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for kernels such as

K (e, ¢} =msinw
where the family of ellipses is now
¥y = 0*Cos @, .
, =g (a+lgfg)sine, p=1,a>0.

It is enough to take into account result (1.2) (Coifman-Guzmén)
The proof can be seen in [16] if « =1 and in [14] if f = 2.
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An analogue of the argument theorem of Bohr
and its application

by

WOJCIECH CHOJNACKI (Warszawa)

Abstract. An analogue of the argument theorem of Bohr is proved and used to estab-
lish the following result: given a real S' almost periodic function f on R, the function

x—+exp(i {f(u)du) is W' almost periodic if and only if it is (uniformly) almost periodic, in
0

x

which case the function x— [ f (u)du—f(0)x is almost periodic. It -is shown that the latter
]
theorem fails if W' almost periodicity is replaced by what is here called E* almost periodicity.

1. Introduction. According to a well-known theorem of Bohr (cf. [3],
[71), given a real continuous function f on R, the function x — exp(if (x)) is
almost periodic if and only if there exists ae R such that the function
x = f(x)+ax is almost periodic.

Our main objective is to prove the following

TueoreM 1. Suppose a real uniformly continuous function f on R satisfies
the following cocycle condition:

(co) for every teR, there exists a,€R such that the function x —f(x+1)

— f(x)+a,x is almost periodic.

In order that there be aeR such that the function x —f(x)+ax is almost
periodic it is necessary and sufficient that the function x»cxp(if (x)) be W1
almost periodic.

Since given an S!' almost periodic function f on R, the function
x

x = [ f(u)du is uniformly continuous (cf. [1], Th. 4.7.8), and, for any teR,
0
x+t

the function x — j' f(@du is almost periodic (cf. [2], Th. 23.1), from

Theorem 1 .and the above-mentioned argument theorem of Bohr we easily
deduce the following

THEOREM 2. Let f be a real §* almost periodic function on R. Then the

Sunction x —exp(i | f(u)du) is W' almost periodic if and only if it is almost
: :


GUEST


52 W. Chojnacki

periodic, in which case the function x — { F)du—f(0)x is almost periodic.
0

There arises a natural question whether W' almost periodicity in the
above theorem may be replaced by some other types of almost periodicity.
We shall present a negative result in this respect, that will concern so-called
E? almost periodicity, a stronger property than being simultaneously B?
almost periodic for all p > 1. The result will be somewhat ineffective as it is
often the case of results employing a probabilistic argument.

2. Prerequisites. We utilize various classes of almost periodic functions
on R. Aside from the usual (uniformly) almost periodic functions on R, there
appear: :

(i) the Stepanov S” almost periodic functions on R (1 < p < + -x), ie,
those measurable functions on R that are limits of sequences of trigonometric
polynomials in one of the seminorms ‘

T
I/ llsp,r = sup {(2T)~* _IT [f(x+u)Pdu: xeR} (T>0),

no matter in which one;

(i) the Weyl WP almost periodic functions on R (1 <p < + 00), ie,
those measurable functions on R that are limits of sequences of trigonometric
polynomials in the seminorm :

I/ llwe = Jim 1 fllsers

. (iii) the Besicovitch B” almost periodic functions on R 1<p<+w),
ie, those measurable functions on R that are limits of sequences of trigo-
nometric polynomials in the seminorm

T
1z = Hm (2T)™" [ IS (" du)';

(iv) the E? almost periodic functions on R (1< p< +w), ie, those
measurable functions on R that are limits of sequences of trigonometric
polynomials in the seminorm

T

I/llee = inf{e > 0: Em 27)" [ exp (f(w)/c)?du < 2.

.It.is easily verified that a measurable function f on R is E? almost
perxodlc; (I1<p<+w) if and only if there exists a sequence (p,)-of trigo-
nometric polynomials such that for every a >0 '

T
lim Tm (27)™" | exp(a|f ()~ p, W))du = 1,
~-T

n= g Toren

e ©
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We have the following diagram of inclusions:
SPAP c WrPAP

u n
AP c ETAP < BPAP

for any 1 <p,r< +oo.
Given an almost periodic (resp. §” almost periodic, 1 < p < + x, etc)
function fon R and peR, f(u) stands for the uth Fourier coefficient of f, i.e.,

T
fluy= tm 2T)7" [ f(x)exp(—iux)dx.
T—x -T
Given a probability space (22, o, P), E denotes the expectation operator.
If o7 is a o-subalgebra of o, E¥ denotes the conditional expectation operator
relative to /.

. 3. Proof of Theorem 1. The proof of the necessity part of the theorem is
trivial.
The proof of the sufficiency part will be based on the following
elementary
LEMMA. Let f be a uniformly continuous W* almost periodic function on R.
Then f(0) is the uniform limit of convex combinations of translates of f.
Proof. With T; standing for the translation operator by s, let & be the
convex hull of {T;: seR}. Clearly, & is closed under composition.
Observe that given a trigonometric polynomial p of the form
p(x) =Y p(Aexp(ilx) (xeR)
AeA
with a finite 4, the composition S of all §; with AeA—{0}, each S, being
defined as :

T+ To)s

satisfies Sp = p(0). Keeping this in mind, given any ¢>0, let p be a
trigonometric polynomial such that |{f—p|lw1 < &/3. Of course |f(0)—5(0)
<g/3, Select Se.% so that Sp = p(0). Clearly ||Sf—f(0)llyr < 2¢/3, and so
I1S/—7F ()]l 1,7 < 2¢/3 for some T> 0. Since Sf—f (0) is uniformly continuous,
there exists S'e % such that

15 (S~ (O|o < 1ISf—F (Ollls,x +2/3.

On account’ of the last two estimates and in view of S'(Sf—f(0))
=8 Sf—f(0), we get ||S' Sf—f(0)l, < &, which ends the proof.

Proceeding to establish the sufficiency part of Theorem 1, suppose f'is a
real uniformly continuous function f on R that satisfies (co). Denote by ¢ the
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function x ~ exp(if(x)). By the argument theorem of Bohr, the proof will
be complete upon showing that g is almost periodic.

Since [lgllyt =1, g has at least one non-zero Fourier coefficient, say
J(u) (ueR). Let ¢ >0 be given. Applying the lemma to the function g,(x)
=g(x)exp(—iux) (xeR), we see that there exist positive numbers

g (i=1,...,n with ¥ g =1 and real numbers s; ({ =1, ..., n) such that

i=1 )
1Y aT0,~3Wll. <e
i=1

Since the expression on the left side is equal to
n . J—
“ Z aingig‘n*gﬂ(ﬂ) g”om
i=1

and, in view of (co), each function ¢T; g, (i =1, ..., n) is almost periodic, we
infer that §(u) g is the uniform limit of almost periodic functions. This in
turn implies immediately that g is almost periodic.

The proof is complete.

4. A negative result. Let (Q, o, P) be a probability space. Suppose there is
given an ergodic flow on 2, ie, a one-parameter group {S,: teR} of
measure-preserving transformations of @ onto itself, with the following
properties:

(i) the map RxQs(t,w)-S,(w)eQ is measurable relative to

(%(R)@a, o), where #(R) denotes the Borel o-algebra of R;
(i) given a random variable f on Q, foS, =f as. (almost surely) for all
teR implies f is constant a.s.

Let (a,) be a sequence in I*—I' of rationally independent positive

numbers. Suppose the flow {S,} has, for each neN, an eigenfunction 6,
corresponding to the eigenfrequency a,/2m, such that

6,08, = exp (ia,t) 6,

for all re R. Suppose, moreover, that the eigenfunctions 6, forﬁ a family of
independent random variables each one uniformly distributed on T (the unit
circle).

That the above assumptions can be fulfilled is seen as follows. Take
TV for @ with the Borel g-algebra of TV as o, and the direct product
measure obtained from Lebesgue measure. on each copy of T as P. Define an
ergodic flow on Q by putting

Si(@) = (exp(ia;t) e, , exp(iayt) ey, .. )

for every o =(w,, w;,..)eQ. Eventually realize an eigenfunction 0,(neN)
of {S,] as the projection from Q onto the nth copy of T
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Let

F=3% almo,.
k=1

Define a stochastic process {F,} by putting
F,=FoS,

for all teR. Clearly, each sample path of {F,} is a real almost periodic
function with mean value zero. Given te R, set

t
X, =[ F,du.
(4]

In the sequel, when speaking about an almost periodic (resp. S” almost
periodic, 1 < p < +co, etc.) stochastic process we shall mean that almost all
trajectories of the process are almost periodic (resp. S almost periodic,
1<p< 4w, etc).

The main result of this section is

THEOREM 3. The process [exp(iX,)} is E* almost periodic. Almost none of
its sample paths is almost periodic.

Proof. For each neN, set

n
Y® =Y aReb,.
k=1
Let Y be the limit of (Y™) as.; the existence of the limit follows from the
three series theorem.
We claim that for any o >0

) lim Eexp(ajexp(iY)—exp(iY™)?) = 1.

To prove the claim note first that the sequence in (1) is minorized by
one. Thus we need only appropriate estimates from above. Since |exp(ix)
—1] < |x| for xeR, we may write

2) Eexp(xlexp(iY)—exp(iY™)|?) = Eexp(x|exp (i(Y—Y)—1]?)
< Eexp(a|Y—Y"|3)

for every a >0 and every neN. .

Denote by (s,) a Bernoulli sequence, ie., a sequence of independent
identically distributed random variables each one taking the value plus and
minus one with equal probability. (Re §,) being a sequence of symmetric real-
valued random variables not exceeding one in absolute value, the Kahane
contraction principle (cf. [8], Th. 24.9) neatly applies so as to give
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3 EY-Y">=E| ¥ aReO*<E| Y asl”
k=n+1 k=n+1

for all n, pe N. Here the right-hand series converges a.s. by the three series
theorem. On the other hand, by Khintchine’s inequality (cf. [5]), we have for
all n, peN ]
E| Y a&l*<2x'2rp+1/2)( Y &)
k=n+1 k=n+1

@

<2p( Y a).

k=n+1

Hence by (3)
o 3 "
Eexp@|Y-Y") =1+ f;,_ E|Y—Y®?
=1 P

0 o0
<1+ Y (20 Y af)r.
p=1 k=n+1
From this estimate and from (2) one easily deduces (1).
Having established (1), we accomplish the proof of the first assertion of
the theorem reasoning as follows. )
Let {Y} = {YoS,} and, for every ne N, {¥®} = {Y™05,}. By Birkhofl’s
ergodic theorem, for every « > 0 and every neN, the limit

T
Tlim 2D | exp{x lexp (iY) —exp (iY;")?) dt
Sx r

exists a.s. and equals
Eexp(x)exp(iY)—exp(iY™)?).
Hence by (1)

n=x T+

T
lim lim (2T)7' | exp(«|exp(i¥)—exp(i¥™)|?)dr =1 as.
-T

Since each of the processes {exp(i¥%)} (neN) is almost periodic, the latter
equality implies that {exp(i¥,)} is E* almost periodic. On the other hand, the
processes {X,} and {Y—Y,} are stochastically indistinguishable. Thus, almost
every sample path of {exp(iX,)} is, up to a random factor of absolute value
one, the complex conjugate of the corresponding trajectory of {exp(i¥)}. As
a result, the process {exp(iX,))} is E? almost periodic.
) We pass now to proving the second assertion of the theorem. Given
neN, let o/, = g(,, 1 <k <n) be the g-algebra generated by the 6, shown.

Let o, =a(|) o).
) k=1

icm
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Since the process {X,} has continuous sample paths, sup{X,: reR} is a
well-defined random variable Z on Q. Z is non-negative because X, = 0.
Clearly, Z is &/, adopted.

For each teR and each neN, put

X" =% a[Reb,—Re(exp(ia.nb,)].
k=1
We see that for every teR, X, is the pointwise limit of (X™).
Given neN, let

Z,=sup{X": teR}. ‘
Since {a;: ke N} is a rationally independent set, it follows from Kronecker’s

theorem that
C)] Z,= Y a(l+Reb).
k=1

Of course, Z, is &/, adopted. Using the three series theorem, we easily derive
from (4) that )
(5) lim Z, = +o0 as.

We claim that given ne N, there exists an .«/, adopted random variable
7, on Q such that

(6) X" >2Z,~1 as.
Indeed, since for each ne N, the process {X™} is #(R) ® &/, measurable, the
set
{t, 0)eRxQ: XM () 2 Z,(0)—1},
projecting along R onto Q, is #(R) ® ./, measurable. Now the claim follows

upon applying the section theorem of Meyer (cf. [4], Th. 2.44).
Given any n,meN, put

—-m if 1,<-—m,
=<1, if  —-m<t,<m,
m if m<r,.

-Since || X%V~ XDl < apiym for all n, m, peN, Xygm is the L*(Q) limit
n n

Of (X{y), and s0 Ex(X,gn) is the (@) limit of (E“(X(f). But Ex(X{f
= X@, as. for p > n. Therefore

Q) En(Xm) = X as.
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On the other hand, we have

Zz X(m) a.s.
n

k4

Hence by (7)
8) E“n(Z) = Xi{’!,,, a.s,

Here we have applied the generalized conditional expectation operator to the
non-negative possibly non-integrable Z (a very readable discussion of ge-
neralized conditional expectations including generalized martingale theorems
may be found in [6], § 20). Letting m in (8) tend to infinity, we get

E“n(Z) 2 X" as.
Hence, in view of (5) and (6)

Z = lim E¥n(Z) = + o as.
n—roo
Since the sample paths of the process {X,} are integrals of almost periodic
functions having mean value zero, it easily follows from the-latter formula
and the argument theorem of Bohr that almost no trajectory of the
process {exp(iX,)} is almost periodic.

The proof is complete.

We close the- paper by remarking that the assumption made throughout
that Q be a state space for an ergodic flow may be dispensed with. By a
standard argument currently used in the theory of stationary processes, we
may easily widen the scope of Theorem 3 so as to yield the following

TueoREM 4. Let (a,) be a sequence in I*~I* of rationally independent
positive numbers. Given a probability space (R, o, P), suppose (9,) is a sequence
of independent random variables on Q each one uniformly distributed on T. Let

F, =} afIm(exp(ia,1)6,),

k=

-

Jor all te R. Then each sample path of the process {F,} is a real almost periodic
Junction with mean value zero. Moreover, the process {exp(iX,)} is E? almost
periodic while almost none of its sample paths is almost periodic,

The details of the proof of this theorem. are left to the reader.
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