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Decreasing rearrangements and L™? of the Bohr group
by
J. MARSHALL ASH (Chicago, Ill) and KENNETH A. ROSS (Eugene, Ore.)

Abstract. To a complex-valued function f on a measure space (X, y) can be associated a
nonincreasing function /* mapping the positive reals into themselves in such a way that |f| and
J* are equimeasurable. When X has a topological structure, the map f—f* is studied to see
which properties of [ are inherited by f*. Continuity is often inherited if X is connected. For X
= [0, 1), dilferentiability is not inherited but the property of being Lipa, 0 <« < 1, is. The Bohr
compactification. D of the reals is introduced. Two natural definitions of LP4(D) are given and
are shown to agree for continuous functions. Considerations of IP»(D) are shown to have
applications to the concrete spaces LP4(R),

§ 1. Introduction. To a complex-valued function f on a measure space
(X, u) can be associated a nonincreasing function f* mapping the positive
reals into themselves in such a way that |f| and f* are equimeasurable:

pixeX: |f(x) >a} =A{teR*: f*(t) >a} for acR*

where A is Lebesgue measure. The function f* is a "copy” of f that is often
easier to work with than /. A major use of f* is in defining a family of spaces
LX), p, q&[1, o], which generalize L”(X) and are useful in the theory of
interpolation operators,

In Section 2, X is assumed to have some topological structure and the
map f—f* is studied to see which properties of f are inherited by f*.
Continuity is often inherited if X is connected. However, differentiability is
not, although some smoothness does pass over. For example, if X = T then
Lipx, 0 <o < 1, is inherited while the property of being in the Zygmund
class A, is not, even though Lipl< A, > () Lipa.

0=<a<l
In Section 3 the Bohr compactification. D of the reals is introduced and
two obvious definitions of L™ (D) are considered. The first arises by
considering. D as a compact abelian group with Haar measure y and defining
LP4(D) using f* where
@ =inf{o: p{lf]>a} <t}
The second comes from viewing a continuous function fon D as an almost

periodic function on R, determining the L7 size of f on egch interval
[—T, T] and then letting T — co. The main result of Section 3 is that these
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two definitions agree when f is continuous. (Of course the second definition
doesn’t even make sense for general f on D since u(R) =0.) Since the
continuous functions are dense in L*4(D) for p, ¢&[1, oo), the definitions are
equivalent for all practical purposes.

In Section 4 comnsiderations of L»?(D) are shown to have applications to
the concrete spaces L™¥(R). This is interesting in view of the rather abstract

development of D which is large and nonmetrizable.

§ 2. The decreasing rearrangement. Let (X, u) be a o-finite measure
space. If f is a complex-valued u-measurable function on X, its distribution
Junction f, is given by

S =pixeX: |f(x) >a] for aeR™.
The decreasing rearrangement of f is defined by
S =infla: fL(@) <t} for teR™.

Roughly speaking, f, and /* are mutually inverse functions. For a detailed
presentation of these functions, see [8], pp. 165-169; [9], pp. 189-190: or
[5, pp. 251-253. The function f* is an equimeasurable copy of [f]. In
particular, the map f— f* preserves L? spaces; in fact,

UMy = 14 g, for

We are interested in properties preserved by f-+f* when X is also a
topological space.

Before considering preservation of smoothness, a small quirk in the
definition of f* must be dealt with. Consider the function f that is
identically 1 on X =[0, 1]. Then f*(r)=1for 0< <1 and f*() =0 for
t 21, so that f* is discontinuous at t = 1. In general, if 1(X) < o¢ and [is
bounded away from 0 on X, then f* will have a jump at r = u(X) no matter
how smooth f is. Hence the best we can hope for is to have smoothness
preserved by the map which takes f to f*|o . Call this map . Note also
that u(X) <o is a necessary condition for any smoothness preservation
since f(x) = x for x&R doesn’t even have a decreasing rearrangement.

Let X be a metric space with metric d. We will say that X has property
T if the following condition holds: whenever X is decomposed into three
mutually disjoint sets 4, B and N with 4 and B nonempty and H(N) == 0,
then dist(4, B) = 0, We will say that X has property Ty, 0 < <1, i0f there is
a constant C such that: whenever X is decomposed into three mutually
disjoint sets A, B, and N with 4 and B nonempty, then dist(4, B) < Cu(N).

ExampLEs. Any connected metric space in which every open set has
positive p-measure satisfies property T. For fixed n, Euclidean n-space R"
and the n-torus T" both have properties T but not T, for any f# > 1/n. To
get a feel for this, let 4 = {a}, let N be the punctured n-dimensional sphere

O<p<g o,
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of radius d about a, and let B be the complement of 4 U N (in R" or T™); then
dist(4, B)=d and [u(N)]'"=C, d. An example of a connected space
without property T is

X=AUBUN=([0, 1]x[0, 1) U([2, 31x[0, 1 U {(x, 0): 1 <x <2},

endowed with the usual 2-dimensional measure and metric.

Trrorem 1. (@) If (X, u, d) has property T and u(X)< co, then the
decreasing rearrangement map % preserves continuity.

(b) If (X, p, d) has property Tp, 0 < B <1, and u(X) < oo, then * maps
Lip(@)(X) into Lip(f) ([0, u(X))) for 0 <o < 1.

Proof. Let

o (h) = sup{|f(x)=fW: x, yeX, d(x, y) < h}
and
w* () = sup {Lf* (&) =*0): s, t<[0, w(X), ls—d <}

be the moduli of continuity of f and f*, respectively.
(a): If /* is not continuous, there is a point t,€(0, u(X)) and § >0
such that lim f*(t) =/*(to)+8. Then X =E*UE~ UN where E* = {|f]
t ’IO
2 [*(to)+0}, E- = {|f] < [*(to)} and N ={f*(to) <|f| <f*(to)+0}. Since

p(N) = 0. By property T we have dist(E™, E”) = 0 and so w(h) = ¢ for all
h> 0. Thus f is discontinuous on X and (a) is proved.
(b): To prove (b) we will establish the slightly stronger inequality

(1) o*(h) < w(C'hP)

under the assumptions that f is continuous on X and X has property T,
with constant C < C'. Fix h> 0 and ¢ > 0. Since f* is monotone decreasing
and continuous, we can find r and t+#h in (0, p(X)) satisfying
O =*(t+h) > w*(h)~¢.

Again, let E' = {|f| 2 /*(O0} E” ={|/I<f*(t+h)} and N = X\(E* VE").
Since u(E") 2 and u(E") 2 u(X)~(t+h), we have 0 < u(N) < h. Hence, by
properly ;. we can find xeE*, yeE™ such that d(x, Y CH. The
definitions of E* and K~ imply that |f(x)—f(») 2 w*(h—¢ and therefore
@(C"h) 2 w*(h)—e. Let £ —0 to obtain (1).

CoROLLARY 1. The map « takes Lip(e)(T") into Lip(a/m){[0, 1)).

COROLLARY 2. The map » on Tsatisfies w* (h) < w(2h) and thus preserves
Lipa.

Proof. The only fine point here is to notice that the constant C
appearing in the proof of (b) above may be taken to be 2 in this case.
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Remark. Theorem 1 is quite sharp. For part (a) consider the function
g(x,y)=x on

= ([0, 11x [0, 1]) u([2, 31 x [0, 1D v {(x, 0):
This function is continuous on X while g* has a jump at t = 1. For part (b)
consider the function h(x, y) = x+y on [0, 1]1x[0, 1]. The function h is in
Lipl but h* is only in Llp'z since h*(t) = 2— ﬁt for 0t <4 and h* (1)

=./2-2t for % 7 <

Define 4, to be the set of all complex-valued measurable functions [ on
T for which there exist positive numbers hy and K satisfying
) f (x+h)+f (x—h)—2f (x)| < K|H]
whenever | < ho. Note that T=[0, 1) and that we add in T modulo 1.

THeoREM 2. Let f be a complex-valued measurable function on T Then
fed, if and only if f is continuous and satisfies (2) for all h.

l<x<2}.

Proof. We need only prove the forward implication, so consider feA,.

We first show that fis bounded on T It suffices to show that, for each x, €T,
f is bounded on some neighborhood of x,. Without loss of generality we
may assume x, = 0. Since

[0. kol = U [0, o {1f1 < m,

there exists m so that u(E,)> 0, where
Em = [0» h()] Al {lfl < m}

Let r,seE, and apply inequality (2) three times: first with x = (r—s)/2,
(r+9)/2; and finally with x =0,

h=(r—s)/2; then with x =(r—s)/2, h=
h=s to get successively

€} 1f O =8) < 2|1 {(r—$)/2)| +1.f (O} + Ko,
@ 2|f ((r=s)/2)| 1S @) +1f (=$)|+Kho,
O If (=) < 1S ()] +21f () + Kho.

Putting (5) into (4) and then (4) into (3) yields
Lf =)l < {If (S ) +21f (O) + Kho)+ Kho} +( (0) -+ Ko
< 2m+3|f(0)|+3Kh,.
This shows that f is bounded on the set E,—E,. Since u(E,) >0
Steinhaus’s theorem ([10], [11]) asserts that E,,—E, coniains a neigh-

borhood of 0. We conclude that f is bounded on T, ie. that ||f]|, < c0. It
follows that fis in Lipa for every a < 1 and, in particular, continuous on T:
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see [12], page 44. Finally, if |h| > hg, then

et B (=27 ) < g, < 2L
and so inequality (2) holds (with a different K) for all h.

Define 4, to be the set of all complex-valued measurable functions on T
with the property that

5 hl,

(6) IS (X+B)+f (x—h)—2f (X)) =o(h) as [h—0.

TveorREM 3. For X =T the map % does not preserve A,,
n=1,2,..,0r C*.

This is somewhat unexpected since Lipl < A, > Lipa for each a,
0 <o <1, and * does preserve each Lipa, 0 <a < 1, by Corollary 2.

Proof. The function g, where g(x) = exp{—x2/(1—x?} for x| <'1 and
g(x) =0 elsewhere is C®. So is f(x) =2g(4(x—)+g (4(x—4%), which we
consider as a function on T The graphs of f and f* are below.

The inverse to g restricted to [0, 1] is h, where

4,, C",

In(1/y)
h(y) = i)
O =TTy
4 ,
S I
1+ 1+
0 ;i- 1 2 0 e
Fig. 1

o et RA.iL B {
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Since g(x,) = g(x_) =%, where

Xy =+h}) = :t\/T_rl'I‘]“i,

it follows that f,()=(*""0)=3%h(y/2) for 1<y<2 and f,(y
=4h(y/2)+3h(y) for 0 <y < 1. By first calculating the derivatives of f, at
S*(Gx,), we find that at 4x., f* has a left derivative of —4,/In2(

and a right derivative of 0. This corner at %x, disqualifies f* from
C*uC'uC*yu ... and also from A, since relation (6) may be rewritten as

SOFR=F(x) £ ()= (x=h)
h h

For the part of Theorem 3 concerning 4,, let g be the C* function given
above, set /(x) = xIn|x|, x # 0, [(0) = 0, and finally form

JX)=g@x=P){Ix-D+1}+g(4(x~3).
The graphs of f and f* are given in Figure 2.

= 0(1).

i}
1 0 x 1

=]
s
ol—
XS

Fig. 2

We first observe that led,. To see this, fix h >0 and form L(x%)
=[x+h+1(x~h)-2x)]h . Now Lk=ld>0 ['=x"' and I
= —x"? 50 that | is concave upward and ! is concave downward on (0, o),
whence L is positive and decreasing on (h, o). Since L is odd,

sup|L} = s::)ph]]Ll = |L(h//2)| =0 (3+2./2) < co.

icm°®
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We compute (numerically) that f(1/4) =£(.145...) = 1 and that f(1/4)
= —oo since I'(0) = ~oco. Letting x, = 1/4—.145..., we have f*x) =1
and f* has a left derivative at x, of — 0. The contribution of the latter term
of fis sufficient to force the right derivative of f* at x, to be 0. Hence as
h—0%,

SHO AR =¥ () f* ) =f* (x =) N
h

b 0+

and f* is not in A,.

§ 3. The Lorentz spaces L"¢(D). Let D be R with the discrete topology.
The Bohr group D is the set of all functions ¢ of D into {zeC: [ =1}
satisfying ¢ (x+y) = ¢(x) ¢ (y). With the finite-open topology, D is a compact
abelian group. The reals with the usual topology are densely embedded in D
via the mapping o - @, where @, (x) = ¢*®**, This mapping also embeds the
rationals densely in D, so D is separable. However, D is not first countable
and hence not metrizable. Moreover, D has cardinality 2, where c is the
power of the continuum, by a theorem of Kakutani; see [4] 24.47.

Let u be Haar measure on D so that u(D) = 1. The space AP of almost
periodic functions on R can be identified with the space C(D) of all
continuous functions on D. In fact, each f in C(D) is associated with its
restriction to the dense image of R in D, Haar measure on D is determined
by the fundamental identity
T

Jf(x)dx.

L1
(M deu = Thn;ﬁ
b -T
All this can be found, elegantly phrased, in §41 of [7]. The fascinating
concrete background calculations can be found in Bohr’s book [3].

The space L»4(D) is the space of all complex-valued measurable func-
tions f on D for which [ fllpq < c0, where
1

- 9 -l
® IWL=5JUHM”ﬁN 1<pg<wm
0
and
! .
9) Sl = sup -1 f*(s)ds, 1<p<oo.
1e(0, 1) 0

In the notation of Stein and Weiss [97, our ||fll,, i IIf1lp if ¢ < 00 and our
1N, 8 1S Mg ‘

quuatior{l (7) suggests that I(D) should be definable in terrr_ls of the
more concrete spaces [#4([—T, T]). In fact, the following is possible.
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0) If feAP and T >0, endow [~ T, T] with the normalized Lebesgue
measure dx/2T and form ||f]],,r using equation (8) or (9).

1) Show that, for feAP, the limit

[ lpq = Him || fllpqr
T~ o

exists. This defines |f],, on C(D) via the identification of AP with C (D).

2) Show that |fl,, = I, for f&C (D).

The completion of this three step program provides an alternative
definition of I#(D) when ¢ < oo since the continuous functions are dense in
LP4, g < 00. (To see this, note that simple functions are dense in LP4, g < oo;
[5], page 258. Then note that a simple function can be closely approximated
in L" norm by a continuous function if r < oo, [4], 12.10. Finally, this
approximation is also good in L™ if r =max{p, ¢} < cv since from (8)
1/1lz.q < (/)11 f g and from (1.8) of [51, [lfllnq < !lfllgg =11./ll;) Even for
LP® (D), where C(D) is not dense, the three step program has merit because
of the duality between L»™ and I”** and the density of C(D) in P!, See
equations (2.28) and (229) of [1] for this duality and the proof of
Theorem 5 in that paper for an application of this duality.

THeOREM 4. Let fe C(D) ~ AP and fix p, ¢ > 1. Then |fl,, exists and is
equal to || fllp.,-

Proof. For each natural number n, let u, be the measure on D
corresponding to the normalized Lebesgue measure dx/2n on [—n, n).
Identity (7) tells us that

;gfdu=

lim
nros

‘I)fdu.. for feC(D),

ie, p,— pu weakly. Since Haar measure u is regular, the present theorem
follows from the next theorem.

THEOREM 5. Let u and p, be finite Borel measures on a compact space X
and assume p is regular. If w, — u weakly, then

0 1l = 1 g Sor all f&C(X),

where for every measure v,

1f llp.gv s given by equation (8) or (9) with /*
replaced by '

fv* )= inf{a: f*,v(a) < t}v

where f, (@) = v{xeX: |f(x) > a}.

Proof. Consider fixed fin C(X). Each of the functions N [ A S
is nonincreasing and right continuous. Let D be the countable set of points
at which at least one of these functions is discontinuous, First we show

icm°®
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(10) lim fy,, @) = f, ,(@ for all a¢D.

Let A = {|f| > a}; we must show lim g,(4) = u(A). Since f is continuous,

n-roo

the boundary 4 of A is contained in {|f] =a}. For each n,

#OA) < pla—1/n < |fl Sa+1/n} = f, J(a—1/m)~f, ,(@+1/n).
Since f,,, is continuous at o, we conclude that u(@4) = 0. This is enough to
guarantee lim u,(4) = p(A), and hence (10) holds, by a standard argument.

netag »
See, for example, Theorem 4.5.1 of [2]. In the proof of that theorem X is
assumed to be metric, but the proof goes through for X merely compact
Hausdorfl provided the limit measure y is regular. |
Assume ¢ < 00, Next we show
lim X% (1) = f* (1)

by

(11) for all t¢D.

Assume (11) fails for some (fixed) ¢ ¢ D. Passing to a subsequence, if necessary,
we may suppose that there is an ¢ > 0 such that either

(12) £ () > f () +e
or

(13) Sh(O) <SXB)—e
The cases (12) and (13) seem to require separate arguments. Assume (12)

holds. Since f,* is continuous at 1, there is 6 > 0 so that f* (t—38) <f*(1)+4¢/2
and hence

(14 1k (6) > f¥(t—0)+e/2
Select og ¢ D satisfying

for all n

for all n.

for all n.

FX(t—8) <ap < f¥(t—0)+e/2. |
From (15) we infer f, , (@) € t=9. Since lim f, ,, (20) = f, . (%0) by (10), there
[ adi ]

exists N so that fo, () <t for n> N. This implies that f* () <o for
n> N. This is contradicted by (14) and (15) which together imply f* (1) > oo
for all n. Now assume (13) holds. Since f,* is right continuous at ¢, there is
3> 0 so that fX(t+38) > f*(1)—e/2 and hence

for all n.

(16) S < [k (+8)—0/2
Select ag¢ D satisfying
(17) S+ 8)—¢/2 < ag < f*(t+9).

Then we have f, ,(xo) > (3. Again (10) shows that there is N such that
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Siou (00} > t for n> N. A routine argument, using the continuity of f, , at
oo, shows that f*(z) > ao for n> N. On the other hand, f*(1) < «, for all n
by (16) and (17). Thus (13) and (12) are both impossible and we conclude that

(11) holds.
To show
1 1ty = T
it suffices to show
(19 i [ L0 = [ Lo .
0 0

By (11) the integrands converge almost everywhere, so we need only verily
that the convergence is dominated. Weak convergence implies lim p,(X)

= p(X) and so M = supu,(X) < co. Since f, ,(@) = 0 for a > llfll,,",ﬂx:"c have
LE® <|Ifly for £ 2 0. Also, f, ,(#) < M for all « >0 and so. S (@) =0 for

t> M. T.hc same observations apply to u, and so all the integrands in (18)
are dominated by g(t), xhere g is t9P=1 1|, times the characteristic

function of [0, M]. Since [t9P~'dt < oo, g is integrable and so (18) holds.
0

Let lq= 0. Ar%uing as above, it is easy to show that for each

te(0, 1)7£ﬁt:(s)ds—->jf,,*(s)ds. The g= o0 cases of Theorem 4 follow
: ‘

immediately.

§‘4..Application§. The group D is a large abstract object compared with
R, but it has one important advantage: compactness. This gives rise to a
method of transference which can sometimes be used to get results for R

w}}ich were previously known for compact groups. We give two examples of
this, the first due to deLeeuw [6].

THEOREM. A bounded continuous function Son Ris a multiplier for the
space of Fourizer‘transforms on LRy, 1< p<2 if and only if' there is a
constant K satisfying the following: for each choice {ay, by A} of real numbers
satisfying '

T .
K 1 n
~T

and

r

: 1 z idjx p

TITLZTJ’J;,”"’ "<t
-T
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one has
| Z abif B <K; bere Up+1/p =1,

This and two companion results essentially equate the multiplier oper-
ators on LP(R) with those on L(D). (A typical multiplier operator is T;: ¢ —
=+ (/(x)¢(x))", where f'is a bounded continuous function. See ['6] for exact
definitions.)

For our second example, we begin by observing that if T; is a bounded

multiplier operator from L?(G) to L**(G) = weak L*(G) and if G is compact,

then it is almost immediate that f is a bounded function (test f on
characters to see this). Hence T, maps L*(G) into L?(G). As an application of
transference this result can be extended to the case of G =R. To do this,
deLecuw’s idea of identifying the multiplier operators on L?(R) with those
on L”(D) bad to be generalized to identifying the multiplier operators which
take L™ (R) — L"*2(R) with those that take L"**(D)— L™*2(D). This idea
(with p=2, ¢, = 1, g, = 00) was proposed by Misha Zafran and executed in

[ '
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