}, let A(f|Z) denotes a conditional
integral of f given XZ.

LEMMA 3.2. Assume E|M(T)|P < co for some p > 1 and fe L;. Let |Z,} be
an increasing sequence of finite sub-o-fields of X. Define

EM( ) uM(B).

X,=[A(fIZ)dM, F,=0{M(4): AcX,}.
T

Then (X,, #,) is a martingale in L§(Q, #, P). ,

Proof Since A(f|Z,) is a simple function, X, is well defined. Let
{~A,,,}j . denote the set of all atoms of Z,. Decompose the set {1, ..., kys1}
into non-empty subsets

Jn.k = {1 <\:J < kn: An+1.j = An.k}‘

Xnj =

A(A 5 Jf(t YA (dr)
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if A(4,,)> 0 and x,; =0 in another case. Then by Lemma 3.1 we have

kpt+1
E(X,1|F) = Z E[xn+1,jM(An+1,j)1fn}

j=1

kll

=Y ¥ El%w1,M(Aps 1, )M (4,]
K=1 &
(ky
=Y ¥ x MM(A,,,,‘)=X,, as.

+1
k=1jelpx e A(Anr)

LeMMA 3.3. Assume that EJM (T)| < co. Then for every simple measurable
Sunction f T—R

E| j faMl < j (f f2days?,

where cyp is a constant.

Proof In view of Remark 2.4 we may assume that M = M,+M,,
where M, and M, were specified in that remark.

Let f= 3, aq; lAj, where 4;eX are paifwise disjoint. We get
i=t
E|[ fdMJ| < [E|] f dMo[*]"?
T T

= (3 @ EMBUA)) = o[ F2 i),

j=1

where ¢, =[o*+ j u?>m(du)]'?, and
-1.11

EIII; faMy| < Z ) EIM, (4)] < 3 j ] d,

where ¢, = | |ulm(du)<oo. Hence cy =co+cyAY3(T) satisfies the
|u|>1
lemma.

~ TueoreM 34. feZp (M) if and only if f is strongly measurable,
[ K (¢xe*, f(0)Y)A(dr) < oo for every x*eE* and
T - .

3.0 @5 (x*¥) = eXp“{-—iK(<X*,f(t)>)l(dt)}

is a characteristic functional of a Radon probability measure on E. In this case
L([ f dM)" (x*) = o7 (x*).
T

Proof. The necessity follows from (2.3) and Definition 2.2 (i). The proof
of sufficiency is divided into three steps, where the assertion is proved under
some additional restrictions on M and f.
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. Step 1. Suppose that E|M(T)| < co and f is bounded. Let {z,} be an
mcreasmg sequence of finite sub-o-fields of X such the A-completeness of

d( U Z,) contains f~*!(%g). Then
n=1

(3.2)
Put X, = [A(f|Z,)dM and 7,
T

A(f|Z)—f ae. and in L if
=0 {M(A): AeX,}. We note that A(f|Z,) is

n—00.

a simple function. In view of Lemma 3.3 L(x*) = [<x*, f>dM exists for every
T

x*eE* and
(3.3) %, Xy Li®)  in L@, F, P).
By (2.3) (in the case E = R) we get

Eexp[iL(x*)] = ¢, (x*), x*eE*.

Hence L is decomposable, ie. there exists a random vector X: Q—E such
that for every x*eE*

{x*, X> = L(x*) as.

We prove now that E||X]|| < co. Since the Lévy measure of £ (X) is given by
pr(B) = Axm({(t,u): f(H)ueB\{0}}), BeHg,

by Proposition 2.5 it sufficies to check that |

il > 1)
[olxdle@xy= ff IS @ulA(dt) m(du)
=l >1) (Hrul > 1)

<cAMT) |

lu|>c™1

where sup||f (1)l <¢ < oo. Finishing, by (3.3) and Lemma 3.2 we have for
teT

ju| m(du) < 0,

every x*eE*

x* E(X|F0)) = ELL(N| F,] = llm E(x*, Xpp | F,) = {x*, Xop as.

Therefore

{1(f12)dM = E(X|F)» X

as. and in LL(Q, &, P). This and (3.2) give that fe %z(M) and | fdM =X.
T

Step II. Suppose that E|M(T) <o but let f be arbitrary. Put

A, ={Iif Ol < n}. Then ¢y " and gy 4, e the characteristic functionals

of symmetric cylindrical measures on E such that ¢, 4, Py = and ¢,

[l sy (dx) < o0. We have

icm
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is the characteristic functional of a Radon measure. Hence ¢, is the
n

characteristic functional of a Radon measure on E. By Step 1, f1, & Z(M)
and there exist simple functions g,: T+>E such that

Mllga=f1gJl > 27" < 27"

"~ and

P{|fn—fia)aM] > 277} <27

Since the sequence {[f1, dM}2; has independent symmetric increaments
T
and

ff(ffl,x,,dM)” %) = @1, () @ (x*),

by Ito-Nisio’s theorem {j' f1,,dM};; converges as. Therefore the sequence
{{ g, dM}2, converges as. and g,—f ae. This proves that fe £y (M).
T

Step 1. M and f are arbitrary. In view of Remark 2.4 we may assume
that M = M+ M,, where M, and M, were specified in that remark. Put

Ko()=1%c*u?+ [ (1—cosuv)m(d),
[-1,1]1
K, =K—K, and o () =exp{—[K,((*,fD)d), i=0,1.
T

Since ¢, is the characteristic functional of a cylindrical symmetric prob-
ability measure on E, i =0, 1, such that ¢¢, ¢, = ¢;, we conclude that
@0, is the characteristic functional of a Radon probability measure on E. By
Step I, there exist simple measurable functions f,: T+ E such that f,—f ae.
and the sequence j {[ f»dM,} converges in probability. By Proposition 2.3 the

sequence f SudM 1} also converges in probability. Thus j' f,dM = j' fydMoy+
+_f f,,dM1 converge in probability as n— co.

The proof of the theorem is complete.
Remark 3.5. We proved in fact also that 1ffe$E(M), then j'fdM is a

o {M(A4): Aef ' (%g)}-measurable random vector.

The next statement is equivalent to Theorem 34 but more useful in
some cases. The proof follows from Theorem 3.4 and the fact that-if the
convolution of two cylindrical symmetric measures is a Radon measure, then
the components are also Radon measures (see [16] for a generalization of
this fact).
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THEOREM 3.6. fe % (M) if and only if

(i) f is strongly measurable;

(i) Tp(x*) = [o® <%, f(0)>* A(dt), x*eE¥, is the covariance of a
. T
Gaussian measure on E;

(ili) py(B)=Axm({{t, e TxR: f(t)ueB\(0}}),
measure on E.
If fis M-integrable, then Z([[fdM) =y, xc, Pois(us), where v, is a
T

Be#y, is a Lévy

Gaussian measure, 5,(x*) =exp{—4I,(x*)}, ¢, Pois(u;) is the 1-centered
Poisson probability measure with Lévy measure py,

[e; Pois (1)1 (x*) = exp {[ (cos {x*, xp—1) u; (dx)}, x*eE*,
E

From Theorem 3.6 and Theorem 6.3 (i) in [3], Chap. 3, follows
immediately the following fact:

1
CorOLLARY 3.7. Assume that M ~ [0, m] and [ [ulm(du)<o0. If a
-1
strongly measurable function f: T+ E satisfies

Hmin{llf(r)u lul, 1} m(du)A(df) < oo.

then fe Lg(M),

. 4. Random integral and Orlicz spaces. Urbanik and Woyczynski in [24]
studied the spaces of real-valued M-integrable functions as certain. Orlicz
spaces and found the full characterization of these spaces. Put

2 u
Gy(x)=0*+2 jm{

[0,x

m(du)

if x>0, Gy (0)=0 and

Py (x) = ng-aggdu
: 1/x
. if x>0, ®(0=0. Then by Theorem 4.1 [24]
Lr(M) = L(@y).

There is a natural way of a generalization of this result onto the
Banach space case by the investigation of the relationship between %y (M)
and the Orlicz space Lg(®)).

Tueorem 4.1. If E is of type 2 [cotype 2], then Ly(®,) < £Lx(M)

icm
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[Le(M) < Lg(P))] and the natural embeding is continuous. Conversely, if X -

contains an infinite sequence of non-zero pairwise disjoint sets and Lg(®y)

< Lp(M) [Lg(M) < Lg(®y)] for every M, then E is of type 2 [cotype 2].
Proof. By Lemma 4.1 [24] ®y ~ ¥y, where

14+u?
2

o)
dGy (W) = o*x*+ [ min{x*u?, 1} m(du).

— o0

o]
¥y (x) = § min {x*u?, 1}
0
Hence fe Ly (®,) if and only if [a?|f]*dA < co and
T

. . @
Jmin (%, 1} () = | [ min {Lf @, 1} m(d)1(de) < 0,
E -

where y; is appeared in (iii) of Theorem 3.6. These conditions are sufficient in
spaces of type 2 [necessary in spaces of cotype 2] to be respectively: f—a
pregaussian function and p,—a Lévy measure (see Theorems 7.5, 1.6, 8.16,
Chap. 111, [3]). By Theorem 3.6 the required inclusions hold. Continuity of
the natural embedings follows from the Closed Graph Theorem. For the
proof of the second part of this theorem it is sufficient to consider only a
white noise, ie. M ~ [1, 0] (see [6] or [19]).

The above result shows that except of the Hilbert space case the Banach
space analogon of the Urbanik-Woyczynski’s characterization does not hold.
The problem we are going to consider is: knowing the parameters 7, m; of
random measures M,, i =1, 2, to compare the spaces .#;(M;) when E is
arbitrary Banach space.

Let M ~ [o%, m] be a random measure. Put

Hm(u)=m<<—1,l>£) if u>0
uu

H,,(0) =0.

H,, is a non-decreasing right-continuous function on R, . Let Lg(H,) denote
the Orlicz space of all strongly measurable functions f: T— E such that
{Hp(cllf @) A(dt) < co for some ¢ > 0.

T

and

PROPOSITION 4.2, %5(M) < Ly (H,). Moreover, if | f,dM —0 in P, then
. T )
for every ¢ >0 [Hy(c|f,I)dA—0 as n— 0.
T

Proof. uy presented in (iti) of Theorcrri 3.6 is Lévy measure. Hence

!Hm(”f(t)”)i(dt) =y {xeE: |Ix]| = 1} < 0.
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For the proof of the second part we note that by the symmetry argument
¢; Pois(uy ) = 6. Hence for every ¢ > 0, sy, Xl = ¢™*} > O(see [2], Th. 1.10).
The next lemma has rather technical character. It bases on the Kingmen

construction of a Poisson point process on an abstract measure space (see
[10], Th. 7).

Lemma 4.3. Let {1} o be a sequence of independent random elements in
(T, Z) with the common distribution /A(T), {&.}ne1 be a sequence of indepen-
dent identically distributed random variables with the distribution v and N be a
random wvariable . with the Poisson distribution with the parameter L > 0.
Assume that {z,}, {¢,} and N are independent and put ¢, = 0. Then

N
M(4) =Y &6, (4), Aez,
n=0

is a Poissonian random measure on (T, X, A) and M ~ [0’1%%]’ where
vo(B) =v(B\{0}), Be%y.

Proof. By a routine computation of characteristic functional of
(M(Ay), ..., M(4,)), when A,,...,A,eZ are pairwise disjoint.

Lemma 44. Let M; ~ [0, m;] be poissonian random measures, i =1, 2,
such that for every uz0

Hoy, (1) < kHp, (4),

where ke N is a constant, Then for every measurable semi-norm q: E—[0, o]
and £> 0 '

P{q(!fdMl) >el < 2kP{kq(£fdM2)>a}.

Proof. Since the ‘statement does mnot depend on versions of random
measures, by Lemma 4.3 we can assume that

N
Mi = Z ég) 51:"1
n=0Q
-where N has the Poisson distribution with the parameter L

L=ki(T)my(R), and L) =p-"2 4(1-p)s,

m, (R)
while
- m1(R) - H,,, (+oo) ~1 my i 1
! fem; (R) m <1 and L&D —"Emﬁ-(l—-z)éo.

icm

Random integrals of Banach space valued functions 27

We have for every ¢ >0

my (=6 9) mal=e ) _yp g 5 o),

m; (R) m, (K) .
Thus {£{} is dominated by {£”} with the constant k and, by T heorem 1.3,
[21], we get

P{&lIzel=p

N

P{q([fdM,)> e} = E[P{q( T &" 1 (x))> &N, {tu}}]

n=0 ~
< 2%E[P{kg( Y &2 f(tn) > elN, {t,}}]
n=0

— 2kP {kq( | fAMy) > 5}
T
i i i howing usefulness of H)
Now we prove the main result of this sectlon_s .
to compare spaces L (M). We write H, <Hp, if Hy, 18 non-weaker than
H,, , ie. there exist constants k, [, ug >0 such that Hy, () < kH,, (lu) for
o
every u = ug.
TueorEM 4.5. Let M; ~{o?, m] be random measures on (Z", z, )2,
i=1,2. Assume that H, <H,, and there exists ¢ = 0 such that of = co3.
Then for any Banach space E

Lp(My) = Lp(My).
Proof. By the assumption there exist k, [, ug = 0 such that

for every u = uo.

@.1) H,, () < kH,, ()

Without loss of generality we may assume that k is a nat}xral number. l?Ve
shall demonstrate that it sufficies to prove this theorem in the case when

instead of (4.1) we have

for every u > 0.

(4.2) H,, () < kHy, (u)

here ms (B) =m,(I"! B),
Clearly, let M5 ~ [03, m3] be a random measure, w

Be%yg. By 3The:orem 36 Lp(M,) = .,Sf’E(M3) and  H,, (1) < kHpy (4)
for u > ug. Hence we can assume that /=1 in (4.1). Now put

m (B) = my (B N {(—L/uy, 1/”0))+pi5—1/u0(B)+pi51/uo(B)’

ideri dom measures M? ~ [o2, m]
By and p; = m;([1/uy, 0)). Considering ran .
fbeser:e thalt)i H c:((u) < kH o(u) for u> 0 and by Theorem 3.6‘ Lr(M;)
LM, i= 1"“2 Thus wze proved that {4.2) can be assumed instead of

= E [ 7Lt Rt

(4.1).
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Let /e Ly(M,) be fixed. Define measures m and uf by
m}(B) = m,(Bm(-—é, 5)”), Be By,
H(B)=2Axmi({(t, e TxR: f(t)ueB\{0}}), Be#,,
420,i=1, 2. In view of Theorem 3.6 43 is a Lévy measure and for the
proof of this theorem it is enough to demonstrate that uf is a Lévy measure.

Let M} ~[0,m{] be poissonian random measures on (T, X, 1), 6 > 0.
We have '
ZL( [ fAM}) = Pois ()
,,,
and

Hm{ (W) < ka'; (w)  for every u>0.

Let ¢ > 0 be fixed. Since {Pois(u3): 6 > 0} is tight, there exists an absolutely

convex compact set C = E such that
[Pois (13)1(C°) < &/2k

Denote by ¢ the gauge of C. Then by Lemma 44 for every 6 >0

[Pois (u})][(kCY]1 = P {q( [ faM3) > k}

T

< 2kP{q([fdM3) > 1} = 2k [Pois (1)) (C*) < ¢.
T

for every 6 > 0.

Hoerllce {PO’iS(ﬂ'f): 0> 0} is tight and since pf » 4 as 5 |0, we proved that
1 is a Lévy measure (see Th. 4.7, Chap. 3, [3]). The proof is complete.

Lemma 4.2 and Theorem 4.5 show the usefulness of H,, to study of
spaces #£x(M). Hence it is interesting to get a characterization of the class of
all functions H,,.

:.PROPOSITION 46. Let H: R, — R, be a non-decreasing right-continuous
Junction and H(0) = 0. Then there exists a symmetric Lévy measure m on R
such.that H,, = H if and only if

H

J (:‘)du<oo.
u

1

Proof. Let m be a symmetric measure on R such that “
t m{(—~u,
= H(l/u). We have ' (=)

1 1

~fuzm(du) = ZJ‘(Jvdv)m(du) =2 j( fvm(du))dv
0 00 b

v

1 %

= ZJvm([v, 1))dv = f%gi)—du—%}[(l).

o 1

icm
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Hence

©

Jmin{l, wym(du) =2 f
J
H

1

(314) du

u

which ends the proof.

5. Some contraction principles. In this section we consider two forms of
contraction of M-integrable functions, the first is given by f —¢f, where ¢
is a bounded real function on T and the second by a conditional integral
f=A(f1%,), where X, is a sub-g-field of Z.

TueorREM 5.1. Let ¢: T+ R be a bounded measurable function such that
esssup|p| < 1 and fe Zx(M). Then ofe Ly(M) and for every measurable
seminorm q: E—[0, c0] and ¢>0

.1 P{q(i(pfdM)>s}SZP{q(]jifdM)>s}.

n

Proof. First we prove (5.1) in the case when ¢ = ). g; IAJ,, where
j=1
lal <1 and 4;eZX are pairwise disjoint. Since X; = [ fdM are symmetric
i i

’ .
and independent random vectors, by Kwapieri’s inequality (see [21], Th. 1.2)
we obtain

Pla(fesiM)> 5} = Pla( 3 o%) >

<2P{g( Y X)>¢} = 2P{q(£fdM)> e}

Jj=1

Now let {¢,} be a sequence of simple bounded functions such that
esssup|p,—¢@| =0 and sup|@,— @, <é&,m —0 as n, m— oco. Hence we get
T T

P{q([(0a= 0w fdM) > &} = P{q( [ trm(@n— ) fAM) > etrm}
T T
< Plg([fdM)>eexat—0 as  n,m— 0.
T
. Since %y(M) is complete, we establish that ¢fe%g(M) and

[ @nfdM i~ [ ofdM in probability. Thus the theorem is proved.
T T
- The next theorem for a white noise was proved by Hoffman-Jgrgensen

[6] by the Hilbert space technique. The proof of a general case is more

complicated.
THeorREM 5.2. Let X, be a sub-o-field of X and M(Zo)
=0 {M(A): AeZ,}. Suppose that feLg(M) satisfies [||f]ldA <oo and
T
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E| j’fdMH < 0o. Then a conditional integral A(f|Z,) belongs to £y (M) and
T

(52 [A(S1Z0)dM = E( [ fdM|M(Z,)) a.s.
T T
The proof is preceded by the following auxiliary lemma.
LEMMA 5.3. Assume that f: T+ R is square-integrable and E|M(T)| < .
Then E| | fdM] < oo and
T

(53) E[ifdMlM(Eo)] - i/l(fpjo)dM.

Proof. From Lemma 3.3 it follows that E|[ fdM| < co. Assume that £,

T
is finite. If f is a simple function, then (5.3) follows from Lemma 3.1, by a
simple computation. If f is arbitrary, then one can choose a sequence {f,} of
s1mple functions such that j [fu—f1?dA—>0 as n— co. Then by Lemma 3.3.

ff,,er——»jfdM and

[AfIZ)dM - [A(f1Zo)dM in LY, #, P).
T T

Hence (5.3) holds true if X, is finite. Now let X, be arbitrary. Then for every
finite sub-o-field Z,.of £, we get

E[ffdMlM )] = [ (f121)d

~E[j'l (f1Zo)dM|M(Z,)] as.
which, using Remark 3.5, ends the proof.

Proof of Theorem 5.2. Clearly we may assume that f is not as. equal
to zero. We shall. prove that E|M(T)| < co. By the assumption we have
If1l > &1, for some A€Z, A(4) >0 and &> 0. Since E||| fcIM|| < o0, thus

by Proposition 2.5 and Theorem 3.6 we get |
[ Wimdw<e 270 ff

) {Ilf @ull > 1}

=174 |

fllxlf =1}

(Lf (&) ull A(dt) m(du)

Il 4 (@) < o0

which gives that E|M(T)| < 0.
Let 4, = {r: || f(f)l < n}. Then by Lemma 5.3 for every x*e E* we have

G B[ [ fAMIM(Z9)]) = E[ [ <%, f1,> dM| M(Z,)]
Ay T

= JA*, fLDIZo) AM = [ (x*, A(f1,)| Zo)> dM.
T T

icm
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Since jfdMijdM in LL(Q, #

ﬂ
x*eE*

(5.4)

%, P), letting n— o0 we get for every

{x*, E[;fdMlM(Zo)D =£<X*, A(f1Zo)ydM.

By (2.3) (for E =R) and (5.4) we establish that
x*Hexp{—jK«x*, Af1Zo)p)dA}
P

is the characteristic functional of the random vector E[ _f faM|M(Z,)]. By

T
Theorem 3.4 A(f|Z,)e Lg(M) and (5.4) proves (5.2). Hence the proof of this
theorem is complete.

The last theorem leads to the following problem. Let us consider the
spaces

LEM)=L(M)nLE O0<p<
For p>1 a conditional integral is a continuous operator on Lf and
LE(M) < Lg. We ask whether #E(M) is invariant with respect to a con-

ditional integral operator?

We can answer this problem affirmatively if p > 2 and if 1
in certain cases (see Section 6, Th. 6.4 (vi) and 6.9).

THEOREM 54. Assume that 2< p< ow. Then LE(M) is invariant with
respect to a conditional integral operator A(-|Z,): LEw LE.

Proof. Let fe £Z(M). By Remark 2.4 and Proposition 2.3 it is sufficient
to prove that A(f|Z,)e LE(M,), where M, is specified in Remark 2.4.
Hence, in view of Theorem 5.2, it is enough to show that E|| _ffdMoll < 0.
We have

<p<2only

iI Wrouiadyme@y <  [f I1f@ull® 2(dt) mo(du)

{ll/@all >1} el >1}

< [wrmo(du) [/ 12di= | u*m(dw)[lfI?dA< oo
R T -1,1] T

which by Theorem 3.6 (ii) and Proposition 2.5 gives that E|| j' fdMyl} < 0
and finishes the proof.

6. Applications for stable measures on Banach spaces. In the last few
years stable measures on Banach spaces were intensively investigated by
many authors from various points of view. As an useful tool for a study of
stable measures in [14] and [15] was constructed a random integral of a
Banach space valued function with respect to a p-stable random measure.
Such random integral was defined as an continuous operator on L§, thus it
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exists only in the case when E is of stable type p (see [14] and [15]). An
investigation of a general theory of stable random integrals of Banach space
valued functions was started in [187]. Our approach permit to define such
random integrals for every Banach space E. We will now apply the results of
the previous sections to stable random integrals.

Recall that a Radon probability measure 4 on a Banach space E is p-

stable (symmetric), 0 < p < 2, if its characteristic functional fulfils the equality -

Aax*) f(bx*) = f((a”+b")'P x¥)

for every x*eE* and a, b > 0. If ¢ is a p-stable measure, then there exists a
finite Radon measure ¢ on the unit sphere S of E, called the spectral measure
of u, such that

A = exp{-£|<x*, XPo(dx),  x*eE*.

(see [3], Th. 6.16, Chap. III).
A random measure M on (T, Z, 1) is said to be p-stable standard
(0<p<?2) if for every AeX

Eexp{iuM(A4)} =exp{—1(4)[uf}, ueR.

In this section M, stands for a p-stable standard random measure and we
consider only non-gaussian case, i.e. 0 < p <2 (see [6] and [19] for p =2).
Hence M, ~ [0, m,], where

b

dr ‘
m,((a, b)) =¢, j—r—l-;;, 0<a<b,
. a
and ¢, is a positive constant (see Cor. 6.7, [3], Chap. II). In this case it is
easy to compute the function H,,,p defined in Section 4:
Hp (4) = m, ((— 1/u, 1uf) = 26,0°,  u>0.
Put

n
M ={Y x;M,(A): x;eE, 4;6Z,n>1}.
=

[M,]g is a linear space consisting of p-stable random vectors. [M,]; can be
treated as a subspace of Ly(Q, &, P) for 0<r <p and the relative top-
ologies of L (2, #, P) coincide on [M,]; (see [S], Th. 6.1). Hence the
closures of [M,]g in Iz(Q, #, P), denoted by cl,[M »Je.. are identical and

the - Fréchet - spaces cl,[M,];, consisting of p-stable random vectors, are

isomorphic with respect to the identity map, 0 <r < p.

@ ©
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TueOREM 6.1. The spaces Le(M,) and cl,[M,]g, 0< r < p are isomor-
phic. An isomorphism is given by the random integral

Zp(M,)3fi~ [ fAM,ecl, [M,],.
T

Proof. By Definition 2.2 ffdM,,ec]o [M,]g =cl,[MJ for 0<r<p.
‘ T :
Put I(f)= | fdM,. I: Lp(My)~cl, [M,]; is linear, 1-1 and continuous.

T
Hence it is sufficient to prove that I is “onto”. Let X ecl,[M,]g. There exists
a sequence {X,} =[M,]g such that X,—X in Lp(Q, #, P). Since X,

=Y x,;M,(A4,), where xy€E and A,eX are pairwise disjoint for
j=1
k

1 <j <k, we can write X, = [ f,dM,, where f, = 3 xu 1,,, and by Prop-
- R T j=1
osition 4.2 we get lLm [||f,—f,JIPd2 = 0. Thus there exists a subsequence
nm=x T

{fu) of 1/} and a function f T+ E such that Juf ae. By Definition 2.2
(replace (ii) by (iii)) we get that fe ., (M o) and [ fdM, = X as. The proof is
T

complete.

Remark 6.2. The above theorem is not true in the Gaussian case (i.e.
p =2) (see Prop. 6.3, [19]).

COROLLARY 6.3. For every 0 <r <p <2 the mapping
S (E||] fan|yr
T

is a quasi-norm (norm if r > 1) on EE(M,,) equivalent to ”'”M,,~ Hence, for
p>1, Lg(M,) is a Banach space.

The following properties of %5(M,) we get from the general theory of
random integrals.

THEOREM 64. Let E be a Banach space and M, be a standard p-stable
random measure, 0 < p < 2. Then

() feZLe(M,) if and only if f is strongly measurable and the function
@ (x*) =exp{—[|[<x*, fHPdA}
T

is the characteristic functional of a Radon probability measure on E. In this
case ([ fAM,)" (x*) = ¢, (x*);
T
(i) Lg(M,) < Lg;
(i) Zp(M) =1L for 0<p<1;
(iv) Lg(M,,) = Lg(M,,) whenever 0 < p, <p, <2;

3 — Studia Math. 78.1
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V) If peLl” and [e Ly(M,), then ¢fe Ly(M,);
(Vi) If p > 1, then ¥p(M,) is an invariant subspace of L} with respect to
a conditional integral operator. Moreover, for every sub-o-field X, of X,

[A(f1Z0)dM, = E(deM,,lM,,(Zo)) a.s
i .

where M,(Zq) =0 [M,(A): AeZ,].
Proof. (i): Note that by the continuity of a characteristic functional at Q
we have j](x* SoIPdA < o for every x* e E*. Since in our case K (1) = [uf?,

therefore (1 ) follows by Theorem 34.
(i): By Proposition 4.2.
(iti): If 0 < p <1, then we have

[ fmin {1 (©)ul, 1} m, (du) (dr) = 2¢,(1/1=p)+1/p) JILF @l Agd.
TR
Thus (iii) follows by Proposition 3.7 and (ii) of this theorem.

(iv): By Theorem 4.5.

(v): By Theorem 5.1.

(vi): Since E|| [ fdM || < oo and (ii), Theorem 5.2 ends the proof of this
S

theorem.

Theorem 6.4 (i) in the case when E has approximation property or p > 1
was proved in [18]. Statements (i) and (iii) were established in [18], and in
an equivalent form in [12] and [22] (see Cor. 6.5 below), by the standard
* drguments: all Banach spaces are of stable cotype less than 2 and all Banach
spaces are of stable type less than 1. Propositions 4.2 and 3.7, used in our
proof, permit to extend these arguments to non stable cases.

Linde [12]}, D. H. Thang and N. Z. Tien [22] considered the class
A,(E*, L,) of linear operators T: E+ L, defined by the following property:
TeA p(E*, L) if and only if the function ;x* - exp | --HTY*|”’ ! is the charac-
terlstlc functional of a Radon probability measure on E (see d]SO [13]). Every
operator T from A,(E*, L,) is decomposable (see [12], Th. 5), i.e. there exists
a strongly measurable function f: T+ E such that T = Ty, where T;x*
=x* /5, x*eE*. Thus by Theorem 6.4 (i) and Corollary 6.3 we obtain
that the mapping

Lg(M,)afr— T e A,(E*, L)

is an isomorphism of ¥ (M,) and A, (E* L;). In [23] are studied properties
of the function space S,(E)={f: T eA (E*, L)}, however without any
connection with random mtegral By Theorem 64 (i) S,(E) = £¢(M,). Now
Wwe can formulate the following corollary:
CoroLLArY 6.5. The spaces cl,[M,]g, Lg(

M,), S,(E) and A, (E*,
isomorphic.

L,) are

icm®
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This corollary solves Problem 2 in [23], ie. the set of all simple
functions is dense in S, (E). At the same time this very corollary proves that
the finite rank operators are dense in A,(E*, L,). Theorem 6.4 (iv) solves
Problem 1 in [23]. Now we can prove the following result:

THEOREM 6.6. Let pu be a p-stable measure on a Banach space E with the
spectral measure o. Then there exist p-stable measures p, with the spectral
measures o,, n 2= 1, such that

(a) o, has the finite support,

(b) 0,=0,

(€) uy=p as n— 0.

Proof. Put T=8,2 =%, A=0¢ and let M, be a standard p-stable
random measure on (7, X, 1). Consider f: T+—E, f(x) = x. By Theorem 6.4
() feZL:(M,) and g(jfdM ) = . Hence there exists a sequence of simple

functions {g,} such that g,—f ae. and jg,,dM ijdM in P. Set 4,

= {supllgll < 3/2} and f, = g,,lA’I Then we have A, 7 A «»> Where A(T\A,)
kzn

=0, and

IIA (gn=S)dM,— [ fdM,.

[(fi=f)aM, =
T

By Theorem 5.1, [1,,(9,—f)dM,—0 in P, and
T

[ fdM, = [ fdM,—( | fdM,+ | fdM,+ ...+ [ fdM,)—0

An T 4 A2\4y Ap\dp—1
a.s. by Ito—Nisio’s theorem. Hence we found an uniformly bounded sequence
of simple functions !f,} such that f,+f a.e. and | f,dM,— [ fdM, in P. Put
T T

kn

=2 [f,,dM ). Then (c) is fulfilled. We prove (b). If f, = Z Xy L4, Where

x,,JeE x"J;éO and A,eX are pairwise disjoint 1<j<]\,,, then o,

= Z Pnj 0 nj? where p,; = ||x,]|?6(4,) and y,; = |]x,,j|| X,;, is the spectral
i=

mcasure of u,. Thus for every continuous bounded function ¢: SR we
have

lim pr(x) n(dx) = lim Z w(” H)len,ll o (Ay)

n=y n= j=1 "J
= i I :
= lim J (”f“)llfnll di = J (x)o (dx)

Sl >0 5
by the Dominated Convergence Theorem. The proof is complete.


GUEST


36 J. Rosinski

The next theorem in the case when E has the approximation property or
p>1and T=[0, 1] with the Lebesgue measure was proved in [18].
TueoreM 6.7. Let (T, X, 1) be an atomless probability space. Then the set

(2(] famy): £ & 250}

is equal to the set of all p-stable symmetric measures on E.
Proof. Let o be the spectral measure of p-stable measure u. We shall
prove that there exists a function [ € Z5(M,) such that £ ([ fdM,) = u. We

T
may assume that ¢ (S) > O (in another case we put f'= 0). Then there exists a
strongly measurable function g: T+—E such that

MteT: g()eB) = E(f(g)s),

Be #g.

Put f(f) =c'?(S)g(t), teT. By Theorem 6.1(i) f satisfies the required
conditions. )

Finishing this section we consider two questions concerning 1-stable
random integrals. The first is: does there exist a norm on .Zz(M,) so that
Z£p(M,) is a Banach space? And the second: is %g(M,) and invariant
subspace of L% with respect to a conditional integral operator?

THEOREM 6.8. Let (T, X, A) be a finite measure space such that X contains
an infinite sequence of non-zero pairwise disjoint sets. Then the following
conditions are equivalent:

(i) £ (M,) is isomorphic to a Banach space;

(i) Zx(M,)= L} and the topologies coincide;

(ii) E is of stable type 1.

Proof. The equivalence of (ii) and (iii) follows by Corollary 2,2 in [14]
and Corollary 6.3 (or by Th. 6 in [12] and Cor. 6.5); (i) obviously follows
by (ii). We prove that (i) implies (iii). Let {0,} be a sequence of standard
1-stable random variables and {x,} < E be such that ) ||x,/| < co and x, # 0.

n

It is enough to show that the sequence {) 0,x ), is bounded in
. k=1 .

Ly (2, #, P), 0 <r <p. By the assumption there exists a sequence of pair-
wise disjoint sets {4,} = X such that A(A4,) > 0. Define

X

.. N
I = el Ay 4

Then {filiz1 = Z5(M,) is a bounded sequence and by (i) the sequence

@ ©
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{ 3 Il fi}o, is bounded in #;(M,). Hence by Corollary 63
k=

sup(E| 3, O0xd) = sup(E]| (3, Il A)M ) < o

which ends the proof.

The second question remains open. We can prove a weaker result. Let
LLOG (E) denote the set of all strongly measurable functions f: T+ E such
that [(lf|llog(1+}Ifl)dA < .

T

TreoreM 6.9. The space
Ly (M) nLLOG (E)

is an invariant subspace of Ly with respect to a conditional integral operator.

Proof. By Remark 24 and Proposition 2.3 it is enough to prove
that A(f|Z,) is integrable with respect to the random measure M ~
~ [0, my|{lu| < 1}]. By Theorem 5.2 it sufficies to show that E| | fdM)

'

T
< oo. In view of Theorem 3.6 and Proposition 2.5 the last condition is
equivalent to the following:

11 (@) il my (du) A(df) < co.
Gl oul 11wl €1

Since we have

If @ullmy (@du)Ade) =2¢, [ [Iflllog(IfI)dA < o,
IS @ull > 1,lu] <1} (i >1y

the proof of our theorem is complete.
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On polynomial classification of locally convex spaces
by
DINAMERICO P. POMBO, Jr. (Rio de Janeiro)

Abstract. The purpose of this article is to develop a polynomial classification of locally
convex spaces, analogous to the classical linear theory and to the holomorphic theory proposed
recently by Nachbin. :

1. Introduction. In this article we consider polynomially bornological,
polynomially barreled, polynomially infrabarreled and polynomially Mackey
locally convex spaces defined in [1] (see also [2] and [3]). Our purpose is to
obtain a polynomial classification of locally convex spaces, analogous to the
classical linear theory and to the holomorphic theory proposed by Nachbin
in [15] and [16] (see also [4] and [17]). We must emphasize that, besides its
intrinsic importance, the polynomial theory can clarify the holomorphic
theory as was pointed out by Aragona in [1] (see also [2] and [3]). We now
indicate briefly the organization of this article.

In Section 2 we study the (6, ..., 6,)-locally convex topologies in
Z(Ey, ..., E,; F} and the 6,-locally convex topologies in 2("E; F) (see [7],
Chap. 3, for such a study in the linear case). We obtain an Alaoglu—~Bourbaki
theorem for homogeneous polynomials (Theorem 2.11) and Theorem 2.12,
important tools in the subsequent sections.

In Section 3 we study the relationship among the above-mentioned
polynomial concepts. As principal results of this section we obtajn Theorem
3.34 and Theorem 3.37, both well known in the linear theory. As an

- application of such concepts, we prove Theorem 3.17, a generalization of a

classical result of Bourbaki (see Remark 3.19).

In Section 4 we mention some examples of locally convex spaces which
have such polynomial properties considered in the text, and observe that the
linear notions are, really, more general than the corresponding polynomial
ones. :

This paper is based on part of my doctoral thesis ([18]), written under
the guidance of Professor L. Nachbin, to whom I am sincerely indebted.

We shall adopt the notation and terminology of [47, [14], [15] and
[16]. We will also use the following conventions. N, R and C, will denote the
systems of natural integers, real numbers and complex numbers, respectively.
All topological vector spaces will be assumed to be complex. If Ey, ..., E,
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