cm[©]

for kernels such as

$$K(\varrho, \varphi) = \frac{1}{\alpha \varrho^{2\alpha} (a + \lg^{\beta} \varrho)} \sin \varphi$$

where the family of ellipses is now

$$y_1 = \varrho^{\alpha} \cos \varphi,$$

$$y_2 = \varrho^{\alpha} (a + \lg^{\beta} \varrho) \sin \varphi, \quad \beta \geqslant 1, \alpha > 0.$$

It is enough to take into account result (1.2) (Coifman–Guzmán) The proof can be seen in [16] if $\alpha = 1$ and in [14] if $\beta = 2$.

References

- [1] E. B. Fabes, N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966).
- [2] M. de Guzmán, Singular integral operators with generalized homogeneity, Rev. Real Acad. Ci. Exact. Fis. Natur. Madrid 64, 1 (1970).
- [3] Real Variable Methods in Fourier Analysis, North-Holland Math. Studies, vol. 46, Notas de Matemática 75 (1981).
- [4] I. I. Hirschman, Jr, On multiplier transformations I, Duke Math. J. 26 (1959).
- [5] Multiplier transformations II, ibid. 28 (1961).
- [6] Mutliplier transformations III, Proc. Amer. Math. Soc. 13 (1962).
- [7] A. Nagel, N. M. Rivière, S. Wainger, On Hilbert transforms along curves, Bull. Amer. Math. Soc. (1974).
- [8] -, -, On Hilbert transforms along curves, II, Amer. J. Math. 98, 2 (1974).
- [9] E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semisimple groups, in: Actes du Congrès International des Mathématiciens, Nice 1970.
- [10] Maximal functions. Homogeneous curves, Proc. Nat. Acad. Sci. U.S.A. 73 (1976).
- [11] E. M. Stein, S. Wainger, The estimation of an integral arising in multiplier transformations, Studia Math. 35 (1970).
- [12] -, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84, 6 (1972).
- [13] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
- [14] M. Walias, Integrales singulares asociadas a familias de conjuntos convexos, Tesis Doctoral, Universidad Complutense de Madrid, 1978.
- [15] Generalized polar coordinates, to be published.
- [16] Bound for integrals of Dirichlet type depending upon parameters, applications, to be published.
- [17] A. Zygmund, Trigonometric Series, vol. I and II, Cambridge Univ. Press, 1968.

UNIVERSIDAD AUTONOMA DE MADRID Cantoblanco, Madrid-34, Spain

Received November 23, 1982

(1844)

An analogue of the argument theorem of Bohr and its application

b

WOJCIECH CHOJNACKI (Warszawa)

Abstract. An analogue of the argument theorem of Bohr is proved and used to establish the following result: given a real S^1 almost periodic function f on f, the function f on f the function f almost periodic, in f the function f almost periodic if and only if it is (uniformly) almost periodic, in which case the function f the function f almost periodic. It is shown that the latter theorem fails if f almost periodicity is replaced by what is here called f almost periodicity.

1. Introduction. According to a well-known theorem of Bohr (cf. [3], [7]), given a real continuous function f on R, the function $x \to \exp(if(x))$ is almost periodic if and only if there exists $a \in R$ such that the function $x \to f(x) + ax$ is almost periodic.

Our main objective is to prove the following

deduce the following

Theorem 1. Suppose a real uniformly continuous function f on R satisfies the following cocycle condition:

(co) for every $t \in \mathbf{R}$, there exists $a_t \in \mathbf{R}$ such that the function $x \to f(x+t) - f(x) + a_t x$ is almost periodic.

In order that there be $a \in \mathbb{R}$ such that the function $x \to f(x) + ax$ is almost periodic it is necessary and sufficient that the function $x \to \exp(if(x))$ be W^1 almost periodic.

Since given an S^1 almost periodic function f on R, the function $x \to \int_0^x f(u) du$ is uniformly continuous (cf. [1], Th. 4.7.8), and, for any $t \in R$, the function $x \to \int_x^{x+t} f(u) du$ is almost periodic (cf. [2], Th. 2.3.1), from Theorem 1 and the above-mentioned argument theorem of Bohr we easily

THEOREM 2. Let f be a real S^1 almost periodic function on R. Then the function $x \to \exp(i \int_{0}^{x} f(u) du)$ is W^1 almost periodic if and only if it is almost

periodic, in which case the function $x \to \int_0^x f(u) du - \hat{f}(0) x$ is almost periodic.

There arises a natural question whether W^1 almost periodicity in the above theorem may be replaced by some other types of almost periodicity. We shall present a negative result in this respect, that will concern so-called E^2 almost periodicity, a stronger property than being simultaneously B^p almost periodic for all $p \ge 1$. The result will be somewhat ineffective as it is often the case of results employing a probabilistic argument.

- 2. Prerequisites. We utilize various classes of almost periodic functions on R. Aside from the usual (uniformly) almost periodic functions on R, there appear:
- (i) the Stepanov S^p almost periodic functions on R ($1 \le p < +\infty$), i.e., those measurable functions on R that are limits of sequences of trigonometric polynomials in one of the seminorms

$$||f||_{S^{p},T} = \sup\{(2T)^{-1} \int_{-T}^{T} |f(x+u)|^{p} du \colon x \in \mathbb{R}\} \quad (T > 0),$$

no matter in which one:

(ii) the Weyl W^p almost periodic functions on R ($1 \le p < +\infty$), i.e., those measurable functions on R that are limits of sequences of trigonometric polynomials in the seminorm

$$||f||_{W^p} = \lim_{T \to \infty} ||f||_{S^{p},T};$$

(iii) the Besicovitch B^p almost periodic functions on R ($1 \le p < +\infty$), i.e., those measurable functions on R that are limits of sequences of trigonometric polynomials in the seminorm

$$||f||_{B^p} = \overline{\lim}_{T \to \infty} ((2T)^{-1} \int_{-T}^{T} |f(u)|^p du)^{1/p};$$

(iv) the E^p almost periodic functions on R ($1 \le p < +\infty$), i.e., those measurable functions on R that are limits of sequences of trigonometric polynomials in the seminorm

$$||f||_{E^p} = \inf\{c > 0: \overline{\lim}_{T \to \infty} (2T)^{-1} \int_{-T}^T \exp(|f(u)|/c)^p du \le 2\}.$$

It is easily verified that a measurable function f on R is E^p almost periodic $(1 \le p < +\infty)$ if and only if there exists a sequence (p_n) , of trigonometric polynomials such that for every $\alpha > 0$

$$\lim_{n\to\infty} \overline{\lim}_{T\to\infty} (2T)^{-1} \int_{-T}^{T} \exp(\alpha |f(u)-p_n(u)|^p) du = 1.$$

We have the following diagram of inclusions:

$$S^{p}AP \subset W^{p}AP$$
 $\cup \cap$
 $AP \subset E^{r}AP \subset B^{p}AP$

for any $1 \le p, r < +\infty$.

Given an almost periodic (resp. S^p almost periodic, $1 \le p < +\infty$, etc.) function f on R and $\mu \in R$, $\hat{f}(\mu)$ stands for the μ th Fourier coefficient of f, i.e.,

$$\hat{f}(\mu) = \lim_{T \to \infty} (2T)^{-1} \int_{-T}^{T} f(x) \exp(-i\mu x) dx.$$

Given a probability space (Ω, σ, P) , E denotes the expectation operator. If \mathscr{A} is a σ -subalgebra of σ , $E^{\mathscr{A}}$ denotes the conditional expectation operator relative to \mathscr{A} .

. 3. Proof of Theorem 1. The proof of the necessity part of the theorem is trivial.

The proof of the sufficiency part will be based on the following elementary

Lemma. Let f be a uniformly continuous W^1 almost periodic function on R. Then $\hat{f}(0)$ is the uniform limit of convex combinations of translates of f.

Proof. With T_s standing for the translation operator by s, let $\mathscr S$ be the convex hull of $\{T_s\colon s\in R\}$. Clearly, $\mathscr S$ is closed under composition.

Observe that given a trigonometric polynomial p of the form

$$p(x) = \sum_{\lambda \in A} \hat{p}(\lambda) \exp(i\lambda x) \quad (x \in R)$$

with a finite Λ , the composition S of all S_{λ} with $\lambda \in \Lambda - \{0\}$, each S_{λ} being defined as

$$\frac{1}{2}(T_{\pi/\lambda}+T_0),$$

satisfies $Sp=\hat{p}(0)$. Keeping this in mind, given any $\varepsilon>0$, let p be a trigonometric polynomial such that $||f-p||_{W^1}<\varepsilon/3$. Of course $|\hat{f}(0)-\hat{p}(0)|<\varepsilon/3$. Select $S\in\mathcal{S}$ so that $Sp=\hat{p}(0)$. Clearly $||Sf-\hat{f}(0)||_{W^1}<2\varepsilon/3$, and so $||Sf-\hat{f}(0)||_{S^1,T}<2\varepsilon/3$ for some T>0. Since $Sf-\hat{f}(0)$ is uniformly continuous, there exists $S'\in\mathcal{S}$ such that

$$||S'(Sf-\hat{f}(0))||_{\infty} < ||Sf-\hat{f}(0)||_{S^{1},T} + \varepsilon/3.$$

On account of the last two estimates and in view of $S'(Sf-\hat{f}(0)) = S'Sf-\hat{f}(0)$, we get $||S'Sf-\hat{f}(0)||_{\infty} < \varepsilon$, which ends the proof.

Proceeding to establish the sufficiency part of Theorem 1, suppose f is a real uniformly continuous function f on R that satisfies (co). Denote by g the

function $x \to \exp(if(x))$. By the argument theorem of Bohr, the proof will be complete upon showing that g is almost periodic.

Since $||g||_{W^1} = 1$, g has at least one non-zero Fourier coefficient, say $\hat{g}(\mu)$ ($\mu \in \mathbb{R}$). Let $\varepsilon > 0$ be given. Applying the lemma to the function $g_{\mu}(x) = g(x) \exp(-i\mu x)$ ($x \in \mathbb{R}$), we see that there exist positive numbers a_i (i = 1, ..., n) with $\sum_{i=1}^{n} a_i = 1$ and real numbers s_i (i = 1, ..., n) such that

$$\left\|\sum_{i=1}^{n} a_{i} T_{s_{i}} g_{\mu} - \hat{g}(\mu)\right\|_{\infty} < \varepsilon.$$

Since the expression on the left side is equal to

$$\left\|\sum_{i=1}^n a_i g T_{s_i} \overline{g}_{\mu} - \overline{\widehat{g}(\mu)} g\right\|_{\infty},$$

and, in view of (co), each function $gT_{s_i}\overline{g}_{\mu}$ $(i=1,\ldots,n)$ is almost periodic, we infer that $\overline{\widehat{g}(\mu)}g$ is the uniform limit of almost periodic functions. This in turn implies immediately that g is almost periodic.

The proof is complete.

- **4.** A negative result. Let (Ω, σ, P) be a probability space. Suppose there is given an ergodic flow on Ω , i.e., a one-parameter group $\{S_t: t \in R\}$ of measure-preserving transformations of Ω onto itself, with the following properties:
 - (i) the map $\mathbf{R} \times \Omega \ni (t, \omega) \to S_t(\omega) \in \Omega$ is measurable relative to $(\mathscr{B}(\mathbf{R}) \otimes \sigma, \sigma)$, where $\mathscr{B}(\mathbf{R})$ denotes the Borel σ -algebra of \mathbf{R} ;
 - (ii) given a random variable f on Ω , $f \circ S_t = f$ a.s. (almost surely) for all $t \in R$ implies f is constant a.s.

Let (a_n) be a sequence in l^2-l^1 of rationally independent positive numbers. Suppose the flow $\{S_t\}$ has, for each $n \in \mathbb{N}$, an eigenfunction θ_n corresponding to the eigenfrequency $a_n/2\pi$, such that

$$\theta_n \circ S_t = \exp(ia_n t) \theta_n$$

for all $t \in \mathbb{R}$. Suppose, moreover, that the eigenfunctions θ_n form a family of independent random variables each one uniformly distributed on T (the unit circle).

That the above assumptions can be fulfilled is seen as follows. Take T^N for Ω with the Borel σ -algebra of T^N as σ , and the direct product measure obtained from Lebesgue measure on each copy of T as P. Define an ergodic flow on Ω by putting

$$S_t(\omega) = (\exp(ia_1t)\omega_1, \exp(ia_2t)\omega_2, \ldots)$$

for every $\omega = (\omega_1, \omega_2, ...) \in \Omega$. Eventually realize an eigenfunction $\theta_n(n \in N)$ of $\{S_t\}$ as the projection from Ω onto the *n*th copy of T

Let

$$F = \sum_{k=1}^{\infty} a_k^2 \operatorname{Im} \theta_k.$$

Define a stochastic process $\{F_t\}$ by putting

$$F_t = F \circ S_t$$

for all $t \in R$. Clearly, each sample path of $\{F_t\}$ is a real almost periodic function with mean value zero. Given $t \in R$, set

$$X_t = \int_0^t F_u du.$$

In the sequel, when speaking about an almost periodic (resp. S^p almost periodic, $1 \le p < +\infty$, etc.) stochastic process we shall mean that almost all trajectories of the process are almost periodic (resp. S^p almost periodic, $1 \le p < +\infty$, etc.).

The main result of this section is

THEOREM 3. The process $\{\exp(iX_t)\}$ is E^2 almost periodic. Almost none of its sample paths is almost periodic.

Proof. For each $n \in \mathbb{N}$, set

$$Y^{(n)} = \sum_{k=1}^{n} a_k \operatorname{Re} \theta_k.$$

Let Y be the limit of $(Y^{(n)})$ a.s.; the existence of the limit follows from the three series theorem.

We claim that for any $\alpha > 0$

(1)
$$\lim_{n \to \infty} \mathbf{E} \exp(\alpha |\exp(iY) - \exp(iY^{(n)})|^2) = 1.$$

To prove the claim note first that the sequence in (1) is minorized by one. Thus we need only appropriate estimates from above. Since $|\exp(ix) - 1| \le |x|$ for $x \in \mathbb{R}$, we may write

(2)
$$E \exp(\alpha |\exp(iY) - \exp(iY^{(n)})|^2) = E \exp(\alpha |\exp(i(Y - Y^{(n)})) - 1|^2)$$

$$\leq E \exp(\alpha |Y - Y^{(n)}|^2)$$

for every $\alpha > 0$ and every $n \in \mathbb{N}$.

Denote by (ε_n) a Bernoulli sequence, i.e., a sequence of independent identically distributed random variables each one taking the value plus and minus one with equal probability. $(\text{Re}\,\theta_n)$ being a sequence of symmetric real-valued random variables not exceeding one in absolute value, the Kahane contraction principle (cf. [8], Th. 2.4.9) neatly applies so as to give

(3)
$$E|Y-Y^{(n)}|^{2p} = E \Big| \sum_{k=1}^{\infty} a_k \operatorname{Re} \theta_k \Big|^{2p} \leqslant E \Big| \sum_{k=1}^{\infty} a_k \varepsilon_k \Big|^{2p}$$

for all $n, p \in \mathbb{N}$. Here the right-hand series converges a.s. by the three series theorem. On the other hand, by Khintchine's inequality (cf. [5]), we have for all $n, p \in \mathbb{N}$

$$E\Big|\sum_{k=n+1}^{\infty} a_k \varepsilon_k\Big|^{2p} \le 2^p \pi^{-1/2} \Gamma(p+1/2) \Big(\sum_{k=n+1}^{\infty} a_k^2\Big)^p$$

$$\le 2^p p! \Big(\sum_{k=n+1}^{\infty} a_k^2\Big)^p.$$

Hence by (3)

$$E \exp(\alpha |Y - Y^{(n)}|^2) = 1 + \sum_{p=1}^{\infty} \frac{\alpha^p}{p!} E |Y - Y^{(n)}|^{2p}$$

$$\leq 1 + \sum_{p=1}^{\infty} (2\alpha \sum_{k=p+1}^{\infty} a_k^2)^p.$$

From this estimate and from (2) one easily deduces (1)

Having established (1), we accomplish the proof of the first assertion of the theorem reasoning as follows.

Let $\{Y_t\} = \{Y \circ S_t\}$ and, for every $n \in \mathbb{N}$, $\{Y_t^{(n)}\} = \{Y^{(n)} \circ S_t\}$. By Birkhoff's ergodic theorem, for every $\alpha > 0$ and every $n \in \mathbb{N}$, the limit

$$\lim_{T\to\infty} (2T)^{-1} \int_{-T}^{T} \exp\left(\alpha \left| \exp\left(iY_{t}\right) - \exp\left(iY_{t}^{(n)}\right)\right|^{2}\right) dt$$

exists a.s. and equals

$$E \exp(\alpha |\exp(iY) - \exp(iY^{(n)})|^2)$$

Hence by (1)

$$\lim_{n\to\infty} \lim_{T\to\infty} (2T)^{-1} \int_{-T}^{T} \exp(\alpha |\exp(iY_t) - \exp(iY_t^{(n)})|^2) dt = 1 \text{ a.s.}$$

Since each of the processes $\{\exp(iY_i^{(n)})\}\ (n \in \mathbb{N})$ is almost periodic, the latter equality implies that $\{\exp(iY_i)\}\$ is E^2 almost periodic. On the other hand, the processes $\{X_t\}$ and $\{Y-Y_t\}$ are stochastically indistinguishable. Thus, almost every sample path of $\{\exp(iX_i)\}\$ is, up to a random factor of absolute value one, the complex conjugate of the corresponding trajectory of $\{\exp(iY_i)\}$. As a result, the process $\{\exp(iX_i)\}$ is E^2 almost periodic.

We pass now to proving the second assertion of the theorem. Given $n \in \mathbb{N}$, let $\mathscr{A}_n = \sigma(\theta_k, 1 \le k \le n)$ be the σ -algebra generated by the θ_k shown.

Let
$$\mathscr{A}_{\infty} = \sigma(\bigcup_{k=1}^{\infty} \mathscr{A}_k)$$
.

Since the process $\{X_t\}$ has continuous sample paths, $\sup\{X_t: t \in \mathbb{R}\}$ is a well-defined random variable Z on Ω . Z is non-negative because $X_0 = 0$. Clearly, Z is \mathcal{A}_{∞} adopted.

For each $t \in \mathbb{R}$ and each $n \in \mathbb{N}$, put

$$X_t^{(n)} = \sum_{k=1}^n a_k \left[\operatorname{Re} \theta_k - \operatorname{Re} \left(\exp \left(i a_k t \right) \theta_k \right) \right].$$

We see that for every $t \in \mathbb{R}$, X_t is the pointwise limit of $(X_t^{(n)})$. Given $n \in \mathbb{N}$, let

$$Z_n = \sup \{X_t^{(n)}: t \in \mathbf{R}\}.$$

Since $\{a_k: k \in \mathbb{N}\}$ is a rationally independent set, it follows from Kronecker's theorem that

(4)
$$Z_n = \sum_{k=1}^n a_k (1 + \operatorname{Re} \theta_k).$$

Of course, Z_n is \mathcal{A}_n adopted. Using the three series theorem, we easily derive from (4) that

$$\lim_{n \to \infty} Z_n = +\infty \text{ a.s.}$$

We claim that given $n \in \mathbb{N}$, there exists an \mathscr{A}_n adopted random variable τ_n on Ω such that

$$(6) X_{r_n}^{(n)} \geqslant Z_n - 1 \text{ a.s.}$$

Indeed, since for each $n \in \mathbb{N}$, the process $\{X_i^{(n)}\}$ is $\mathscr{B}(\mathbb{R}) \otimes \mathscr{A}_n$ measurable, the

$$\{(t, \omega) \in \mathbf{R} \times \Omega \colon X_t^{(n)}(\omega) \geqslant Z_n(\omega) - 1\},\$$

projecting along R onto Ω , is $\mathscr{B}(R) \otimes \mathscr{A}_n$ measurable. Now the claim follows upon applying the section theorem of Meyer (cf. [4], Th. 2.44).

Given any $n, m \in \mathbb{N}$, put

$$\tau_n^{(m)} = \begin{cases} -m & \text{if} \quad \tau_n \leqslant -m, \\ \tau_n & \text{if} \quad -m < \tau_n < m, \\ m & \text{if} \quad m \leqslant \tau_m. \end{cases}$$

Since $||X_{\tau(m)}^{(p+1)} - X_{\tau(m)}^{(p)}||_{\infty} \le a_{p+1}^2 m$ for all $n, m, p \in \mathbb{N}$, $X_{\tau(m)}$ is the $L^{\infty}(\Omega)$ limit of $(X_{\tau(m)}^{(p)})$, and so $E^{\mathscr{A}_n}(X_{\tau(m)})$ is the $L^{\infty}(\Omega)$ limit of $(E^{\mathscr{A}_n}(X_{\tau(m)}^{(p)}))$. But $E^{\mathscr{A}_n}(X_{\tau(m)}^{(p)})$ $=X_{\tau^{(n)}}^{(n)}$ a.s. for $p \ge n$. Therefore

(7)
$$E^{\mathscr{A}_n}(X_{\tau_n^{(m)}}) = X_{\tau_n^{(m)}}^{(n)} \text{ a.s.}$$

On the other hand, we have

$$Z \geqslant X_{\tau_{\mathbf{u}}^{(m)}}$$
 a.s.

Hence by (7)

(8)
$$E^{\mathscr{A}_n}(Z) \geqslant X_{\tau_n^{(m)}}^{(n)} \text{ a.s.}$$

Here we have applied the generalized conditional expectation operator to the non-negative possibly non-integrable Z (a very readable discussion of generalized conditional expectations including generalized martingale theorems may be found in [6], § 20). Letting m in (8) tend to infinity, we get

$$E^{\mathcal{A}_n}(Z) \geqslant X_{\tau_n}^{(n)}$$
 a.s.

Hence, in view of (5) and (6)

$$Z = \lim_{n \to \infty} E^{\mathscr{A}_n}(Z) = +\infty \text{ a.s.}$$

Since the sample paths of the process $\{X_t\}$ are integrals of almost periodic functions having mean value zero, it easily follows from the latter formula and the argument theorem of Bohr that almost no trajectory of the process $\{\exp(iX_t)\}$ is almost periodic.

The proof is complete.

We close the paper by remarking that the assumption made throughout that Ω be a state space for an ergodic flow may be dispensed with. By a standard argument currently used in the theory of stationary processes, we may easily widen the scope of Theorem 3 so as to yield the following

Theorem 4. Let (a_n) be a sequence in l^2-l^1 of rationally independent positive numbers. Given a probability space (Ω, σ, P) , suppose (θ_n) is a sequence of independent random variables on Ω each one uniformly distributed on T. Let

$$F_t = \sum_{k=1}^{\infty} a_k^2 \operatorname{Im}(\exp(ia_k t) \theta_k),$$

$$X_{\iota} = \int_{0}^{\iota} F_{u} du$$

for all $t \in \mathbb{R}$. Then each sample path of the process $\{F_t\}$ is a real almost periodic function with mean value zero. Moreover, the process $\{\exp(iX_t)\}$ is E^2 almost periodic while almost none of its sample paths is almost periodic.

The details of the proof of this theorem are left to the reader.

References

- [3] H. Bohr, Kleinere Beiträge zur Theorie der fastperiodischer Funktionen I, Mat.-Fys. Medd. Danske Vid. Selsk. 10 (10) (1930).
- [4] C. Dellacherie and P.A. Meyer. Probabilités et potentiel, Hermann, Paris 1975.
- [5] U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1981), 231-283.
- [6] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, Berlin 1969.
- [7] B. Jessen, Über die S\(\text{U}\)kulerkonstanten einer fastperiodischen Funktion, Math. Ann. 111 (1935), 355-363.
- [8] M. B. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Princeton University Press, Princeton 1981.

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY PKiN, 00-901 Warszawa

Received December 15, 1982

(1852)

L. Amerio and G. Prouse, Almost-Periodic Functions and Functional Equations, Van Nostrand, New York 1971.