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For the same reason
j f ‘P(fz—"(fﬂ) cos ((xj"f:)'J’)dydf =
Bj_ x-—RJ
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Then T is L? — L? bounded operator if and only if p=2
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Invertibility of some second order
differential operators

by

YANG-CHUN CHANG (Peking) and. P. A. TOMAS (Austin, Tex.)

Abstract. The authors examine L invertibility of second order linear partial differential
operators with constant coefficients. Invertibility of such operators is shown to depend upon the
geometric structure of the level surfaces associated to the symbol of the operator.

The purpose of this paper is to examine the invertibility of second order
linear partial differential operators with constant coefficients. In general
dimension we shall treat operators with level hyper-surfaces; in two
dimensions we shall give a complete classification. Following the remarks of
Kenig~Tomas [2], we shall see that the invertibility of such operators
depends upon the geometric structure of the level surfaces. The main tools in
our approach are the Kakeya counterexample of C. Fefferman, the classical
multiplier theorems of Marcinkiewicz and Hormander, and a multiplier
theorem of Littman, McCarthy and Riviére.

Let d(x), x =(x,, ..., X,)€ R", denote a second order polynomial on C.
d(x) can be expressed as

d(x) = P(x)+iQ(x),
P() = XTAX +a X +1,
Q(x) = X"BX+B X +s,

where A4, B are real symmetric matrices, a, § are real vectors, t and s are real
constants.

d(x)

hyper-surface. Then E%——i is a Fourier multiplier of I*, 1 <p < oo, except in
X

THEOREM 1, Assume d(x), eL®(R", has (n—1)-dimensional level

the following two cases:

(1) o is not an eigenvector of A.

(2) The rank of A is at least three and the restriction of XTAX to the
eigenspace is not positive definite.
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1 .
In these cases, ZRX_) is a Fourier multiplier of LP if and only if p=2.
X
THEOREM 2. Let n =2, ——eL®(R?.
d(x)
1 .
(1) If d(x) has level curves, then m is a Fourier multiplier of L2,
1
1 < p < o0, except when the level curve is a parabola. In this case, m is a
X

Fourier multiplier of L* if and only if p = 2

(2) If d(x) has finite level set, then —-(-7 is a Fourier multiplier of L7,

1<p<oo.

Preliminaries.

Lemma 1 [4] (Marcinkiewicz multiplier theorem). Let m(x), x = (x,, ...
... %), be a bounded function on R". Suppose for each 0 <k <n

&*m
sup
g Xl B 2oy
e

Oy Ox;y ... O,
as @ ranges over dyadic rectangles of R*, B is a constant. Then m(x) is
a Fourier multiplier of I?, 1 <p < 0.

Lemma 2 [4] (Hormander multiplier theorem). Suppose that m(x) is of
class C* in the complement of the origin of R", where k is an integer > nf2.

dx;, ...dx;, <B

oY o
Assume that for every differential monomial <5——> , 0= (ay, 0y -ny &), WIth
X

ll =0y +oy+ ... +a,, we have

a o
(E) m(x)

Then m(x) is a Fourier multiplier of L?, 1 <p < 0.

Lemma 3 [3]. Let h(u) be a complex valued function of a real variable
ueR'. Assume that .

< B|x|”",  where |o| <K, B is constant.

C for u#0,k=0,1,...,r

d*h
u ) S
Let {l,(x)}i=1 be a family of affine functionals from R* to R'. Then

me = h([T b(3)

is a Fourier multiplier of L(R"), 1 <p < 0.
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LemMA 4 [2]. Let m(x, y) be a Fourier multiplier for LF(R*)), xe K,
yeR. Then for almost every xe R, m,(y) = m(x, ¥) is a Fourier multiplier of
LF(R).

Lemma 5 [2]. If m(x), xeR", is a Fourier multiplier for L?, then both the
conjugate m and powers of m are Fourier multipliers. -

LemMa 6 [5). If P(D) is a hypoelliptic pseudo-differential operator, then

0
for every differential monomial ) o =(ay, ..., &,), with |a| = o; +o+ ...

) ]

where C is a constant.

LEMMaA 7. Assume A is a real symmetric matrix, and o is an eigenvector of
A. There is an orthogonal matrix M such that MTAM is diagonal. Then M«
is an eigenvector of MTAM.

Proof. Since 4 is symmetric, MT = M~', Assume « is an eigenvector
corresponding to the eigenvalue 4, i.e. Ax = da. Then we have

(MTAM)(Ma) = MTAq = MT(Aa) = A(M"a).

Lemma 8. If d(x) = P(x)+iQ (x) has (n—1)-dimensional level hyper-sur-
Jace, then after a proper afﬁne transformation and multiplication by a constant,
we have either

o0,

C
mm— for x| large,

d(x) =

where D is a diagonal matrix, Dy=1, 1 <1<
Dy=0, I>v, v<n, and

X"DX +r-X+34,
U, Dy=~1, p+1<I<y,

éeC or
d(x) = x}+i[a(x, —b)*+s5]
or
d(x) = x, +t+i(ax}+s).

P(x)+iQ(x) has (n—1)-dimensional level hyper-
b, we claim that P(x) and Q(x), as polynomials of
., X, appear both in P and Q,

Proof. Since d(x) =
surface P(x) =a, Q(x) =
degree 2, involve the same variables. If all x,, .
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the claim is obvious. Now suppose P(x) involves Xy, ..., X, 1 <m <n. If
P(x)=aat x{, ..., xj, then Q(x) =b at x,..., X3, Xpsy, ..., X, for every
Xme1s --rs Xy € R"™™ So Q(x) involves at most xy, ..., X,,. Symmetrically P(x)
and Q(x) involve the same variables.

Case 1. P(x) and Q(x), as polynomials of degree 2, involve at least two
P(x) 8Q(x)
Tox; W’
j=1, 2, are not zero in R" away from at most four hyper-planes ;.

Since d(x) = P(x)+iQ(x) has an (n—1)-dimensional hyper-surface, that
is, there exists a region D = R" and constants a and b such that the hyper-
surface P(x) = a coincides with the hyper-surface Q(x) =» in D and D N
=@. By the implicit function theorem, there are four functions x;
= Qo(X,00 X3, -, X,) and x; = @pi(Xj00 X35 oy Xo)y J=1,2, j°j=2, as
implicit functions of P(x)=a, Q(x)=b, satisfying P(¢, Xs, ..., x,) = a,
P(xl: Pa2s X3, teey xn) =a,

variables, for instance xi, ..., x,, 2<m<n In this case

Q((pbls X2y oeny xn)=by Q(xl? Pp2> x3:-=~7xn)=b

and ¢,; = @y, j=1, 2.

Therefore VP(x) = VQ(x), ie, kA =B, ka = . Then d(x) = (k+i)x
x[XTAX +oa- X]+1t+is. After a proper affine transformation and multiplica-
tion by a constant, d(x) can be considered as

d(x)=X"DX +r-X+6

where D, r and § are as described.

Case 2. P(x) and Q(x) only involve one variable, for instance, x,. When
P(x) = x,+1, we have Q(x) = x; +s or Q(x) = x}+s. When P(x) = X241, we
have Q(x) = x;+s or Q(x) = a(x; —b)*+s.

Summarizing, by affine transformation and multiplication by a constant,
d(x) can be written as in Lemma 8.

Lemma 9. When n=2, if E(lx-)-eL"’(RZ) has finite level set, then either
d(D) is elliptic or afier affine transformation d(x) can be one of the following:
d(x) = xi=x3+t+i[(x; =@ —(x;~b)*+s]  (a] % [B]),

d(x) = x}—x3+t+iax, +5),
d(x) = (x;—a’—x, +i(x}+5) (s > 0),
d(x) = x{—x,+i(ax,+5).

It is"obvious that in the other cases d (x) has zero or level curve.

icm®

Invertibility of some operators 293

Proof of Theorem 1. (1) f « is not an eigenvector of A4, from
Lemmas 7 and 8,

0

=
1

y<n,

1
and is not an eigenvector of D. Then the restriction of M to R%(xy, x,)
1 .
——————. By Lemma 5, if it is a multiplier of L?, settin,
s x}+x,+r+is v 3 g ¢0)

2 .
= (;%) and F(x) = x}+x,+1, ¢(F(x)) should be a multiplier of L2
But using the result in [6], ¢(F(x)) is a Fourier multiplier if and or}ly if

1
p=2 Then so is ——

d(x)’
(2) If the rank of A is at least three and the restriction of XTAX to the
. 1
eigenspace is not positive definite, from Lemma 8, the restriction of e
-1
"Xy, eeey Xpmy) I8 TFeo————, # =2, V= p+1, that is,
to R" 5 (xy, ...y X, q) IS XTDX +1+is I VU
1
o v )
Y xi— Y x}+rtis
Jj=1 Jj=p+1

By Kenig-Tomas [2] this is a Fourier multiplier of I”(R") if and only

.1
if p=2. From Lemma 4, so is 3(35

(3) The remainder is to prove for the cases:
1. D=1, 1<I<u; Dy =0, I>p.
2. D =1, Dy =—1;Dy=0,1>2.
3. D11=1; D, =0, I>1.
0

4 D=[0]r=|,

1
5. d(x) = x}+i[a(x,—b)*+5].
6. d(x) = x, +t+i(axi+s).
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Case - 1. Using Hormander multiplier theorem (Lemma 2) since

04 () =0, I > u, we only need to prove

0%,
| & (1/d (x) C ,
< , b k<Sp, X, =100 x)
(my oy | SO SHESE e = x5
It is sufficient tp show
1d® (%) C
—| € e,
d(x) | (1+]x])"

Now d(x) is elliptic in R¥, then by Lemma 6 we obtain the required result.

The remaining cases 2-6 are essentially two-dimensional, and are treated
in the proof of Theorem 2.

Proof of Theorem 2. (1) When d(x) has level curve, by Lemma 8, it
must be in the form of one of the following:

"(a) d(x) = x3+x3+9,

(b) d(x) = x}—x3+4,

() d(x)=x}-x,+0,

(d) d(x) =x,+9,

(e) d(x) = x; +iax?+3$,

() d(x)=x{+ila(x;—b)*+s].

1 . -
Let us prove all above —— are Fourier multipliers of L?, 1 < p < o, except

d(x)
case (). )
(@) d(x) = xI+x2+65, d(D) is elliptic of order 2. By Hormander
multiplier theorem (Lemma 2), we need to prove

(&) @)

It is enough to prove

<BlxM, 1o = (@) < 2.

3 d(x)
d(x)

c
s k]
(1™

which is obvious from Lemina 6,
(b) & (d) d(x) =x}-x3+6 or d(x)=x,+5, 6 =t+is. In Lemma 3,
choosing h(u) = 1/u+4), we have
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L3 where |yl < max {1, |2t]} =k
P U el A
" arors S
ul @) s M _ 4 where [ul>k,
[4/2|
2k2
L d%h 2 B R where  |u| <k,
ue — = -
du?| [(n+0>+s2P2 7 ) 2P
(7271)37 =16, where Iul >k.
So by Lemma 3 1 and 1 are Foﬁrier multipliers of L7
y Ximxge T ¥ P ’

1 <p<oo. .
(e) & (f) d(x) = x;+iax?+6 or d(x) = x?+i[a(x,—b)*+s]. It is easy

1
to see that ) satisfies Marcinkiewicz multiplier theorem (Lemma 1).

1

As to (c), P
is the same to that in case 1 of Theorem 1. Then Theorem 2 is established.

(2) If d(x) has only a finite level set, Lemma 9 shows that d(x) will be
one of the following: '

(a) d(D) is elliptic, -

(b) d(x) = x} —x3+t+i[(x; —a)*~(x,—b)*+5],

(© d(x) = xi—x3+t+ilax; +s],

(@ d(x) = (xy—a)* —x, +i(x} +3),

(e) d(x) = x}—x,+i(ax,+s).

By direct computation, all cases but (b) satisfy the hypothesis of the
Marcinkiewicz multiplier theorem. Case (b) satisfies the hypothesis of the
Hérmander multiplier theorem. We omit the details.

is a multiplier of L”, if and only if p = 2. The proof
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