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On the Rényi theory of conditional probabilities
by
ANDRZEJ KAMINSKI (Katowice)

Abstract. The Rényi theory of conditional probability spaces is studied. Various concepts
are introduced and discussed, In particular, the convolution of Rényi probability distributions
and their convergence as well as the convergence of the respective Fourier transforms are
defined and described by some equivalent conditions. Connections with the theory of distri-
butions are shown. In particular, characterizations for the convolution of (tempered) distributions to
exist (and to be a tempered distribution) are given in terms of supports. The concept of a distributor
and operations on distributors are considered.

Introduction. In the fifties, Alfred Rényi gave (see paper [16] and book [177)
an axiomatic approach to probability theory which is a generalization of the
classical theory of Kolmogorov and creates some new mathematical objects:
unbounded probability distributions. An example of such an unbounded
distribution is the uniform distribution on the whole line, determined by the
density function, constant on (—o0, o0). Such a concept, interesting in itself,
appears to be useful in some situations in probability theory and not only,
particularly when the limit probability distributions are concerned (for
examples of applications see [16]). A mathematical justification of this concept
is possible on the base of the notion of conditional probability, being a starting
point in Rényi’s approach.

The theory originated by A. Rényi is still in an initial phase of its
development. It seems there are at least two reasons of this situation. First, the
development of Rényi’s theory met with obstacles connected with the necessity
of solving some problems in the theory of distributions. Secondly, probability
theory based on Kolmogorov's axioms has stood for decades an entirely
satisfactory fundament for descriptions of random phenomena.

There are, however, arguments for further investigations in Rényi’s
theory. Apart from purely cognitive reasons, we can indicate just connections
with the theory of distributions, which are very interesting and stimulating
for both theories.

The common point of the theories is the Fourier transform. In the
classical probability theory, Fourier transforms (characteristic functions) are
defined for all probability distributions and are continuous functions. For
Rényi’s probability distributions which are, in general, unbounded, Fourier
transforms do not exist in the classical sense, but they do, if Rényi distribu-
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tions are of polynomial growth, in the sense of tempered distributions of
L. Schwartz (see [18]).

As is well known, the sum of random variables in Kolmogorov prob-
ability spaces corresponds to the convolution of their probability distributions
and with the product of their characteristic functions.

The same can be expected in Rényi probability spaces. Howcvu neither
the product of Schwartz (tempered) distributions nor the convolution of
unbounded Rényi distributions exist, in general. The question of feasibility of
the operations of convolution and product for tempered distributions as well
as connections between the operations with respect to the Fourier transform
are interesting in themselves and were studied in several papers (see, e.g. [4].
[203, [5], [6], [11] and Section 5).

But in the particularly interesting case of the uniform probability distribu-
tions on (— oo, o) neither the convolution 1#1 nor the product &:6 of
the respective Schwartz distributions ecxist, provided the operations are
defined in a natural way (some authors define the product of distributions in
such a way that §-8 =0, but those definitions are somewhat artificial).

A natural solution of this problem appears owing to the fact that Rényi
probability distributions and their Fourier transforms are not singular dis-
tributions, but equivalent classes with respect to the relation: /'~ g if f= ag
for some « > 0; we call them distributors. The convolution and the product
of distributors are defined by using a modification of the Mikusinski method
of irregular operations and the quotient convergence of distributors. Both
operations exist in this sense for all tempered distributors, though the result
can be the zero distributor. For many pairs of distributors, however, the
operations lead to non-trivial results.

In particular, we get

(1111 =[1] [6]-[6] = [4],

where [1] and [8] are distributors represented by the distributions 1 and
respectively (see Section 6). These results have the following probabilistic
interpretation: the sum of independent random variables with the uniform
distribution on (—oc0, c0) has also the uniform distribution on (— g, o).

The results of this paper stand only for a fragment of Renyi’s theory being a
natural continuation of his ideas and a completion of some of his results (see
[16] and [17]); the paper develops also ideas presented in [8].

In Section 1, concepts of Rényi probability distributions, distribution
functions and characteristic distributors are introduced and discussed.

In Section 2, the convergence and the tempered convergence of Rényi
probability distributions (Rényi distribution functions) and the convergence
of characteristic distributors are introduced and described in some equivalent
conditions.

In Section 3, the convolution of Rényi probablhty dlStl‘lbUthﬂS (Reny1

and
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distribution functions) is defined; it is shown that, if ¢ and 7 are independent
random variables, then [Fy,,] = [F 1 *[F,], where [F¢], [F,]; [F¢,] are the
Rényi distribution functions of &, n, &+, respectively.

In Sections 4 and 5, the convolution of non-negative measures and
distributions are discussed. In particular, characterizations for the con-
volution of distributions (and tempered distributions) to exist (and to be
a tempered distribution again) are given in terms of supports.

Section 6 is an outline of the theory of operations on distributors.

I would like to express my sincere thanks to Professor K. Urbanik for
suggestions concerning Rényi’s theory as well as to Professor J, Mikusifski
for acquainting me with irregular operations on distributions which appeared
to be very useful in Rényi’s theory.

1. Rényi probability distributions. By a Rényi space, we mean a system
R =[Q, o, %, P], where Q is an arbitrary set, &/ is-a c-algebra of subsets
of Q, # is a non-empty subfamily of &/ and P is a non-negative function
on o x % (conditional probability) satisfying the following axioms:

() P(B|B) =1 for every Be %,

(1) P(U1 AlB)= 3 P(4
i= i=1

() If Ae/, B, Bed, BB and P(B|B) > 0, then

P(ABB)
P(B|B)

These axioms were given by A. Rényi in [17], p. 70 (see also [16]).
Various properties of conditional probability following from (I)-III) can be
found in [16] or in [12]. In particular, it follows from (I)~(III) that the
system [Q, o/, Pg], where Pg(A) = P(A|B) for each Be # and A4, is the
usual probability space in the sense of Kolmogorov.

Axioms (I)-(I11) imply, in particular, that ( ¢ £ and it can be said not much
more about the family #, in general. Therefore, it is sometimes convenient to
adopt some additional axioms, e.g:

(iv) P(AYBY): P(4%B') = P(A%B")-P(A'|B?
for A, A*e., B!, B*¢ 4 such that A', A* = B! n B?;

(IV') If BY, B*e % and P(B'|B%)+(P(B*B")> 0, then B*nB*c 4.

Note that (I'V’) implies (IV) (see [12]).

As it was shown in [12], these axioms guarantee possibility of
extending the family # by joining to it some sets from & and defining in
a proper way conditional probability P for this extended family. For ex-

ample, under (I)~(IV), the family % can be extended by adding arbitrary sets
Be.o such that B < B’ and P(B|B) > 0 for some B'e 2. In particular, we

|B) for any disjoint sets 4;e &/ and Be%;

P(A|B) =

A — Qiudin MMoihamaiiee 1 YYIY D


GUEST


154 A. Kaminski

can join to 4 all such sets; then the extended Rényi space fulfils axiom (IV),
For examples of Rényi spaces see [16] and [17] (p.248). In [2],
characterizations of Rényi spaces are given to be represented by a family of
non-negative measures (bounded or unbounded) with various conditions of
compatibility.
Let # =[Q, &, #, P] be a fixed Rényi space. By random variables in %
.we mean, similarly to the usual definition in the Kolmogorov approach,

functions defined on £, measurable with respect to 7. In the sequel, we shall *

consider random variables with values in R? or in R.
In further considerations the symbol K will be reserved for a fixed set in

R? of the form:
K=K'x%.. %K’

where, for each i=1, 2, ..., g,

(1) K'=(a,b) with -oo<ag<h<ow
or ‘
()] K =[a,b) with —oc0o<a<h<ow

In particular, one can put K = R4,

By intervals in K, we shall mean sets of the form I =I! x
where I' = [o;, ) with —o0 <oy < i< o0 for i=1,...,4.

For A = RY we shall write A € K if the closure of A is compact and
contained in K.

For a given random variable ¢ with values in the set K, denote by .,
the set of all intervals I € K such that ¢™!(I)e 4.

We assume that

(do)

x I« K,

My Q.

By B(K), denote the g-algebra of all Borel subsets of K and by B,y (K)
the family of all Ee B(K) such that E ¢ K.
We shall use the following notation:

P& (EE(Ey) =
for any Borel subsets E,, E, of R4
By a Rényi probability distribution of ¢ in K < R% we mean the class of

all non-trivial (ie, not identically equal to 0), non-negative measures s,
defined on B(K), finite on By(K) and satisfying the identity

He(Iy)
#ed)
for all intervals I, I, such that I, c I,, I,e M, and ue(Iz) > 0.

P(¢eE,|¢eE),)

(3) P(¢ely)tel,) =
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In view of axiom (III), every measure yu satisfying (3) in K fulfils also the
equality
' s (Ey)
He(E2)
for arbltrary Borel subsets E;, E, of K such that u(E,)>0 and
E, < E, = J for some interval Je .#,.
Note that if a measure p, satisfies (3), then the measure ap, for every

a > 0 also satisfies (3). The converse is true if the random variable & fulfils
the following condition, stronger than (do) (cf. [17], p. 245):

(d1)

P(feEllé‘eEz)

there exists a non-decreasing sequence of intervals K, e #, such that

o
K= K,
n=s
Namely, we have

TueoreM 1.1. Suppose that a random variable & with values in K fulfils
condition (dy). If py and v, are two representatwes of the Rényi probability
distribution in K, then

4 V¢(E) = oyt (E)
for some constant o > 0.

Proof. Let I, I, be two intervals such that I, I, € K. Since u=
and v = v, are pon-trivial, measures, we have u(l;) >0, v(I;) > 0 for some
intervals J,, J, € K. By (d;) we have

Livhulyul, =K,
for some noeN and thus p(K,) >0 and v(K

L) _ v{l)

(EeB(K))

,,0) > 0. In view of (3), we get

® aK) v, b
If u(I) >0 (i=1, 2), then (5) yields
v(I) V(Ka) v(I3)
w(l) ~ wKay) ~ wl)’

which implies (4) for all intervals E € K such that p(E) > 0. But if y(E) =
for any interval E € K, then we can apply the above arguments for I; = E
(i=1 or 2) and (5) gives v(E)=0. This means, equality (4) holds for all
intervals E € K and, consequently, for all Ee B(K).

In the sequel, the Rényi probability distribution of a random variable &
in K will be denoted by [y] or [u], where u, = u is an arbitrary of
representants of the class. Under condition (d,), we have [1] = {ou: a > 0}, in
view of Theorem 1.1.
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For
a=(a1, .

a given point function F: K—R and arbitrary points
., a) and b=(by, ..., b)) in K, we denote

(6) A,,hF=Z(-—«1)"“81"'””””~F(a+c(b——a)),
where the sum extends over all systems ¢ = (g, ..
fori=1,...,q and

e(b—a) = (e;(by —ay), ..

.» &) such that ¢; =0 or 1

o 84 (by—ay)).
Of course,
(7) AabF = A:llbl Aazbz e ;qqu7 ,
where the operator 4;, (i=1, ..., ¢) to functions F of i variables assigns
functions of i—1 variables in the following way:

8 A;,biF(xls s Xgm1) = F (g ooy X g, D)= F (Xg, 00, Xpee g, @),

fa<b (e, q<b fori=1,...,q) and I =[a, b), then we apply the
notation:

©) 4;F =4,F.

For a fixed x,=(x?, ..., x)eK and an arbitrary x = (x, ..., x)eK,
let

(10) I.x=[:a1’ﬂ1)x (A X[(Zq, ﬁq):
where
(11) o =min(x{, x;), B =max(x?, x).

By (7) and (8),.we have

(12) AI,,F = ("'l)kﬂxox}rv

where k is the number of those indices i for which x, < x?. -

Given a point function F: K — R, we denote by {F} the class of all
functions G of the form:

(13) 6()=F(x)+ 3 F),
I=1

where x =(x;, ..., x)eK,

(14 Yi=(%, .

and F; are arbitrary functions of g~1 variables.
It is clear that 4;G = 4, F for each I € K. That means, to a given class

{F} of point functions in K the interval function Y(I)=4d,F in K
corresponds.

X1y Xpags ovey Xg)
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Conversely, given an interval function ¥(I) in K and a fixed point
x,€ K, let
(15) Foot) =(—=1F¥(),

where I, and k have the same meaning as in (12). It is easy to see that if xq
is another fixed point in K, then Fx e {Fx,}- Note that, for a given function

F: K~R, if Y(I)=4,;F for I €K, then
4,G=4,F (I€K)
for every Ge{F,}, where F, is given by formula (15).
Lemma 1.1. The relation
Y({I)=A4,F

establishes a one-to-one correspondence between classes {F} of point functions
in K and interval functions ¥ in K.
Proof. According to the remarks above, it suffices to show that if

(16) 4 F=Y()=4,G

for all I € K, then (13) holds for some ‘functions F,(i=1,...,9). Fix xoeK.
By (16) and (12), we have

(17 Agu(G=F) =0

for each xeK. Hence, by using definition (6), we deduce (13) with the
following functions F;:

Fi) = X (=17 7T T (g 4 £ (x — Xo))s

where y; is defined in (14), H = G—F and the sum is taken over all systems
e=(8, ..., 8) such that ¢y =&, = ... =¢g-;=1 & =0 and g=0 or 1 for
j: i <j<gq. The assertion is proved.

We say that a point function F in K is (a) nondecreasing if 4;F 2 0 for
each interval I € K, (b) lefi-continuous if

F(xy, .., xp) = F(Xq, 0y Xp),
provided xi 7 xy, ..., X§ 7 X,.

Let ¥(I) be an interval function in K and consider the following
conditions: ‘

() Y(I) =0 for each I €K;
n q

{ X U I =1I¢K for disjoint intervals I;, then ¥(I)= Y w);
i=1 i=1

(iiy ¥([a,, b)) — ¥([a, b)) for any a,, b,, a, beK such that a, / a,
b, 7 b.


GUEST


158 A. Kaminski

One can check that the following relations hold:

Lemma 1.2, If in a class {F} of point functions in K there exists a lefi-
continuous and nondecreasing representative, then the corresponding interval
function ¥ in K fulfils (i)}(iii).

Conversely, if an interval function in K fulfils (i)(iii), then all representatives
of the corresponding class {F} are nondecreasing and there exists a representa-
tive of {F} (given by formula (15)) which is left-continuous.

As in [13] (Correspondence Theorem, p. 96), one can prove that

LemMma 1.3, The relation

p=¥1) (eK)
establishes a one-to-one correspondence between non-negative measures j on
B(K) (finite-on Bo(K)) and interval functions in K satisfying conditions (i)-(iii).
By the Rényi distribution function of a random variable in K, we mean

the class of all functions F,: K — R for which there exist representatives u; of
the Rényi probability distribution of & such that

(18) 41 Fg = ine(D)

for each interval I € K or, equivalently, the class of all nondecreasing
functions F, (which are non-trivial, ie., 4, F, > 0 for some I € K) such that
(19) P(lel|led)=A,FyA, F,

for any intervals I = J € K, Je .#,, provided 4,F, > 0.

In the sequel, the Rényi distribution function of a random variable ¢ in
K will be denoted by [F,] or [F], where F, = F is an arbitrary representative
of the class.

THEOREM 1.2. Let {F} be the Rényi distribution function in K of some
random variable ¢ and let W(I) = A F for I € K. Then ¥ fulfils conditions
(D))

Proof. Properties (i)-(ii) follow immediately from the equality ¥ (1)
= u(I), where u is the corresponding representative of the Rényi probability
distribution of ¢&.

To prove (iii) notice that

([an: bn)) = I“(An\Bn) = /.t(A,,)"'/A(B,,),
where A, = [a,, b) and B, = [a,, b)\[a,, b,). Since A4, s [a, b) and B, \ @,

we have
w(A) — p(fa, b)), (B, —0,
ie.,

¥ ([an, by) — ¥([a, b)),

as desired.
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As a consequence of Theorems 1.1 and 1.2 and the preceding lemmas,
we obtain
TueoreM 1.3. The relation

w)=4,F (I €K)

establishes a one-to-one correspondence between the Rényi probability distribu-
tion and the Rényi distribution function of a given random variable &.

.Moreover, under condition (d,), the Rényi distribution function [F] of £ is
the class of all functions G of the form
(20 G(x) = oF (x +zmn
where o > 0, F; are arbitrary functions of q—1 variables and y, are defined in
(14). In parucular if K <R, then [F] consists of all the functions

G(x)=aF(x)+f (xeK ='R),

where o > 0 and BeR.

TueoREM 1.4. Every non-negative measure on B(K) (ﬁmte on By(K)) is
a Rényi probability distribution of some random variable (in some Rényi space).

Every class of nondecreasing functions defined by formula (20), containing
a left-continuous representative, is a Rényi distribution function of some random
variable (in some Rényi space).

Proof. Let u be a non-negative measure on B(K), finite on By (K). Put
Q =K, o =BK), #={BeBy(K): u(B)> 0} and

P(A|B) = u(4 0 B)/u(B)

for AesZ/ and Bed®. Let £(w)=w for weQ. Evidently, ¢ is a random
variable in the Rényi space & =[Q, &, #, P] and yu; =

The second part of the theorem follows by the first one and Theorem
1.3.

If a Rényi distribution function [F] of a random variable ¢ is absolutely
continuous (i.e., its all representatives are absolutely continuous) in K < R,
then the class of the functions

il 6(
%y .. . 0%, o o

21 g(x) = G'(x) = )
for x = (x4, ...
of £ in K.

Remark 1.1. If a random variable ¢ fulfils condition (d,) and its Rényi
distribution function [F] is absolutely continuous, then its Rényi density
function [ is the class of the functions of the form g = af, where f = F' and
o>0.

, x,)€ K, where Ge[[F], will be called the Rényi density Sfunction
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ExampLE 1.1. Let @ =R, let o/ be the g-algebra of all Borel subsets of
R, let # be the family of all Be.o/ such that 0 <|B| < oo, where || is the
Lebesgue measure and let P(A|B) = |4 N B|/|B| for Ae o/, Be #. The system
#=[Q, s/, #, P] is a Rényi space.

Let & () = o, &;(w) =ceR for weQ and

tgw for wel) I,
_ leZ

ba(@) = {0 otherwise,
where I; = (—n/2+ni, n/2+mi) for ieZ. The Rényi probability distribution,
distribution function and density function of &, are given in # by the
following representatives: py (E) = |E|, Fy(x) =X, f(x) = 1, respectively.

For ¢, and &5, the Rényi probability distributions do not exist, because

(do) does not hold. But the Rényi distributions of random variables:

Eulw)=c¢ (we(~i,i) for ieN,
where ce(—i, i), and
Eyw)=tgw (wel) for ieZ,

in the respective Rényi spaces (restrictions of %) exist and are given by
pa(E) = 0.(E) (B =(—i, 1),

1
Uai(E) = xj; 'i"_"_"t'i‘dt (B <1y,

where §, denotes the probability measure concentrated at c.
Now, we formulate sufficient conditions for a random variable ¢ in
order that the Rényi distribution function of & would exist in K.

TreOREM 1.5. (cf. [17], p. 251). Let & be a random variable with values in
K which satisfies condition (d,) and
(d2) P(eK,|{eK,+1)>0 (neN).

Then the Rényi distribution function of ¢ exists in K.
Proof. First note that condition (d;) implies that

P(&GK;leKJ)>0

for all i, jeN, i <j. This is a consequence of the relation
J=1

H P(Bk|Bk+1)=P(Bt|BJ)

k=i

for B, = B;,; ... B;; B,ed, which easily follows from axioms (I}-(Ill)
see [12]).

Consider the case where Ke M (ie, one can put K, = K in (d,)). Let
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xo = (x3, ..\, xJ) be a fixed and x = (x,, ..., x,) an arbitrary points in K.

Let I, be the interval defined by (10}-(11) and let k be as in (12). The
function

F(x)=(~1)P(el.|fcK) (xeK)

fulfils (19), in view of additivity of the measure P(:|£eK) and axiom (II).
If K¢, then K, # K for neN in condition (d,). Let x, be a fixed

point in K, and x be an arbitrary point in K, so xeK, for some neN, by

(dy). We define

Pel;[{eK,)

P(¢eK,|teK,).

22) F(x)=(-1)

where k and I, have the same meaning as previously. In view of (III),
definition (22) does not depend on the choice K, such that xeK,. In
a similar way to th& preceding case, we can show that F fulfils (19) and this
completes the proof. ' .

Remark 1.2. Suppose that # =[Q, o/, %, P] is a given Rényi space
fulfilling condition (IV) and let {£} be an arbifrary family of random
variables with values in K < RY, satisfying conditions (d4}-(d;). By Theorem
3.2 in [12], we can extend the family 4 to a family # such that &' (J)e
for each a and sufficiently large intervals J = K (more exactly: for each o
there is an interval I, < K such that ;! (J)e4 for each interval J such that
I, cJ cK). If % satisfies axiom (IV'), then the family & itself has this
property.

Let ¢ be a random variable in a Rényi space %, fulfilling (IV), with
values in K = R? such that conditions (d;)}-(d,) hold. Let [F] be the Rényi
distribution function of &. In view of Theorem 5.1 and Remark 2.1 in [12],
the set £~!(K) belongs or can be joined to the family % iff

o
Il P(éeK €K yy) = lim 4y, F/dg, F >0,
i=1 a1

ie, iff [F] is a bounded distribution function on K.

In the sequel, we shall consider random variables satisfying conditions
(dy)d,) for K = RY.

One of fundamental tools in the classical probability theory is a concept
of characteristic function, ie., the Fourier transform of a given probability
distribution. In the case of Rényi probability distributions which are not
bounded, in general, the Fourier transform can be understood in the sense of
the theory of distributions of L. Schwartz; the Fourier transform & (f) is
defined for fe % by the formula:

F), )= F@) @),
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where
F)(t)= | "o (x)dxe?,
R4
so F(f)es.
We say that a Rényi probability distribution [x] in R? is tempered, if
f (1+]t3) ™ u(de) < oo
R9
for some meN v {0}.

We shall always identify [4] with the class [[i] = {afi: « > 0} of tempered
distributions, where ji is defined by the formula

G wy= [ wypd) (wes).
R4
In the sequel, the classes [f]= {of: a >0}, where fe o",. will be called
distributors.

By the characteristic distributor of a tempered Rényi probability distribu-
tion [u] (or of the respective Rényi distribution function), we mean the class
[#], where @ = F(u).

Let us recall that a continuous complex-valued function ¢ in RY is
said to be positive-definite if

"

Y olq—x)zz 20
i,j=1

for arbitrary systems x,, ..., x, of points in R? and z,, ..., z, of complex
numbers.

Let ~h* (vc) = h(—x) for any complex-valued distribution h. A complex-
valued distributor [@] in R will be called positive-definite if

(P, wxaw*> 20

for each .compllc.x-valued function we % or, equivalently, if the function
P xhxh* is positive-definite for all he & or, equivalently, for all he & (e.g.,
see [21], 123-124). “

_Fet us _form.ula.te the known Bochner-Schwartz characterization of
positive-definite distributions in terms of distributors:

TueorEM 1.6 (e.g:, see [21], p. 127). Let [#] be a distributor in R%. The
Jollowing conditions are equivalent:

(i) [P] is positive-definite;

(u) (@] is a characteristic distributor of some Rényi probability distribution;
(i) @ =a(l—d)"¢p for some a >0 and meNu {0}, where 4 is the
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Laplace operator and ¢ is a characteristic function of some Kolmogorov
probability distribution.

2. Convergences. In this section, we consider functions defined on R and
measures on B(R). For a given function F: R — R and an arbitrary interval
I =[a, b) © R, we shall use the notation: F(I) = F (b)~ F (a) instead of 4, F.
Let us recall that a sequence of Kolmogorov distribution functions F,
converges to a Kolmogorov distribution function F (F, F) if one of the
following equivalent conditions is satisfied:

(a) F,(x)— F(x) for each point xeR at which F(x) is continuous;
(b) F,(x)— F(x) on some dense set in R;

ot o

(@ | y(x)dF,(x)—" | 9(x)dF(x) for each continuous and bounded

=

function y;

o o
(@ [ y(x)dF,(x)—> | y(x)dF(x) for each ye 2.
-0 bl ¢
- Condition (d), expressing the distributional convergence of F, to F, is
usually omitted in Characterizations, given in literature, of the convergence of
Kolmogorov distribution functions. The equivalence of this condition and the
others is a simple consequence of the obvious implication (c) =-(d) and the
compactness of an arbitrary sequence of Kolmogorov distribution functions
(see also [15]). '
For an arbitrary Rényi distribution function [F], by C(F) we mean the set
of all points of R at which F is continuous and by C (F) the set of all
intervals I = [a, b) = R such that F is continuous at a and b and we define

0 if x<a,
F(x)—F(a)
=Y T T < S 3
Fi(x) F)—F@ if a<x<b
1 if x>=2b

for I =[a, b)eC(F). Note that the definitions of C(F), C(F), F; do not
depend on the choice of a representative of [F].
TueoreM 2.1, Let [F,], [F] be Rényi distribution functions. The following
conditions are equivalent:
() F,; 5 F, for each 1eC(F) (for each interval I with ends belonging to
some dense set) such that F,(I)> 0 and F(I)> 0,
iy P20 FUL)
P n (I 2) F (I 2)
ends belonging to some dense set) such that F,(I3) >0 and F(I;)>0;
(ili) there exist constants a,> 0, p,eR such that

1 o, Fy (X)+ By = F (x)

for each I,, I,eC(F) (for each intervals I,, I, with
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for each xeC(F) (for each x belonging to some dense set);
(iv) there exist positive constants o, such that

oA

o
) o [ y(X)dF,(x)~ [ y(x)dF(x)
for each continuous function y of bounded support;

(v) there exist positive constants o, such that (2) holds for all ye .

Remark 2.1. In conditions (i) and (ii), we assume that there exists an
interval Iy = R such that F,(I,) >0 for (almost) all neN. Since Rényi
distribution functions are non-trivial, this assumption implies that there is an
interval I, = R for which F,(I;) >0, F(I;) >0 (neN).

Proof. First we shall prove the equivalence of conditions (i}-(iii)
formulated for points of continuity of [F]. Suppose that (i) holds and let
I, I,eC(F), F,(I) >0, F(I,)>0. Let J be an interval from C(F) such
that J = I; UI,. Owing to (i), we have

F,(I)  FI)

Fo Fo =b2

which implies (ii).
Suppose that (ii) holds. Fix I, e C (F) such that F,(Io) > 0, F(I) > 0 and
a,eC(F). Let

_Fiy 3
&y = Fn(IO) and Bn = F(ao)““n Fn(“o)-
We have
F. (x)—
Fu(o)+ By = Pt Fiao),
SO
Fy00+B, = F(3),

provided xeC(F), i.e, (iii) holds.
Now, assume (iii). Note that F(Ig) > 0 for sufficiently large interval

IyeC(F) and, since «, F,(Iy) — F(lo), we have also F,(Io) > 0 for almost all

neN. Let now I=[a, b)el(F), F,(I)>0, F(I)>0 and l&t xeC(F)nI

Then

F,()~F (@) _F(y-F()
F,(I) F(I)

where F,(x) = &, F,(x)+fB,. Moreover, we have

Foix)=0=F/(x) for x<ua

F,(x) = = F,(x),
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and _
Fo (x)=1=F/(x) for x>b

and thus (i) holds.
The equivalence of conditions (i), (i), (iii) formulated in the stronger
version is proved. The proof in case of the other formulation is analogous.
Now, suppose that conditions (i}-(iii) hold in the weaker formulation
and let y be a continuous function with the support contained in an interval
J = [c, d), where ¢, d belong to the dense set involved in conditions (i), (ii), (iii),
such that F(J) > 0. By (iii), we have

3) ay Fy(JY = F(J).
On the other hand,

I )’(x)dF,.,J(x)—*_f 7(x) dF ;(x),

in view of (i) and the characterization of the convergence of Kolmogorov's
distribution functions. That means,

1 1
o)) 0y )

This and (3) yield (2), i.e., conditions (i)—(iii) in the weaker version imply (iv).
The implication (iv) =>(v) is obvious.
Suppose (v) and define B, = F(ag)—a, F,(ao), where a, is a fixed point
belonging to C(F). Let xeC(F)n(ay, o) and let & be an arbitrary positive
pumber. There is a & > 0 such that a,+26 < x and

Y(x)dF,(x) = P(x)dF (x).

4) |[F(t)—F(ag) <& for |t—ay <9,
) |[F()—F(x) <e for |t—x| <&
Let

1 if  ag+8/2<t <x—-6/2,
ot 0 if t<ap+62 or rzx—94/2

and
it ay—0/2 <t < x+0/2,
62(0 0 if tyg<ap—8/2 or t=x+0/2.

We can find a non-negative smooth function @ such that
w(t)=0 for |t|>6/2
and
fo@dt=1.
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The functions y; =g;*w (i =1, 2) are smooth and

0<yp(@M<1 (teR).
Moreover,
L il g+ St <x—4,
© %(1)*{0 if t<a, or t2x
and
i ap<sr<x,
@) 'J’z(f)—‘{o i t<ag—8 or zx+d.
In view of (4)~(7), we have
@® {91 () dF (t) = F (x—8)—F (ag+6) = F(x)—F (a0)— 2e,
© [72(0)4F (1) < F (x+8)—F (ag— ) < F(x)— F (ag) +2,
(10) [ 71 () dF,(t) < F,(x) = F,(a),
1y [2(0)dF, (t) > F,(x)~F.,(a).

Applying (v), we deduce from (8)~(11) the inequalities:
F(x)—F (ao) =3¢ < oy (F, (x) — F, (ao) < F (x)— F (xo) +3¢

for sufficiently large neN. Changing roles of x and a,, we get similar
inequalities for x < ay, i.e, (1) holds for all xe C(F), x # a,. Since

“nFn(a0)+ﬁn = F(“o),

we have (1) for all xeC(F) and thus (v) implies conditions (i)~(iii) in the
stronger form. In this way, the proof of the theorem is completed.

We say that a sequence of Rényi distribution functions [F,] converges to a
Rényi distribution function [F] and write [F,] — [F] if one of conditions (iy(v)
in Theorem 2.1 holds.

~ Since Rényi distribution functions uniquely determine Rényi probability
distributions, the above definition can be applied for Rényi probability

distributions. Namely, let [,] and [1] be Rényi probability distributions
defined by the formulae

D) =F,(), p=F() (I<R).
Thcn. we say that [u,] comverges to [u] and write [u,] — [u] if one of
conditions (1v)—(y) in Theorem 2.1 is satisfied.
Let us consider now the case where the Rényi distribution functions are

absol}ltely continuous. In this case, we can say about the convergence of
Rényi density functions.
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A sequence of Rényi density functions [£,] is said to converge to a density
function [f7] if one of the following conditions is fulfilled;
(iv) there exist positive constants o, such that

12 w | 10 A@d | 1097

for each continuous function y of bounded support;
(v) there exist positive constants o, such that (12) holds for each ye .
In view of Theorem 2.1, the above conditions are equivalent.

Remark 2.2. Note that the above definitions of the convergences of
Rényi distributions, probability distributions and density functions coincide
with the quotient convergence of the respective classes.

For Rényi distributions, e.g, we have [F,] —[F] iff F,— F for some
F.e[F,] and Fe[F], ie.

o F () + B, = aF (x)+ B

on a dense set in R for some constants o, « > 0 and f,,, f € R. Moreover such a
definition is consistent. In fact, if

(13) o, Fo(x)+B,-=F(x) as n—-ow
and
(14) @ F,(X)+B, > G(x) as n-ow

on a dense set in R for some non-decreasing, left-continuous functions F, G
and constants a,, &, >0 and f,, B.€R, then for every (sufficiently large)
interval I = [a, b) with a, b belonging to some dense set in R, we get

FO)—Flxo)
G (%)= G(xo)
for every xe R and a fixed x,€R. But this means that F and G belong to the

same class. It should be noted that if F = G in (13)-(14), then «,/d@, —1 as
n=co. |

By S we denote the set of all rapidly decreasing continuous functions on
R, i.e. such continuous functions G on R that the fanctions pG are bounded
on R for every polynomial p.

Turorem 2.2, Let [F,], [F] be tempered Rényi distribution functions in R.
The following conditions are equivalent:

(i) There exist me N w {0} and constants «, > O, B,eR, a > 0, such that

(1) holds for each xeC(F) (for each x from some dense set) and

s
a, | (L+tB)""dF, (1) <a;

- 00

ol
L =neR

= lim b
n-=+o0 an

(15)
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(ii) There exist ke N U {0} and positive constants Ay A such thar
(16) Fl(x)=2, | (1+tH)7%dF,(), F°x)=4 | (1+t2)"*dF (t)

are Kolmogorov distribution functions and
(17) FOBF° as n-oo;

(ili) There exist positive constants a, such that (2} holds for each yeS;
(iv) There exist positive constants a, such that (2) holds for each ye .
Proof. Suppose that (i) holds. By (1) and (15), we can easily infer that

(18) T (L+t3) ™ LdF(ty < b < o0,

- 00
so for k =m+2 and arbitrary ¢ >0 we have
(19) w, | (L+H)7*dF,(1) <e, f (4™ dF() <¢
[tl>xq HEEN

for sufficiently large xo>0. We can assume that x,eC(F) and —xq€C(F).
Moreover, since F is non-constant, we have

(20) T 0+ dF () > 7 >0

and, owing to (1), )

@1) 4y [ (L4 *dF, () >0 >0  (neN).

We adopt b

22 A= (j; (1+)7kaF, )", A=( ?w (1+3)~*dF (1))~ *.

By (19), (20) and (21), the functions F?, F° defined in (16) are Kolmogorov
distribution functions. In view of (19) and Theorem 2.1, we obtain

lotn ? (L+e2)7*dF, (- of (1413~ dF (1)
xQ x0 '
Sl | (A+A)7dF,()— [ (1+13)7*dF 1)+
) -X()
+°th.f A+ dF,()+ [ (A+t)"*dF (1) <3¢
tl>xg EE

for sufficiently large n, ie.,

(23) it =47 as n-oo.

e ©
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Let M be a positive constant such that
(24) o Art>M™  (neN).

By Theorem 2.1, (iv), we have for xe C(F) and sufficiently large n

[a,, T (14 t3)"*dF, (1)~ T (1+t7‘)"‘dF(t)| <,
- X0 - X0

80

[FO(x) = FO () < Awtty oty | (L412)7*dF, (1)~ T (L+3)7*dF (0] +
-

x
Ao P (1=247 )| [ (141374 dF (1) < (3+b) Me
for an arbitrary xeC(F) and for sufficiently large n, by virtue of (18), (19),

(23), (24). Consequently, (17) holds and the implication (i) = (ii) is proved.
Now, suppose (ii). We have

b | 0+ RAE () = | pdFN) — | y()dF ()

o
=1 [ p(x)(1+x*"*dF(x)
-0
for every continuous bounded function y on R. In particular, the above
relation holds if p(x) = (1 +x%*G(x), where GeS, and thus (iii) holds with
= Ay AL

The implication (iii) = (iv) is trivial.

Since ¥ = &, we can apply Theorem 2.1 to derive that (iv) implies (1)
for xe C(F) and constants «, in (1) .can be taken the same as in (iv) (see the
proof of the implication (v) =>(iii) in Theorem 2.1). It remains to prove that
(15) holds for some meN u {0} and a >0,

Condition (iv) means that the sequence of the non-negative tempered
measures o, u, determined by the equality

[»‘n(n =F,0 « R)
is weakly convergent in &', But this means that the sequence o, is

convergent in the norm |j||..,, of some space ¥y, meN U (0} (e.g., see [21],
p. 91). Hence

(25) letw Cbts YO < N1 poll < [Pl < @ < 00,
for each ne N, where |||, is the norm in &, and |||, the norm in &,,.


GUEST


170 A. Kaminski
Let n,(f) = n(t/k) for teR, keN, where ne, n(t)>0 and n(0)=1. By
Fatou’s lcmma, we get from (23):

j A+tH""dF, (t)-—llmmfoz,, f BOA+t)""p,dt < a

w0 ko -

for each neN, as desired. The proof is finished.

Remark 23. It can be derived from the proof of Theorem 2.2 that the
following relation holds between constants A,, 4 in condition (ii) and con-
stants o, in any of conditions (l), (iii), (iv): oy Ayt —>A" 1

The convergence described in Theorem 22 will be called rempered
convergence of Rényi distribution functions and denoted by [F,]-[F].
Similarly, we define the tempered convergence of Rényi distributions and density
Junctions.

Remark 2.2 can be reformulated for the tempered convergence.

Now, we pass on to the convergence of characteristic distributors.

We say that a sequence [#,] of characteristic (positive-definite) dis-
tributors converges to a characteristic (positive-definite) distributor [@] and
write [®,] 4 [®], if o, @, —» P in ¥ for some positive constants o,.

The definition does not depend on the choice of representatives of the
classes [®,] and [®].

The following theorem is a consequence of the fact that the Fourier
transform preserves the convergence in 9:

TreoreM 2.3. Let [F,) and [F] be tempered Rényi distribution functions.
Then [F,] -5 [F]iff [®,) & [®], where [$,] = [F (F,)] and [®] = [F (F)] are
characteristic distributors of [F,] and [F], respectively.

As an immediate corollary from Theorems 2.2 and 2.3, Remark 2.2 and
the known theorem on the convergence of usual characteristic functions, we
obtam

THEOREM 2.4. Let [®,] and [$] be characrerzsnc distributors. The following
conditions are equivalent:

(i) [@,] - [2];

(i) There exist me N U {0} and positive constants X, a such that

@, =(1-DY)"p,, & =(1-D*"0p,
A0y(0) <a for neN
and
(26) An@u(ty = () as n-—o0,

d
where Dh(x) =—-—h(x) Jor he @, ¢, and ¢ are continuous positive-definite
Junctions and the convergence in (26) is pomthse or, equivalently, almost
uniform in R.
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3. Independence and convolution. Let # = [Q, o7, #, P] be a fixed Rényi
space. We say that two random variables &, and &, with values in R? are
independent if
1) Jye My, Jre My, implies J, xJ, € M,
where ¢ = (¢;, §,), and
2 P(lelyxI ety xJy) =P el | el) Pl el Eedy)

for any intervals Iy < J,, I < J, such that Jyedy and Jye My,
By axiom (III), it follows that if random variables &,, &, are independ-
ent, then

P(eE(xEy|{eEy xEY) = P(§ eE|{ieE)) P(leE,| L eEY)

for any Borel sets E, < E{, E, < E; such that E} <J,, E;, <J, and
P(E{|J,) >0, P(E3|J,) > 0 for some intervals J, e #, and Jye My,

TreoREM 3.1, Suppose that £,, £, are random variables in R with values
in RY, satisfying conditions (d,) and (d;) for K =RL If & and &, are
independent, then
(3) C )1 G = [H(x, »)]
ie.
) Fx) Gy =Hx,y (x,yeR)

for some representatives F, G, H of the Rényi distribution functions [F], [G], [H]
of &, & and & = (&, &), respectively.

Conversely, if relation (3) holds and for each Jy & My, J, & My, we have
4, F>0and 4;,G > 0, then &, and &, are mdependem

Proof. First note that the random variable ¢ = (61, &,) satisfies con-
ditions (d,}(d,) for K = R%, so the Rényi distribution functions of ¢;, ¢,
and ¢ exist, by Theorem 1.4. Suppose that &; and ¢, are independent
random variables. Since [F, [G] and [H] are non-trivial, there exist intervals
Qi€ My, and Q& .#,, such that Q = Q; xQ, € .#, and

%) dg, F>0,49,G>0,4,H>0.

Fix intervals Q,, Q, < RY and Q < R, satisfying (5), and let P, and P,
be arbitrary intervals in R, Now, let J, and J, be intervals in R? such that
J, e ’”h* Jyedy, and PuQ, eJ,, P,uQ,cJ, We have PuQ <,
where P = Py x P, J =J xJ, and

4, F >0, 4,,6>0, 4,H > 0.
Applying (2) and formula (14) in Section 1 for Iy = Py, I; =P, and for
Iy =Qy, I = Q,, we obtain

Ap F-4p,G =0dpH,

(x, yeR9),
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where a = (dg, F)(4g,G) (4o H)™ !, Hence (4) follows with F(x) =4, F,

G(y) = 4y and H(x, y) = 0l ayxy H for any fixed a € R4 (see (6) in Section 1),
It is easy to see that if (4) holds, then

(6 AQ1F~AQZG=AQH

for arbitrary intervals Qy, Q, < R%, Q@ =QxQ; < R, Owing to formula
(19) in Section 1 and the additional assumption in the second part of the
theorem, we infer from (6) that the random variables ¢, and ¢, are
independent, which completes the proof.

As a corollary, we obtain:

TuEOREM 3.2. Suppose that & n are random variables in A with values in
RY, satisfying conditions (d,) and (d,) for K = R and let the Rényi distribution
functions be absolutely continuous with the Rényi density functions [f] and [g],

respectively. If & and n are independent, then the Rényi distribution function of

the random variable ¢ = (£, n) is absolutely continuous and

(7 [f (x)]-[g ()1 = [h(x, 1))
ie.
F(x)g(y) =ah(x, y)

for some a >0, where (h) is the Rényi density function of {.
Conversely, if (7) holds and

[ f(x)dx>0, | g(dy>0
J1

Iz

for each Jye. My and Jye M, then & and n are independent.

Remark 3.1 In [17] (p. 252), the independence of random variables-

is defined, in the case where their Rényi distribution functions exist, by
formula (4).

The definition (2) of independence and Theorem 3.1 can be easily
transferred for the case of an arbitrary finite number of random variables.

From now to the end of the section, we shall consider the one-
dimensional case. For a given non-negative measure p on B(R) (linite on
By R)), a non-negative, locally integrable function f: R~ R and a non-
decreasing, left-continuous function F: R - R, denote

Ha(E) = p(En(—a,a) (EeB(R)),
)0 for |x| > a,
Jab) = { fx) for |x<a
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and .
"F(~a) for x £ —a,
F,(x)= { F(x) for |x|<a,
F(a) for x>=a,

respectively, where a is an arbitrary positive number.

Note that the convolutions p,*p, f,(x)*g,(x) and (F,(x)+p)=*
#(Gy(x)+ ) exist in the usual sense for arbitrary @, b> 0 and f, f'eR and
répresent a non-negative measure on B(R) (finite on B, (R)), a non-negative,

" locally integrable function on R and a nondecreasing, left-continuous func-

tion on R, respectively.

Suppose now that # fulfils axiom (IV’).

Tueorem 3.3. Let & and n be independent random variables in # such that ¢
and n satisfy conditions (dy)}~(d,) for K = R. Let [u] and [v] be the Rényi
probability distributions of & and n, respectively. If there exists u non-trivial non-
negative measure A on B(R) ( finite on B, (R)) and numbers a,, b,, a, (a, —~ o, b,
- 00, &, > 0) such that
(8) lim oty (g, % vy, ) (1) = A (1)

Jor each interval I with ends belonging to some dense set in R, then [A] is the
Rényi probability distribution of &-+n.

Proof, Let { = (& n) and g = ¢+#n We have to prove that
A0
AW
for intervals 1, J such that I <= Je#, and A(J) > 0. In view of axiom (IV’),
we can assume that ends of the intervals I, J belong to a dense set, for which

(8) holds.
To prove (9) for such intervals it suffices to show that

© P(yel|yel) =

= tim A ¥n )
P(xel|yel) mh'linﬂ,.*vn(«’)’

where p, = p, and v, =v,, owing to (8). Let
E={(x,))eR? x+pel}, E={x,yeR* x+yel]

(10)

and
E, = |(x, )eR* xel, yel,},

where I, =(~a,, a,), J, = (—b,, b,). Since

U E,=R* and z7'()={"'(E)
nw |
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we have ]
lim P((eE'NE,|[eE)=1.

By axiom (IV’), we get
(Y E'NE)e 4
for sufficiently large n. Hence
(11) P(xe[ler)=1i'r‘nP(CeEr\E,,|:,"eE’mE,,),

by Theorem 2.1 from [12]. Because of the independence of ¢ and n and
Theorem 3.1 relation (11) implies (10) and the proof is completed.

In the above theorem, the convolution of two Rényi probability dis-
tributions is given by formula (8). Now, we shall formulate a little stronger
definition of the the convolution of Rényi probability distributions.
Simultaneously, we shall give definitions of the convolutions of Rényi density
functions and Rényi distribution functions.

Let

(a) [u], [v], [A] be Rényi probability distributions,

(b) [f1, [g], [h] be Rényi density functions,

(c) [F], [G], [H] be Rényi distribution functions.

Then we write

(a) [A] = [ul+Dv],

(b) [h1 =[f1*[gl,

(c) [H]=[F]+[G]
if for arbitrary sequences a, — oo and b, — c0:

(a) [ia, *vp,] = [1],

(b) Lfa, *gs,] ~ [h],

(c) there are sequences f, and f;, of real numbers such that
[(Fo,+B) * Gy, + B3 = [H].

The above definitions can be easily transferred to the ¢-dimensional
case. In view of Remark 2.1, the definitions are conmsistent. The following
theorem is obvious:

THEOREM 3.4. If [F] and [G] are Rényi distribution functions corresponding
to Rényi probability distributions [u) and [V], then [F]x[G] corresponds to
[u] #[v], provided one of the comvolution exists. If [F] and [G] are absolutely
continuous, then [F]*[G] is absolutely continuous and

[CF1+[G1] = [f1+Lq],

where [f] = [F'] and [g] = [G'] are the Rényi density functions corresponding
to [F] and [G].

Let us give some examples of convolutions.
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Exampre 3.1, Let f and g be two non-negative polynomials:
n m
S(x) = Zo ax, gx) =Y ax' (xeR).
k= =0

Of course, the assumption >0, g =0 implies that n=2r, m =2s and
¢s 2 0, dyy = 0. The classes [f] and [g] are Rényi density functions.
We shall prove that

(12) [/1xLg] =11

and the convolution is tempered. Let a, and b, be arbitrary positive numbers
such that a, - o0, b,-roo. For an arbitrary xeR, we have x+a,>0,
x+b,>0, x—a,<0 and x—b, <0 for sufficiently large n. Denote

%n(x) = max (.)C*d,,, "'hn)a Kn(x) = min (x+am b,,),
A=lieN: g 2bh}, B={ieN: g <b),

Z
a(x)=1{ieN: x+a;2b), b(x)={ieN: x+a <b}

and
AX)={ieN: a = x+b;], B(x)={ieN: a<x+b}].
Note that
AnB=a(x)nb(x)=A(X)"B(x)=0Q
and

AuB=a(x)ub(x)=A(x)UB(x)=N.

By the Leibniz formula, we have

2 2 Kn(_")
(13) S, (0= T T adi | (x—tfdtde
) k=0 I=0 " pl¥)
20 25 Kk 'Kn(")
=Y Y ¥ 0k Lix [ <l
k=0 =0 =0 e
2r 28 ok
=Y ¥ Ok, L, iyxtk,(x, k, 1, D),
ke Q) [0 {m0
where
Ok, 1, i) = (= 1) ‘</f>ckdi, Tk, 1, 1) = 0(k, I, e+1+1-0)""
1
and

k(. ko L, 1) = (K (o) 101 = (g ()1 10

Let f, = min(a,, b,) and o, = f; 21, Of course, §, oo and a, = 0.
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Note that if any of the cases: 1° ned na(x), 2° neBnb(x), 3° ne Anb(x),
4° ne Bna(x) holds for infinitely many n, then, given &> 0, we have
(14) 1Byt Ku(x)—1] <&
for sufficiently large n.
In fact, in case 1°, we have B;'K(x)=1 and, in case 2°,
ﬂ;l K,,(X) = 3&+ 1 "
' ay
so (14) is obvious in these cases.
In case 3°, inequality (14) follows from the relations:

LR () = g
ﬂ" I\‘M(x) - b"+b"

and
X+b, < x+a, <bh,
Finally, in case 4°, we have
- b
ﬂn ! K,,()C) = ”J’L

n

and (14) holds, because 4° yields

a, < b, € x+a,.
Since cases 1°-4° exhaust all possibilities, we have proved that
(15) BirK,(x)»1 as n-»co,

Similarly, considering the sets A nA(x), BN B(x), 4nB(x) and
B A(x), one can show that

(16) Bit#a(x) = =1 as
By (15) nad (16), we have
0, ky(x, 27, 25, 0) = 2

n-— 0,

and
ok, (x, ky 1, 1) =0
for any k, |, i, such that k+I—i < 2r+2s. Hence, because of (13),

17 o, fo ¥ ot Ao S
Jau* 0y () =3 > 0

as n—oc for gach x€R, ie, (12) holds. Moreover, it is easy to see that

Bl K, (9l <c(l+]x)  (xeR)

icm
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and

B tu ()| < c(14[x])  (xeR)

for some ¢ > 0, ie,
(18) | Sy % G, ()| < d(1 1) 2 21
for some d > 0. Relations (17) and (18) imply that

oy f 'V(x)(j;:n *gb")(x) dx - f y(x)dx
for each y & %, i.e., the convolution [[f] #{y] = [1] exists in [ %] (see Section 6).
Exampre 3.2. Let

o

wE) = Y |i*5(E)
foe g

and

o0
v(E)= Y |jI'é;(B)
J=~w

for EeB(R), where §, is the normed measure concentrated at the point i.
Using similar arguments as in the preceding example one can show that the
convolution [1] *[v] exists in [#"] (see Section 6) and

RGEPEal

ExaMpLE 3.3. It can be shown, analogously as in Example 3.1 that the
convolution [¢¥]*[e*] exists in [%'] (see Section 6) and

[¢*] * [e*] = [1].
However, this convolution does not exist in [%'].

It is worth noting that Examples 3.1-3.3 have an interesting probabil-
istic interpretation. The Rényi density function (1) represents the so-called
uniform probability distribution on the whole . real line and the Rényi

L

probability distribution [ ¥ 8] can be called the uniform probability
i

"

=,
distribution on Z = 0, +1, %2, ...]. Examples 3.1-3.3 show that the sum
£+n of independent random variables ¢ and g with polynomial density
functions on R (with the exponential density functions on R; with Reényi
probability distributions concentrated on Z of polynomial growth) has the
uniform probability distribution on R (on 2Z), provided ¢+n satisfies con-
ditions (d;) and (d;) for K =R. In particular, the sum of independent
random variables with the uniform distribution on R (on Z) has again the
uniform distribution on R (on Z), under the mentioned conditions.



GUEST


178 A. Kaminski

4. A particular case of convolution. Now, consider the particular case of
the convolution of Rényi probability distributions [¢] and [v] in R4, where the
limit in definition (a') in Section 3 exists with the constants «, = 1, ie,

)] lim gy, vy, =4

for each a,, b,>0 such that a, » o0 and b, — oc. Relation (1) can be
adopted as one of possible definitions of the convolution of measures (not
necessarily bounded) p, v on B(R?). Of course, if the convolution u*v exists,
then the convolution of Rényi probability distributions [x] and [v] exists and

Lpl#[v] = [pv].

Non-negative measures on B(R%) can be treated as distributions of
L. Schwartz (cf. formula (17) in Section 1).

In [11], the convolution f*gin &' (in &) for f, g& &' (RY) (f, g€ ¥ (RY) is
defined in one of the three equivalent ways:

(2 frg= lim (UALTR
3 Srg =lim fx(n.g)
{4) Sxg = lign (10 S) * (a9,

where the limits are supposed to exist in ' (R%) (in & (R%) for all sequences of
smooth functions {r,} and, in the last equality, {#,} belonging to one of the
classes E, E (one of the classes E, E, E*, F*) of so-called unit-sequences.
Let us recall that the sequence {5, belongs to E if
(i) for every interval I = R there is an index n, such that n,(x) = 1 for
xel and n > ny,
and -

(i) sup {|n® (x): xeR%, neN} < M, < oo,

The product in &' (in &) of Schwartz (tempered) distributions can be
defined by one of the formulae:

6 Jrg = lim (f*8)g,
(6) f'g = '!lmf' (H *511)’
) f-g=lm (/28)-(gr3),

where Fhe limits exist in %' (RY) (in & (R%)) for all delta-sequences {0,} and (5,
belonging to one of the classes 4, 4y (4, &, 4, or 4%) — cf, [11].

icm®

Rényi theory of conditional probabilities 179

As a consequence of the theorem on the exchange formulae in [10],
p. 122 (see also [51, Corollary 3), we have

TuroreM 4.1, Let f, g be tempered measures in RY. If one of the
convolutions (2)-(4) exists in " then the products of F (f) and F (g) in the sense
(5)H7) exist in " and are equal. Moreover, using the usual notation for the
convolutions and products, we have

F([rg)=F([) F(g).

5, Compatibility and polynomial compatibility. In this section, we shall
mean the convolution and the product of distributions in the sense of (4) and
(10) (Section 4), respectively.

There are known criteria for the convolution. (of functions, measures,
distributions) to exist, in terms of supports. Namely, the existence of the
convolution of two arbitrary distributions in R is guaranteed if their
supports A, B fullil one of the following equivalent conditions:

(i) for every interval I < R there exists an interval J < R? such that
xel implies o45(x) < J, where

oap(X) = [yeR: x~yed, yeB};
(ii) for every interval I « RY, there exists an interval J < R such that
xel implies opy(x) < J;
(iti) for every interval K < R® the set (4 x B) nK¥, where

K= [(x, yyeR*: x+yekK],

is bounded;

(iv) if x,€A, y,e€B and |x,]+|y,] = c0, then |x,+y,| — c0.

Conditions (i)-(iii) are usually formulated in terms of compact.sets.
Condition (iv) is formulated in [1], p. 125. The sets 4, B = R? satisfying one
of conditions (i)-(iv) will be called, as in [1], compatible.

Let us formulate the following theorem, which shows that the com-
patibility of supports of distributions is an apt concept:

TueorrM 5.1. Let A, B ez R If the convolution fxg exists for all non-

negative (tempered) meuasures [, ¢ whose supports are contained in A, B,

respectively, then the sets 4, B are compatible.
Proof. Suppose that A, B are not compatible, ie., there exist x,€ 4,
a6 B such that
[ %] > 0, |ya) = 20
and

Xyt Yy, 2R
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We can assume that

n Xy sl =% > 1, |ppedl =yl > 1 (neN)
and that

(2) ‘xn'l'yn—zl < 1 (nGN)

Let

= ;Zl S(t—x) (teRY)

and
g)=73 8(t=y) (reRY).
i=1
Note that. S and g are well defined non-negative measures on RY, with
supports in 4 and B, respectively, and they are tempered.
Let n be a non-negative function of the class ¢ such that

3 n(ty=1 for |x<1
and let
“ na() =n(t/n) (teR%, neN).

Further, let we %, w(x) =0 for xeR? and

%) w®)=1 for |t—z <1,
Then, by (2)(5),

) 01,) (1), () = ‘io jfo M) T () @ (51 +3) > P

where p, is the number of the indices #, for which |x%] < n and |y,| < n. Since
Pn — 0, We conclude that the convolution fxy does not exist, which con-
tradicts the assumption, so the assertion is proved.

In [19], the fol]owipg problem was posed. Suppose that the convolution
Sxg of two tempered distributions exists in %", Has the distribution f*g to
be a tempered distribution? ‘

'The negative answer was given in the doctoral dissertation of the author
(Wh];‘:h vys;ls completed in 1974 and edited in the form of a preprint [107); the
result without a proof was published in [5]. Inde ; ,

' . pendently, the problem was
solved by P. Dierolf and J. Voigt in [3]. ’ P ‘

In [IQ], p. 77 (see alsg [5]), the answer is given in a stronger form.
Namely, given 2 non-negative function g(x) on RY (which can increase as
Ix| = oo as rapidly as we wish) there exists a smooth function S (x) on R*
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whose support is compatible with itself such that f(x) -0 as |x| - o0 and

, fxf(x) 2 g(x)
for each x&RY.

The following definition, given in [10], p. 87 (see also [5]), is a modification
of the concept of compatibility.

The sets A, B < R? are said to be polynomially compatible if there exists
a polynomial p in R such that

%]+ |y] < plix+y))

for each xe A4 and yeB.

It is not difficult to show that the following conditions are equivalent for
arbitrary A, B < RY (cf. [10], p. 91):

(i) 4, B are polynomially compatible;

(i) There exists ke N and ¢ > 0 such that

1% +Iy < e(L+]x+y)

for each xeA and yeB;

(iii) There exists a polynomial p such that if x—yeA and yeB, then
Iyl < p(x]).

It is clear that polynomially compatible sets in RY are compatible. The
converse is not true (see [10], p. 91). ‘

The following theorem holds:

THEOREM 5.2, If tempered distributions f, g have polynomially compatible
supports, then fxge 9"

Conversely, let A, B < R% be sets such that fxge S for any tempered
distributions f, g with supports contained in A and B, respectively. Then A and
B are polynomially compatible. :

Proof. Suppose that f;, ;€% and that the supports Al and(kzc)l2 of
f, and f,, respectively, are polynomially compatible. We have f, = Fy* and
fi= F(z"z) on R4, where k;, ky&P? and Fl,‘Fz are bounded by polynomials.
Given a set K < R? and ¢ > 0, let

K, = {yeR% |y—x| < ¢ for some xeK}.
Clearly, K is an open set, Let wy, w,&% and
1 for xeAy,
Om(x) = {o for  x¢AL,
for m=1, 2. We have

(6) fo=fawm= 3% (Fyo®*" m=12
0&i%ky
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and

)] [Fy o) |F, w‘z”l <C G J [Fy (x—y)Fy(p)l dy,
a(x)

where

C,, =max {0l (t): teR, 0K i<k, Mm=1,2)
and
o(x) = {yeR%: x—'yEAém yeA%&} .
Since the sets A3, and A3, are also polynomially compatible, we have
o(x) = [~ p(lxl), p(x))] = R4

for some non-negative polynomial p (see condition (iii) of the delinition of
polynomial compatibility). This and (7) imply that the convolution on the
left-hand side of (7) exists and is bounded by a polynomial. To prove that
firfre &, it remains to use formula (6) and the known properties of the
convolution. Thus the first part of the theorem is proved.

Now, suppose that 4, B = R? have the property formulated in the
second part of the theorem. In view of Theorem 5.1, the sets A, B are
compatible. Assume that they are not polynomially compatible, i.e., there are
points x;€A4 and y;eB such that

®) bl + il > 2(1+z])

for each ie N, where z; = x;+y,. Hence |x|+|y,| - 0.

There are three possibilities:

@) |x} — o and |y] - oo,

(b) |x;f — o0 and |y + oo,

(©) Ix;| + 00 and |y — o0.

First consider case (a). Since the sets A and B are compatible, we infer
that |z — co. Of course, we can choose subsequences X, = Xips Vi = Vi, and
% =z, such that |4 =I%| > L, |Jy (| =I5 > 1 and |24 = || > 1 f!or all
ieN. Let

f(t= 121 (L% (t—%,)
and

'Y

g =Y (L+[p)hét—7).

i=1

Clearly, f and g are tempered measures and supp S A, suppg < B.
Moreover, the convolution f*g exists and is a measure, namely

feo@= 3 3 (+IE)1+5) 565 -5).
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But this measure is not a tempered distribution, because
Jrg 2 Y (%+0e(-2) = Y 290 +z)" s —3),
=1 i=1

in view of (8). But this contradicts the assumption.
Now, consider case (b). In this case there is a subsequence {y,,} of {y;}
such that

Ymy > yERY
as i = o0, Of course,

Ixml+ym1| = 0.

We can assume that |x,, |—[x,|>1 and Zm; . 5| = |2m| > 1 for ie N, where
z;= xl’i"yj- Let

f) =3 (1+E)d(E—%)

(=1

and
g@t)y= Y 27" (L+Fhét~F),
jwl

where X; = x,, and J = y,,. Note that f and g are tempered measures such
that suppf < A, supp g < B and the convolution exists and is a measure
given by the formula:

o

frg =35 3 2 IAHEN T €Ty,

(=1 j=1

However, this measure is not tempered, because

o
Mgz Y 27N %+ 6t —2),
(LY
where #, = %7, and thus

gz Y 2" +EN" 8 (e -2).
les

The obtained contradiction proves the assertion in case (b). _

Case (¢) is completely symmetric to (b), so the theorem is proved.
: Remark 5.1. The proof of the first part of Theorem 52 is given in [10],
p. 97 (see also [5]). The second part of Theorem 5.2 and Theorem 5.1 are
answers to the problems of S. Ju. Pristepionok, communicated to me orally.


GUEST


184 A. Kaminski

From the first part of the proof of Theorem 5.2, it follows that tempered
distributions f, g with compatible supports can be represented in the form

=30, o= 3 b
Jj=1

where the convolution {F[*]GJ[ exists and is bounded by a polynomial.
Hence, in view of Theorem in [6] (see also [10], p. 122 and [5]), we have

THEOREM 5.3. If tempered distributions f, g have polynomially compatible
supports, then the product F(f)- % (g) exists in &' and

F(fxg)=F () F(9)-
CoROLLARY. If tempered Rényi probability distributions [u] and [v] are
concentrated on polynomially compatible sets (i.e., there are representatives [i,
¥ of [1], [v], respectively, with polynomially compatible supports), then’

(] *[v] = [2]-[¥],

where [®] and [¥) are the characteristic distributors of [1] and [v] and the
product [®]-[¥] exists in the sense [®]-[¥] =[- ¥].

6. Distributors. The method of identifying non-negative measures (their
Fourier transforms), which differ from each other by a constant factor, can
be used for arbitrary functions and Schwartz distributions (see [8]).

Comsider the space &' (¥) of all Schwartz distributions (tempered
distributions) in R? and define the relation ~ in @' (¥): f; ~f2 if fi = af;
for some « > 0. This is an equivalence relation. The equivalent classes with
respect to this relation will be called distributors (tempered distributors) and
be denoted by [f], [g], ..., where f, g, ...€ 2 (f, g, ...€ ¥"). The set of all
distributors (tempered distributors) will be denoted by [2] (by [#"]).

We introduce the convergence in [2'] (in [#] as follows: a sequence [ f,] of
distributors (tempered distributors) is convergent in [2'] (in [%']) if, for some
representatives f, of [ £,], the sequence f, is convergent in &' (in &), i.e., if the
sequence «, f, is convergent in &’ (in &) for some constants o, > 0.

Note that convergent sequences have not unique limits, in general. Namely,
if [f,] = [f], then always [f,] — [0] in [2'] (or [.#'}]). However, if a,, f, —fand
&, f,—gin 2 (orin &) for f # 0 # g and constants a,, &, > 0, then f = ag for
some a > 0. In fact, the assumption f# 0 # g implies {f, y) # 0 % {g, ¥ for
some Yy e (or Yye ) and thus

a <o l//>
. g, g, r/f>
1e,
f=lim a, f, = lim a—ow; =0y,

where a = {f, ¥)>-<{g, ¥>~*. This means, the definition of the convergence is

icm
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consistent. Evidently, this is the quotient convergence, with respect to the
relation ~, generated by the weak or, equivalently, strong topology in
(L)

To avoid non-uniqueness we adopt the following convention: [0] is the
limit of [f,] iff there exist constants a, > 0 such that a, f, » 0 and if 8, f, ~f
for some B, > 0, then f'= 0. This means that if «, f,, — f 5 0 for some constants
a, >0, then [ /] is the only limit of [f,]. Of course, if /, »f+ 0 in &' (in &),
then [£,]—[f] in [&] (n [#]).

Exampre 6.1. One can check that the sequence [x"] is convergent in[%7to
[0] and the sequence [™] is not convergent in [©']).

We are going to present a general scheme of defining operations on
distributors. Belore that let us modify the Mikusinski method of irregular
operations on Schwartz distributions, proposed in [14] and developed in [1].

In [14] and [[1], the starting point of the method is the assumption that
a given operation is defined for smooth functions. Then, by using a fixed
class of delta-sequences, the operation is extended to those distributions, for
which the respective distributional limit of smooth functions exists. Only
particular operations (regular operations) can be extended for all distributions.

Some of operations, e.g. the convolution, cannot be defined for all
smooth functions and the procedure is more complicated for them (cf. [1],
p. 153; 130-131). On the other hand, all natural operations are defined for
the functions of the class & and the construction below will be based on this
assumption.

We can consider operations of an arbitrary finite number of arguments.
For simplicity, suppose that a given operation A4 is of two arguments, ie, to
each pair of functions ¢, Y €2 a smooth function A(e, y) is assigned.

Let E, and 4, be the classes of unit-sequences and delta-sequences
defined as in [7] and [11], ie, of the form:

8 M(x) =1 (;"—) (xeR9)
and
(2) 3,(x) =tdo(r,x) (x&RY),

where 7, - 00, #, o0& ¥, n(x) = 1 for x belonging to some neighbourhood of 0
and [¢ = 1. Additionally, we shall assume that 5, ¢ are real-valued even
functions. For fixed f, g& ', we adopt

3 A(f g) = hnm Dy,
where
@ @y = A((n, f) %8, (m; g*8)  (i,jeN),

6 ~ Studin Mathematicn LXXIX,2

k.
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provided the limit exists in &' for each {n,}cE, and {6,}€4,, and does not
depend on the choice of {r,} and {d,}. The above definition can be simplified
for some operations. :

icm

We say that a given operation A is local if for each interval I < R? there '

exist intervals I,, I, < R? such that
A(py, ) =AW, ¥) on

for each ¢;, @,, ¥y, ¥,€2 such that ¢; =y, on I; and @, =, on I,.
Clearly, local operations can be defined for all smooth functions ¢, Y by
the formula :

A, ¥) = lim A, 1a¥),
where {1,} is an arbitrary unit-sequence from E,,. The operation of multipli-

cation A(p, ¥) =¢ ¥ (¢, Ye2) is local.
The following theorem is obvious;

THEOREM 6.1. Let A be a local operation and f, ge %'. Then A(f, g) exists
in @' in the sense of (3)-(4) iff
® A(f, @)= lim A(f+8,, g+8)
in &' for each {8,}€4,,.

We say that a given operation A is locally regular if for each interval
I = R? and arbitrary fundamental (i.e., distributionally convergent) sequences
{@,} and {y,} of smooth functions such that supp ¢, <I and supp ¥, = I

(neN), the sequence {A(p,, ¥,)} is fundamental

Note that locally regular operations can be defined for all distributions
of the class &’ by the formula:

A(f, 9= lim A(fx3;, g »3),

where {5;} is an arbitrary delta-sequence of the class 4,,.
We say that an operation A commutes with delta-sequences if for each
{8,} €4, there exists {8,} €4,, such that
A(@*d,, Y %8,) = Alp, Y) %8,
“for each pe 2.

The operation of convolution A(¢, ) = ¢ *¥ (o, Y& D) is locally regu-
lar and commutes with delta-sequences. :

Analogously to the first part of the proof Theorem in [97], we obtain

THEOREM 6.2. Let A be a locally regular operation which commutes with
delta-sequences and let f, ge 9. Then A(f, g) exists in the sense of (3)~(4) iff

6 Lim A, f, 1ug) = A(f, g)

in 9 for each {,}€E,,.
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Formulae (5) and (6) can be adopted as the definitions of local and
locally regular operations for distributions. Similarly, we define local and
locally regular operations in &'. Namely, we assume that for given f, g 7,
(5) and (6) hold in & for all {§,}ed;, and {n,}cE;, ie, for all delta-
sequences and unit-sequences of the form (2) and (1), respectively, where o
and # are real-valued even functions of the class % such that {¢ =1 and

0 =1
! Now, define the relation ~ in the space 2 (%) and denote by [¢] the
equivalence class containing ¢e ¥ (pe).

Suppose that a given operation A fulfils the condition:

(m) for any a,, a; > 0 there exists a > 0 such that

Alay 01, a303) = aA(@y, ¢2)

for each @y, 9,62 (91, 1€ %).
Then A can be defined on the classes [¢,], {¢,] as follows:

A([p.d, [02]) = [A(01, @2)]

and the definition is consistent. Note that the operations of multib]icé.tion
and convolution satisfy condition (m) and the operations of addition and
subtraction do not.

Dqute

[1%6,=[p*0,] and 7, [¢]=[n¢]
for pe@ and {5,}ed,, {m}ek, or for pe& and {5,}e4, {n,,}e{if,,,
respectively. For given distributors [f], [¢] and an operation A4 fulfilling
condition (m), let .

) A([f], [9)) = lim P,

where &, is given by formula (4), provided the limit exists in (in (&) for all
(n,} €E,, and {3,}€4,,({n,} €E} and {6,} €4;,) and does not depend on the
choice of {n,} and {é,}. .
Similarly, for a given local or locally regular operation A fulfilling
condition (m), we adopt i ‘

® AU, 14D = lim CAU b, 9 %50
or ‘
© A(LSY, (9D = lim [AC1n S, 7.0)]

under the assumption that the respeétive limits exist for all sequences from
the respective classes. It is evident that
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THEOREM 6.3. Let A be an operation satisfying condition (m) and let f, g
be fixed distributions (tempered distributions) such that A(f, g) exists in the
sense of (3), (5) or (6) and A(f, g) % 0. Then A([f], [g]) exists in the sense of
(7), (8) or (9), respectively, and

A(LS], [gD) =TA(S, 91

THEOREM 6.4. Let A be an arbitrary (local) operation fulfilling condition
(m). Then A([f], [g]) exists in [7"] in the sense of (7) (in the sense of (8)) for
any distributors [f], [g]-

Proof. Putting
o, = (n-sup {|®,, (0): [t < n})"",
we have

1
[an <d)mu (P>! < ;I'(P! —0
for each pe %, ie, A([f], [g]) exists in [%'] in the sense of (7). Similarly, if
A is local, then A([f], [g]) exists in the sense of (8) in [Z'].

. Locally regular operations need not exist in the sense of (9) for all
distributors Lf ] [¢]. Namely, it can be shown that the convolution [ /] *[g],
where f(x) = Z 0P (x—1) and g(x) =

=0
sense of (9). However the convolutlon of arbitrary tempered distributors

exists in [%7] in the sense of (9). The same is true for the operation of
product. Namely, we have
THEOREM 6.5. The product [f1-[g] and the convolution [ f'1x[g] exist in
(7] for any distributors [ f], [gle [&] in the sense of (8) and (9), respectively.
Proof. We have f= F® and g = G on RY, where k, e P* and F, G are
continuous functions, bounded by polynomials. Let {6,) be an arbitrary
delta-sequence of the form (2) with e &, It is evident that

Z 89(x+i), does not exist in the

I MPTLHF %) (G#6P)30 in RY
for some polynomial P> 0, so '

%, (f*3,)(g*d,) 0 in &
for o, =t %71~
Now, let {n,}eE,. The functions HY = (1’ F)*(r G) are continuous

rapidly decreasing for 0 < i<k 0<j<!and neN. For an arbitrary ge %,
we have

o <10 ) $(10), 93] <2 6 J19%*+112(0) dt — 0

Osi<k 0<j<1

icm®
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as n— o0, where ¢, = (k)C> and o, =n~!(sup [HY(1))~*. The proof is
completed. ! Lt

The convolution and the product of distributors [f], [4] below will be
meant in [%"] in the sense of (9) and (8), respectively.

Now, as a corollary from Theorems 1, 2 in [7], we obtain:

THEOREM 6.6. The convolution and the product of arbitrary distributors
[f), [gle[F] exist in []. Moreover,

FL+Lg) =[F (1 [F @] and  F(f1 [g]) = [F(]*[F@)].

Finally, we shall give some non-trivial examples of the product and the
convolution of distributors in the cases where the operations are not feasible for
the respective distributions or the result equals 0.

ExampLE 6.2. Suppose that k, le N U {0}, k > L It can be shown that, for
an arbitrary function oe ¥ (R),

(10) T oW (0@ () dt = (—*D2 | (o™ (1) de

‘an — o

with m = (k+1)/2, provided k+! is even, and

. (11) g g = xl’

where y is a function such that

(12) T xdr =(= 1925 § (@2

- 00 -00
for some a > 0 and m' = (k+1—1)/2, provided k+! is odd. For =
g =06" and {5,) of form (2), we have

(f*8,) (%) (g *6,) (x) = h*1* 2 0(7, %),
where g = o®-o¥e &, Let k+1 be even. Then, by (10),
(13) a, (f*8)(g#8,) = (=1)* "5 in ¥

for a, = ¢,7%7! 1, since [(™ (1))? dt > 0. Now, let k-+Ibe odd. By (11) and (12),
we have

(14) By (f%84) (g %0) ~(—

5% and

He-Im0i2gein

since ¢ =y’ and | (o™ (1))* dt > 0. Relations (13) and (14)

-

7 o gkl
for &, =,

give the formula:
. (—1*-W2.[5] it k+!is even,
[(Wt)] ‘ [5(1)] B {( _ l)(|k~[|- n/2, [5/] if k +[ is odd

for any k, e N u {0}, where the product of distributors exists in [&].
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ExampLe 6.3. Let k, le NU {0}. In view of Theorem 6.6, we get, after
simple calculations, the formula:
(=1)"-[1] i k+liseven,
"
(¥ [x] ‘{(—1)"'[x] if  k+1is odd,
where m = min(k, [) and the convolution exists in [&"]. It is known that
x¥6™ =0 if k >m and
(=% m!

k s(m)
X = TR

sm ki k<m,
in the sense of distributions.
ExampLE 6.4. One can prove that

[o] if
[o7 if

k >m, k+1is even,

k1. [§M7 —
[x7-[6"] { k>m, k+1is odd,

ie, the product of distributions can differ from the product of the respective
distributions if the latter equals to 0.
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