Decreasing rearrangements and $L^{p,q}$ of the Bohr group

b

J. MARSHALL ASH (Chicago, Ill.) and KENNETH A. ROSS (Eugene, Ore.)

Abstract. To a complex-valued function f on a measure space (X, μ) can be associated a nonincreasing function f^* mapping the positive reals into themselves in such a way that |f| and f^* are equimeasurable. When X has a topological structure, the map $f \to f^*$ is studied to see which properties of f are inherited by f^* . Continuity is often inherited if X is connected. For X = [0, 1), differentiability is not inherited but the property of being Lip α , $0 < \alpha \le 1$, is. The Botr compactification \hat{D} of the reals is introduced. Two natural definitions of $L^{p,q}(\hat{D})$ are given and are shown to agree for continuous functions. Considerations of $L^{p,q}(\hat{D})$ are shown to have applications to the concrete spaces $L^{p,q}(R)$.

§ 1. Introduction. To a complex-valued function f on a measure space (X, μ) can be associated a nonincreasing function f^* mapping the positive reals into themselves in such a way that |f| and f^* are equimeasurable:

$$\mu\{x \in X : |f(x)| > \alpha\} = \lambda\{t \in \mathbf{R}^+ : f^*(t) > \alpha\} \quad \text{for} \quad \alpha \in \mathbf{R}^+$$

where λ is Lebesgue measure. The function f^* is a "copy" of f that is often easier to work with than f. A major use of f^* is in defining a family of spaces $L^{p,q}(X)$, $p, q \in [1, \infty]$, which generalize $L^p(X)$ and are useful in the theory of interpolation operators.

In Section 2, X is assumed to have some topological structure and the map $f \to f^*$ is studied to see which properties of f are inherited by f^* . Continuity is often inherited if X is connected. However, differentiability is not, although some smoothness does pass over. For example, if X = T then $\operatorname{Lip}\alpha$, $0 < \alpha \leqslant 1$, is inherited while the property of being in the Zygmund class Λ_* is not, even though $\operatorname{Lip}1 \subset \Lambda_* > \bigcap_{0 < \alpha < 1} \operatorname{Lip}\alpha$.

In Section 3 the Bohr compactification \hat{D} of the reals is introduced and two obvious definitions of $L^{p,q}(\hat{D})$ are considered. The first arises by considering \hat{D} as a compact abelian group with Haar measure μ and defining $L^{p,q}(\hat{D})$ using f^* where

$$f^*(t) = \inf \{\alpha \colon \mu\{|f| > \alpha\} \leqslant t\}.$$

The second comes from viewing a continuous function f on \hat{D} as an almost periodic function on R, determining the $L^{p,q}$ size of f on each interval [-T, T] and then letting $T \to \infty$. The main result of Section 3 is that these

two definitions agree when f is continuous. (Of course the second definition doesn't even make sense for general f on \hat{D} since $\mu(\mathbf{R}) = 0$.) Since the continuous functions are dense in $L^{p,q}(\hat{D})$ for $p, q \in [1, \infty)$, the definitions are equivalent for all practical purposes.

In Section 4 considerations of $L^{p,q}(\hat{D})$ are shown to have applications to the concrete spaces $L^{p,q}(R)$. This is interesting in view of the rather abstract development of \hat{D} which is large and nonmetrizable.

§ 2. The decreasing rearrangement. Let (X, μ) be a σ -finite measure space. If f is a complex-valued μ -measurable function on X, its distribution function f_* is given by

$$f_*(\alpha) = \mu \{x \in X \colon |f(x)| > \alpha\} \quad \text{for} \quad \alpha \in \mathbb{R}^+.$$

The decreasing rearrangement of f is defined by

$$f^*(t) = \inf \{ \alpha : f_*(\alpha) \le t \}$$
 for $t \in \mathbb{R}^+$.

Roughly speaking, f_* and f^* are mutually inverse functions. For a detailed presentation of these functions, see [8], pp. 165-169; [9], pp. 189-190; or [5], pp. 251-253. The function f^* is an equimeasurable copy of |f|. In particular, the map $f \rightarrow f^*$ preserves L^p spaces; in fact,

$$||f||_{L^{p}(X)} = ||f^*||_{L^{p}(\mathbb{R}^+)}$$
 for $0 .$

We are interested in properties preserved by $f \rightarrow f^*$ when X is also a topological space.

Before considering preservation of smoothness, a small quirk in the definition of f^* must be dealt with. Consider the function f that is identically 1 on X = [0, 1]. Then $f^*(t) = 1$ for $0 \le t < 1$ and $f^*(t) = 0$ for $t \ge 1$, so that f^* is discontinuous at t = 1. In general, if $\mu(X) < \infty$ and f is bounded away from 0 on X, then f^* will have a jump at $t = \mu(X)$ no matter how smooth f is. Hence the best we can hope for is to have smoothness preserved by the map which takes f to $f^*|_{[0,\mu(X))}$. Call this map *. Note also that $\mu(X) < \infty$ is a necessary condition for any smoothness preservation since f(x) = x for $x \in R$ doesn't even have a decreasing rearrangement.

Let X be a metric space with metric d. We will say that X has property T if the following condition holds: whenever X is decomposed into three mutually disjoint sets A, B and N with A and B nonempty and $\mu(N) = 0$, then dist(A, B) = 0. We will say that X has property T_{β} , $0 < \beta \le 1$, if there is a constant C such that: whenever X is decomposed into three mutually disjoint sets A, B, and N with A and B nonempty, then dist(A, B) $\le C\mu(N)^{\beta}$.

Examples. Any connected metric space in which every open set has positive μ -measure satisfies property T. For fixed n, Euclidean n-space R^n and the n-torus T^n both have properties T_{n-1} but not T_{β} for any $\beta > 1/n$. To get a feel for this, let $A = \{a\}$, let N be the punctured n-dimensional sphere

of radius d about a, and let B be the complement of $A \cup N$ (in \mathbb{R}^n or \mathbb{T}^n); then $\operatorname{dist}(A, B) = d$ and $[\mu(N)]^{1/n} = C_n \cdot d$. An example of a connected space without property T is

$$X = A \cup B \cup N = ([0, 1] \times [0, 1]) \cup ([2, 3] \times [0, 1]) \cup \{(x, 0): 1 < x < 2\},\$$

endowed with the usual 2-dimensional measure and metric.

THEOREM 1. (a) If (X, μ, d) has property T and $\mu(X) < \infty$, then the decreasing rearrangement map * preserves continuity.

(b) If (X, μ, d) has property T_{β} , $0 < \beta \le 1$, and $\mu(X) < \infty$, then * maps $\operatorname{Lip}(\alpha)(X)$ into $\operatorname{Lip}(\alpha\beta)([0, \mu(X)])$ for $0 < \alpha \le 1$.

Proof. Let

$$\omega(h) = \sup\{|f(x) - f(y)|: x, y \in X, d(x, y) \le h\}$$

and

$$\omega^*(h) = \sup \{ |f^*(s) - f^*(t)| : s, t \in [0, \mu(X)), |s - t| \le h \}$$

be the moduli of continuity of f and f^* , respectively.

(a): If f^* is not continuous, there is a point $t_0 \in (0, \mu(X))$ and $\delta > 0$ such that $\lim_{t \to t_0} f^*(t) = f^*(t_0) + \delta$. Then $X = E^+ \cup E^- \cup N$ where $E^+ = \{|f|\}$

 $\geqslant f^*(t_0) + \delta\}$, $E^- = \{|f| \leqslant f^*(t_0)\}$ and $N = \{f^*(t_0) < |f| < f^*(t_0) + \delta\}$. Since $\mu(E^+) = t_0 > 0$ and $\mu(E^-) = \mu(X) - t_0 > 0$, E^+ and E^- are nonempty. Also $\mu(N) = 0$. By property T we have $\operatorname{dist}(E^+, E^-) = 0$ and so $\omega(h) \geqslant \delta$ for all h > 0. Thus f is discontinuous on X and (a) is proved.

(b): To prove (b) we will establish the slightly stronger inequality

$$(1) \qquad \qquad \omega^*(h) \leqslant \omega(C'h^{\beta})$$

under the assumptions that f is continuous on X and X has property T_{β} with constant C < C'. Fix h > 0 and $\varepsilon > 0$. Since f^* is monotone decreasing and continuous, we can find t and t+h in $(0, \mu(X))$ satisfying

$$f^*(t)-f^*(t+h)>\omega^*(h)-\varepsilon$$
.

Again, let $E^+ = \{|f| \ge f^*(t)\}$, $E^- = \{|f| \le f^*(t+h)\}$ and $N = X \setminus (E^+ \cup E^-)$. Since $\mu(E^+) \ge t$ and $\mu(E^-) \ge \mu(X) - (t+h)$, we have $0 < \mu(N) \le h$. Hence, by property T_{β} , we can find $x \in E^+$, $y \in E^-$ such that $d(x, y) \le C' h^{\beta}$. The definitions of E^+ and E^- imply that $|f(x) - f(y)| \ge \omega^*(h) - \varepsilon$ and therefore $\omega(C' h^{\beta}) \ge \omega^*(h) - \varepsilon$. Let $\varepsilon \to 0$ to obtain (1).

COROLLARY 1. The map * takes $Lip(\alpha)(T^n)$ into $Lip(\alpha/n)([0, 1))$.

COROLLARY 2. The map * on T satisfies $\omega^*(h) \leq \omega(2h)$ and thus preserves $\text{Lip }\alpha$.

Proof. The only fine point here is to notice that the constant C appearing in the proof of (b) above may be taken to be 2 in this case.

Remark. Theorem 1 is quite sharp. For part (a) consider the function q(x, y) = x on

$$X = ([0, 1] \times [0, 1]) \cup ([2, 3] \times [0, 1]) \cup \{(x, 0): 1 < x < 2\}.$$

This function is continuous on X while g^* has a jump at t=1. For part (b) consider the function h(x, y) = x + y on $[0, 1] \times [0, 1]$. The function h is in Lip 1 but h^* is only in Lip $\frac{1}{2}$ since $h^*(t) = 2 - \sqrt{2t}$ for $0 \le t \le \frac{1}{2}$ and $h^*(t) = \sqrt{2-2t}$ for $\frac{1}{2} \le t \le 1$.

Define Λ_* to be the set of all complex-valued measurable functions f on T for which there exist positive numbers h_0 and K satisfying

(2)
$$|f(x+h)+f(x-h)-2f(x)| \le K|h|$$

whenever $|h| \le h_0$. Note that T = [0, 1) and that we add in T modulo 1.

THEOREM 2. Let f be a complex-valued measurable function on T. Then $f \in \Lambda_{*}$ if and only if f is continuous and satisfies (2) for all h.

Proof. We need only prove the forward implication, so consider $f \in \Lambda_*$. We first show that f is bounded on T. It suffices to show that, for each $x_0 \in T$, f is bounded on some neighborhood of x_0 . Without loss of generality we may assume $x_0 = 0$. Since

$$[0, h_0] = \bigcup_{m=1}^{\infty} [0, h_0] \cap \{|f| \leq m\},$$

there exists m so that $\mu(E_m) > 0$, where

$$E_m = \lceil 0, h_0 \rceil \cap \{ |f| \leq m \}.$$

Let $r, s \in E_m$ and apply inequality (2) three times: first with x = (r-s)/2, h = (r-s)/2; then with x = (r-s)/2, h = (r+s)/2; and finally with x = 0, h = s to get successively

(3)
$$|f(r-s)| \le 2|f((r-s)/2)| + |f(0)| + Kh_0$$

(4)
$$2|f((r-s)/2)| \leq |f(r)| + |f(-s)| + Kh_0,$$

(5)
$$|f(-s)| \le |f(s)| + 2|f(0)| + Kh_0$$

Putting (5) into (4) and then (4) into (3) yields

$$|f(r-s)| \le \{|f(r)| + (|f(s)| + 2|f(0)| + Kh_0) + Kh_0\} + |f(0)| + Kh_0$$

$$\le 2m + 3|f(0)| + 3Kh_0.$$

This shows that f is bounded on the set $E_m - E_m$. Since $\mu(E_m) > 0$, Steinhaus's theorem ([10], [11]) asserts that $E_m - E_m$ contains a neighborhood of 0. We conclude that f is bounded on T, i.e. that $||f||_u < \infty$. It follows that f is in Lip α for every $\alpha < 1$ and, in particular, continuous on T;

see [12], page 44. Finally, if $|h| > h_0$, then

$$|f(x+h)+f(x-h)-2f(x)| \le 4||f||_{u} < \frac{4||f||_{u}}{h_{0}}|h|,$$

and so inequality (2) holds (with a different K) for all h.

Define λ_* to be the set of all complex-valued measurable functions on T with the property that

(6)
$$|f(x+h)+f(x-h)-2f(x)| = o(h)$$
 as $|h| \to 0$.

THEOREM 3. For X = T, the map * does not preserve λ_* , Λ_* , C^n , $n = 1, 2, ..., or <math>C^{\infty}$.

This is somewhat unexpected since $\text{Lip } 1 \subset \Lambda_{\star} > \text{Lip } \alpha$ for each α , $0 < \alpha < 1$, and * does preserve each $\text{Lip } \alpha$, $0 < \alpha \leq 1$, by Corollary 2.

Proof. The function g, where $g(x) = \exp\{-x^2/(1-x^2)\}$ for |x| < 1 and g(x) = 0 elsewhere is C^{∞} . So is $f(x) = 2g(4(x-\frac{1}{4})) + g(4(x-\frac{3}{4}))$, which we consider as a function on T. The graphs of f and f^* are below.

The inverse to g restricted to [0, 1] is h, where

$$h(y) = \sqrt{\frac{\ln(1/y)}{1 + \ln(1/y)}}.$$

Fig. 1

Since $g(x_+) = g(x_-) = \frac{1}{2}$, where

$$x_{\pm} = \pm h(\frac{1}{2}) = \pm \sqrt{\frac{\ln 2}{1 + \ln 2}},$$

it follows that $f_*(y) = (f^*)^{-1}(y) = \frac{1}{2}h(y/2)$ for $1 \le y \le 2$ and $f_*(y) = \frac{1}{2}h(y/2) + \frac{1}{2}h(y)$ for $0 < y \le 1$. By first calculating the derivatives of f_* at $f^*(\frac{1}{2}x_+)$, we find that at $\frac{1}{2}x_+$, f^* has a left derivative of $-4\sqrt{\ln 2(1+\ln 2)^3}$ and a right derivative of 0. This corner at $\frac{1}{2}x_+$ disqualifies f^* from $C^\infty \cup C^1 \cup C^2 \cup \ldots$ and also from λ_* since relation (6) may be rewritten as

$$\frac{f(x+h)-f(x)}{h} - \frac{f(x)-f(x-h)}{h} = o(1).$$

For the part of Theorem 3 concerning Λ_{\star} , let g be the C^{w} function given above, set $l(x)=x\ln|x|, x\neq 0, l(0)=0$, and finally form

$$f(x) = g\left(4(x-\frac{1}{4})\right)\left\{l(x-\frac{1}{4})+1\right\} + g\left(4(x-\frac{3}{4})\right).$$

The graphs of f and f^* are given in Figure 2.

Fig. 2

We first observe that $l \in A_*$. To see this, fix h > 0 and form $L(x) = [l(x+h)+l(x-h)-2l(x)]h^{-1}$. Now $L(h) = \ln 4 > 0$, $l'' = x^{-1}$ and $l''' = -x^{-2}$ so that l is concave upward and l' is concave downward on $(0, \infty)$, whence L is positive and decreasing on (h, ∞) . Since L is odd,

$$\sup |L| = \sup_{x \in [0,h]} |L| = |L(h/\sqrt{2})| = \ln(3 + 2\sqrt{2}) < \infty.$$

$$\frac{f^*(x_1+h)-f^*(x_1)}{h} - \frac{f^*(x_1)-f^*(x_1-h)}{h} \to 0 + \infty$$

and f^* is not in Λ_* .

§ 3. The Lorentz spaces $L^{p,q}(\hat{D})$. Let D be R with the discrete topology. The Bohr group \hat{D} is the set of all functions φ of D into $\{z \in C : |z| = 1\}$ satisfying $\varphi(x+y) = \varphi(x) \varphi(y)$. With the finite-open topology, \hat{D} is a compact abelian group. The reals with the usual topology are densely embedded in \hat{D} via the mapping $\alpha \to \varphi_{\alpha}$ where $\varphi_{\alpha}(x) = e^{2\pi i \alpha x}$. This mapping also embeds the rationals densely in \hat{D} , so \hat{D} is separable. However, \hat{D} is not first countable and hence not metrizable. Moreover, \hat{D} has cardinality 2^c , where c is the power of the continuum, by a theorem of Kakutani; see [4], 24.47.

Let μ be Haar measure on \hat{D} so that $\mu(\hat{D}) = 1$. The space AP of almost periodic functions on R can be identified with the space $C(\hat{D})$ of all continuous functions on \hat{D} . In fact, each f in $C(\hat{D})$ is associated with its restriction to the dense image of R in \hat{D} . Haar measure on \hat{D} is determined by the fundamental identity

(7)
$$\int_{\tilde{B}} f d\mu = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(x) dx.$$

All this can be found, elegantly phrased, in § 41 of [7]. The fascinating concrete background calculations can be found in Bohr's book [3].

The space $L^{p,q}(\hat{D})$ is the space of all complex-valued measurable functions f on \hat{D} for which $||f||_{p,q} < \infty$, where

(8)
$$||f||_{p,q}^{q} = \frac{q}{p} \int_{0}^{1} [f^{*}(t)t^{1/p}]^{q} \frac{dt}{t}, \quad 1 \leq p, q < \infty$$

and

(9)
$$||f||_{p, x_i} = \sup_{t \in \{0, 1\}} t^{1/p-1} \int_0^t f^*(s) \, ds, \quad 1 \leqslant p \leqslant \infty.$$

In the notation of Stein and Weiss [9], our $||f||_{pq}$ is $||f||_{pq}^*$ if $q < \infty$ and our $||f||_{p|\alpha}$ is $||f||_{p|\alpha}$.

Equation (7) suggests that $L^{p,q}(\hat{D})$ should be definable in terms of the more concrete spaces $L^{p,q}([-T, T])$. In fact, the following is possible.

- 0) If $f \in AP$ and T > 0, endow [-T, T] with the normalized Lebesgue measure dx/2T and form $||f||_{p,q,T}$ using equation (8) or (9).
 - 1) Show that, for $f \in AP$, the limit

$$|f|_{p,q} = \lim_{T \to \infty} ||f||_{p,q,T}$$

exists. This defines $|f|_{p,q}$ on $C(\hat{D})$ via the identification of AP with $C(\hat{D})$.

2) Show that $|f|_{p,q} = ||f||_{p,q}$ for $f \in C(\hat{D})$.

The completion of this three step program provides an alternative definition of $L^{p,q}(\hat{D})$ when $q < \infty$ since the continuous functions are dense in $L^{p,q}$, $q < \infty$. (To see this, note that simple functions are dense in $L^{p,q}$, $q < \infty$; [5], page 258. Then note that a simple function can be closely approximated in L^r norm by a continuous function if $r < \infty$, [4], 12.10. Finally, this approximation is also good in $L^{p,q}$ if $r = \max\{p,q\} < \infty$ since from (8) $||f||_{p,q} \leq (r/p)^{1/q} ||f||_{r,q}$ and from (1.8) of [5], $||f||_{r,q} \leq ||f||_{q,q} = ||f||_{q}$.) Even for $L^{p,\infty}(\hat{D})$, where $C(\hat{D})$ is not dense, the three step program has merit because of the duality between $L^{p,\infty}$ and $L^{p',1}$ and the density of $C(\hat{D})$ in $L^{p',1}$. See equations (2.28) and (2.29) of [1] for this duality and the proof of Theorem 5 in that paper for an application of this duality.

THEOREM 4. Let $f \in C(\hat{D}) \approx AP$ and fix $p, q \ge 1$. Then $|f|_{p,q}$ exists and is equal to $||f||_{p,q}$.

Proof. For each natural number n, let μ_n be the measure on \hat{D} corresponding to the normalized Lebesgue measure dx/2n on [-n, n]. Identity (7) tells us that

$$\int_{\hat{D}} f d\mu = \lim_{n \to \infty} \int_{\hat{D}} f d\mu_n \quad \text{for} \quad f \in C(\hat{D}),$$

i.e., $\mu_n \to \mu$ weakly. Since Haar measure μ is regular, the present theorem follows from the next theorem.

THEOREM 5. Let μ and μ_n be finite Borel measures on a compact space X and assume μ is regular. If $\mu_n \to \mu$ weakly, then

$$\lim_{n \to \infty} ||f||_{p,q,\mu_n} = ||f||_{p,q,\mu} \quad \text{for all } f \in C(X),$$

where for every measure v, $||f||_{p,q,v}$ is given by equation (8) or (9) with f^* replaced by

$$f_{\nu}^*(t) = \inf\{\alpha : f_{\star,\nu}(\alpha) \leq t\},$$

where $f_{*,\nu}(\alpha) = \nu \{x \in X : |f(x)| > \alpha \}.$

Proof. Consider fixed f in C(X). Each of the functions $f_{d_n}^*$, f_{*,μ_n} , f_{μ}^* , f_{*,μ_n} is nonincreasing and right continuous. Let D be the countable set of points at which at least one of these functions is discontinuous. First we show

(10)
$$\lim_{n \to \infty} f_{*,\mu_n}(\alpha) = f_{*,\mu}(\alpha) \quad \text{for all } \alpha \notin D.$$

Let $A = \{|f| > \alpha\}$; we must show $\lim_{n \to \infty} \mu_n(A) = \mu(A)$. Since f is continuous, the boundary ∂A of A is contained in $\{|f| = \alpha\}$. For each n,

$$\mu(\partial A) \leq \mu \{\alpha - 1/n < |f| \leq \alpha + 1/n\} = f_{*,\mu}(\alpha - 1/n) - f_{*,\mu}(\alpha + 1/n).$$

Since $f_{*,\mu}$ is continuous at α , we conclude that $\mu(\partial A)=0$. This is enough to guarantee $\lim_{n\to\infty}\mu_n(A)=\mu(A)$, and hence (10) holds, by a standard argument.

See, for example, Theorem 4.5.1 of [2]. In the proof of that theorem X is assumed to be metric, but the proof goes through for X merely compact Hausdorff provided the limit measure μ is regular.

Assume $q < \infty$. Next we show

(11)
$$\lim_{n \to \infty} f_{\mu_n}^*(t) = f_{\mu}^*(t) \quad \text{for all } t \notin D.$$

Assume (11) fails for some (fixed) $t \notin D$. Passing to a subsequence, if necessary, we may suppose that there is an $\epsilon > 0$ such that either

(12)
$$f_{\mu_n}^*(t) > f_{\mu}^*(t) + \varepsilon \quad \text{for all } n$$

or

(13)
$$f_{\mu_n}^*(t) < f_{\mu}^*(t) - \varepsilon \quad \text{for all } n.$$

The cases (12) and (13) seem to require separate arguments. Assume (12) holds. Since f_{μ}^{*} is continuous at t, there is $\delta > 0$ so that $f_{\mu}^{*}(t-\delta) < f_{\mu}^{*}(t) + \varepsilon/2$ and hence

(14)
$$f_{\mu}^{*}(t) > f_{\mu}^{*}(t-\delta) + \varepsilon/2 \quad \text{for all } n.$$

Select $\alpha_0 \notin D$ satisfying

(15)
$$f_{\mu}^{*}(t-\delta) < \alpha_{0} < f_{\mu}^{*}(t-\delta) + \varepsilon/2.$$

From (15) we infer $f_{*,\mu}(\alpha_0) \le t - \delta$. Since $\lim_{n \to \infty} f_{*,\mu}(\alpha_0) = f_{*,\mu}(\alpha_0)$ by (10), there exists N so that $f_{*,\mu}(\alpha_0) < t$ for n > N. This implies that $f_{\mu}(t) \le \alpha_0$ for n > N. This is contradicted by (14) and (15) which together imply $f_{\mu}(t) > \alpha_0$ for all n. Now assume (13) holds. Since f_{μ} is right continuous at t, there is $\delta > 0$ so that $f_{\mu}(t) + \delta > f_{\mu}(t) - c/2$ and hence

(16)
$$f_{\mu_n}^*(t) < f_{\mu}^*(t+\delta) - \varepsilon/2 \quad \text{for all } n.$$

Select $\alpha_0 \notin D$ satisfying

(17)
$$f_{\mu}^{*}(t+\delta) - \varepsilon/2 < \alpha_{0} < f_{\mu}^{*}(t+\delta).$$

Then we have $f_{\star,\mu}(\alpha_0) > t + \delta$. Again (10) shows that there is N such that

 $f_{*,\mu_n}(\alpha_0) > t$ for n > N. A routine argument, using the continuity of f_{*,μ_n} at α_0 , shows that $f_{\mu_n}^*(t) > \alpha_0$ for n > N. On the other hand, $f_{\mu_n}^*(t) < \alpha_0$ for all n by (16) and (17). Thus (13) and (12) are both impossible and we conclude that (11) holds.

To show

$$\lim_{n \to \infty} ||f||_{p,q,\mu_n} = ||f||_{p,q,\mu}$$

it suffices to show

(18)
$$\lim_{n\to\infty}\int_{0}^{\infty} [f_{\mu_{n}}^{*}(t) t^{1/p}]^{q} \frac{dt}{t} = \int_{0}^{\infty} [f_{\mu}^{*}(t) t^{1/p}]^{q} \frac{dt}{t}.$$

By (11) the integrands converge almost everywhere, so we need only verify that the convergence is dominated. Weak convergence implies $\lim_{n \to \infty} \mu_n(X) = \mu(X)$ and so $M = \sup_n \mu_n(X) < \infty$. Since $f_{*,\mu}(\alpha) = 0$ for $\alpha \ge \|f\|_u$, we have $f_{\mu}^*(t) \le \|f\|_u$ for $t \ge 0$. Also, $f_{*,\mu}(\alpha) \le M$ for all $\alpha \ge 0$ and so. $f_{\mu}^*(t) = 0$ for $t \ge M$. The same observations apply to μ_n and so all the integrands in (18) are dominated by g(t), where g is $t^{(q/p)-1}\|f\|_u$ times the characteristic function of [0, M]. Since $\int_0^M t^{(q/p)-1} dt < \infty$, g is integrable and so (18) holds.

Let $q=\infty$. Arguing as above, it is easy to show that for each $t\in(0, 1)$, $\int_0^t f_{\mu_n}^*(s)\,ds \to \int_0^t f_{\mu}^*(s)\,ds$. The $q=\infty$ cases of Theorem 4 follow immediately.

§ 4. Applications. The group \hat{D} is a large abstract object compared with R, but it has one important advantage: compactness. This gives rise to a method of transference which can sometimes be used to get results for R which were previously known for compact groups. We give two examples of this, the first due to deLeeuw [6].

THEOREM. A bounded continuous function f on \mathbf{R} is a multiplier for the space of Fourier transforms on $L_p(\mathbf{R})$, 1 , if and only if there is a constant <math>K satisfying the following: for each choice $\{a_j, b_j, \lambda_j\}$ of real numbers satisfying

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left| \sum_{j=1}^{n} a_{j} e^{i\lambda_{j} x} \right|^{p} dx \leqslant 1$$

and

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left| \sum_{j=1}^{n} b_{j} e^{i\lambda_{j} x} \right|^{p'} dx \leqslant 1$$

one has

$$\left| \sum_{j=1}^{n} a_j b_j f(\lambda_j) \right| \leqslant K; \quad \text{here} \quad 1/p + 1/p' = 1.$$

This and two companion results essentially equate the multiplier operators on $L^p(\mathbf{R})$ with those on $L^p(\hat{\mathbf{D}})$. (A typical multiplier operator is $T_f: \varphi \to (f(x)\hat{\varphi}(x))^{\vee}$, where f is a bounded continuous function. See [6] for exact definitions.)

For our second example, we begin by observing that if T_f is a bounded multiplier operator from $L^2(G)$ to $L^{2,1}(G) = \text{weak } L^2(G)$ and if G is compact, then it is almost immediate that f is a bounded function (test f on characters to see this). Hence T_f maps $L^2(G)$ into $L^2(G)$. As an application of transference this result can be extended to the case of $G = \mathbb{R}$. To do this, deLeeuw's idea of identifying the multiplier operators on $L^p(\mathbb{R})$ with those on $L^p(\mathbb{Q})$ had to be generalized to identifying the multiplier operators which take $L^{p,q_1}(\mathbb{R}) \to L^{p,q_2}(\mathbb{R})$ with those that take $L^{p,q_1}(\mathbb{Q}) \to L^{p,q_2}(\mathbb{Q})$. This idea (with p=2, $q_1=1$, $q_2=\infty$) was proposed by Misha Zafran and executed in [1].

References

- J. M. Ash, Weak restricted and very restricted operators on L², Trans. Amer. Math. Soc. 281 (1984), 675-689.
- [2] R. B. Ash, Measure, Integration, and Functional Analysis, Academic Press, London 1972, 281 (1984), 675-689.
- [3] H. Bohr, Almost Periodic Functions, Chelsea, New York 1951.
- [4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag, Heidelberg 1963.
- [5] R. A. Hunt, On L(p, q) spaces, Enseignement Math. 12 (1966), 249-275.
- [6] K. deLeeuw, On L_p multipliers, Ann. of Math. 81 (1965), 364-379.
- [7] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, Van Nostrand, New York 1953.
- [8] C. Sadosky, Interpolation of Operators and Singular Integrals: An Introduction to Harmonic Analysis, Marcel Dekker, New York 1979.
- [9] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton 1971.
- [10] H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 93-104.
- [11] K. R. Stromberg, An elementary proof of Steinhaus's theorem, Proc. Amer. Math. Soc. 36 (1972), 308.
- [12] A. Zygmund, Trigonometric Series, Vol. I, 2nd rev. ed., Cambridge Univ. Press, New York 1968.