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On Riemann integration of functions with values in
topological linear spaces
by
Ch. KLEIN (Karlsruhe), S. ROLEWICZ (Warszawa-Karlsruhe) *

Abstract. The definition of Riemann integral with respect to arbitrary non-atomic
measure of functions with values in linear topological spaces is introduced.

Introduction. Let X be a linear metric space. Let f: [0, 1]~ X be a
Lebesgue measurable function defined on the unit interval [0, 1] with values
in X. If the space X is not locally convex then, in éeneral, it is impossible to
define a Lebesgue integral for f (see S. Rolewicz [9]). This follows from the
fact that it is easy to construct a sequence of simple functions x, with

Xy o= Z am,nX(Em)
m=1

such that SUPp [|@mql| O for n—co and such that ) a,,A(E,) does not

tend to zero, where A(E,) denotes the Lebesgue measure of the set E,.

Since it is not possible to define the Lebesgue integral, D. Przeworska-
Rolewicz and S. Rolewicz [7] and independently B. Gramsch [2], [3], [4]
have introduced a Riemann integral. The definition is more or less like the
classical one. However, there are continuous functions. which are not
Riemann integrable. Even more, if each continuous function is Riemann
integrable, then the space X is locally convex. This shows that the class of
Riemann integrable functions is relatively small for a suitable space X.

In the papers mentioned above ([7], [2], [3], [41), the definition was
extended to analytic manifolds. The use of these integrals gives us the
possibility to define analytic functions in locally bounded algebras.
Consequently, it yields an extension of Levy’s theorem for exponents p with
O<p<l.

Then the natural question arises: Can we define a Riemann integral of
functions with values in a linear metric space defined on a compact space K
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which is endowed with a Radon measure u? This note gives a positive
answer to this question. Even more, such an integral will be defined for
functions with values in a topological linear space.

There are also some recent studies of Riemann’s integrability. C. S.

Honig [5] found several examples of Riemann integrable, Hilbert space
valued functions defined on the unit interval [0, 1] which are not measurable
with respect to the complete Lebesgue measure. G. C. da Rocha Filho [8]
analysed definitions of abstract Riemann integrals. A. Pelczynski gave.a
definition of Riemann integrable functions defined on an arbitrary measure
space with values in a Banach space.

1. Preliminary results. Throughout this paper we will consider a compact
(Hausdorff-) space K endowed with a non-negative Radon measure u such
that supp(y) = K. Here supp(y):= {xe K| u(U) > 0 for every open neigh-
bourhood U of x} denotes the support of u. If B'< K then B denotes the
closure of B in K; instead of B we sometimes use the notation cl(B). B ¢ K
is regular closed if the closure of the interior of B coincides with B, i.e, if
clint(B) = B. The (topological) boundary of B is 8B:= B~ K\B. #(K)
denotes the Borel algebra of K, i.e., the smallest o-field on K containing all
compact subsets of K. An element Be #(K) is called a u-continuity set if
#(8B) = 0. The class of all u-continuity sets is a field, but generally not a o-
field. RC(K, u) denotes the class of all regular closed u-continuity subsets of
K. Z(y) = #(K) is the Boolean ¢-ideal of u-zero Borel subsets of K. The
following lemma is valid especially for K and u:

Lemma 1. Let X bé a compact space and let v be a non-negative Radon
measure on X. Then the class of all reaular closed v-continuity sets having a
non-void interior is a neighbourhood basis system of X. .

Proof. Let D be an open neighbourhood of xeX. Let ¢ > 0. Since
v is regular, there is a closed set B = D with v(D\B) <. We may assume
xeB, for otherwise we consider Bu {x}. There is a continuous Urysohn
fllnCthIl g: X—[01] with glp=1 and glxp=0. 'For 0<a<1 put

={xeX| g(x)=a}. Then X = (J G,. Since v is bounded, there are at

0€asl
most countably many G, with v(G,) > 0. Therefore there is a 8, 0 < f <1,
~with v(Gg) = 0. We put C:={xeX| g(x)>f) and CC:=clint(C). One
verifies that CC is a regular closed set having a non-void interior. Moreover,
xeint(CC) and CC.= D. Since 8CC < 8C < {xe X| g(x) = f}, the set CC is
a v-contmmty set. 'm

An RC (K, pypartition of K is Pi={P}.,
< RC(K, m)\{@} such that U P; = K and such that P, P) = Z(,u) for all i,
jg{l o n} with i #j. An RC (K, w-partition 2 := {Pj;}™ of K is called a

a finite class
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refinement of ‘P, or is finer than &, if for every P; there is .a subset
.., m} with P,= {) Pj.
Jep(i)
Lemma 2. Let 2:= (P}, and & -JPJ}j 1 be two RC(K, w-
partitions of K. Then 2 " 2 := {clint(P;n P} 1 <i<n 1<j<m\{@} is
a RC(K, w-partition of K which is finer. than both # and #.

Proof. Due to its definition 22N % consists of regular closed sets.

Since 6(c11nt(P la) P)) c d(P,n P, it follows that N consists of

u-continuity sets. Let 1<iy, i, <n 1<, jo» <m and (iy,j;) # (iz, j2)-

Then (P "P,)n (P, nP;,) =Z(y).  Therefore (clint (P, N P)) 0

A (clint (P, r\P}z)) < Z(y). Let xeK and suppose that x is not contained in
an element of # N Z. Then there is a closed neighbourhood U (x) of x
such that P;nP; is nowhere dense in U(x) for every pair (i, ). This is
a contradiction to the Baire theorem. Hence £ n & is a RC(K, p)-partition
of K.

Let 1 <i<n We consider the elements of ZN#. of the following
form: clint (P N Pj) with 1 <j < m. These elements cover P;, as again follows
from Baire’s theorem. Hence 22N & is a refinement of 2 and analogously
of 7Z. m

Lemma 3. Suppose that {A;}'-y cRC(K () is a finite covering of K.
There is a RC(K, u)-partition 2P —l PYLy of K such that for every
jeil, ..., m) there is an i(jle{l, ..., n} with P; < Ay.

Proof. We construct 2 by induction. Let By := A4, \( U A) If int (By)
=@ then 4, < U A; for K\( U 4;) is open. Therefore, if 1nt(Bl) = @, then

we may con51der the coverlng {A }_, of K and start again. Let int(B,)
# @. Then clint(B,) is a regular closed, non-empty u-continuity set, be-

cause 9 (int( ) <

=cl 1nt(B1) In the next step we consider K, := K\int(B,). If int(K;)
= (2) then K < P, and we ar¢ finished. If int (K,) # @ then K, eRC(K, y) is
compact. {4;}f-, = RC(K, y) is a covering of K,. Hence we can apply the
first step again which yields P,. Repeating this procedure at most n tlmes, we
obtain 2. u

We denote by SZ the set of all RC(K, p)-partitions of K. An oraer
> on S is defined as follows: & > 2 iff #' is finer than £. Recall
the meaning of an order: (i) 2 Z, (i) ' 2% and ' 2 P=>P" 2 P,
(i) =2 and 22 # =P = Due to Lemma 2 the ordered set
(S, =) is reticulated, ie., if 2,,..., #,€S2 then there is a ¥ SZ with
PzPfori=1,..,n

U 04;. Moreover, clint(B,) cAl and we can choose
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2. The definition of a Riemann integral. In the following let L be a
topological linear (Hausdorff) space over the field of real numbers R or over
the field C of complex numbers. L denotes the completion of L with respect
to the translation-invariant uniform structure of L. A subset B < Lis called
bounded if for every open neighbourhood U of the zero element in Lthere is
a constant b(U) with B = b(U)U. A map f: K - Lfrom the compact space
K into Lis called bounded if f(K) is a bounded subset of L.

Let f: K —L be a bounded map. If #:= Pl is an RC(K, u)-

partition of K and if x;e f(P) for i =1, ..., n then x:= Y 1(Py)x; is called
P==1

a P-sum of f. We denote S(f, #):= {xeL| x is a #-sum ;)ff,’r; S(f, #) < L.
If the indexed class {S(f, ) Pe(S#, =)} is converging in L, ie., is finer
than a Cauchy filter in L, then f'is called RC(K, w-Riemann integrable and

lim S(f, %)

#e(54,2)

R
i‘(fd,u::

is called the RC(K, p) Riemann integral of f over K, ie. ye L is the RC(K, i
Riemann integral of fover K if for every open neighbourhood U of y there is
a Ze(S2, >) such that S(f, ) c U for all #' > 2. One recognizes that
the above definition is a generalization of Riemann’s original definition.

Since the RC(K, u) Riemann integral is a limit, all operations compat-
ible with limits are compatible with the above integral. If 4 = K then 2 (A)
denotes the characteristic function of A, i.e., x(4)(x) =1 if xe A and 2(A)(x)
=0 if x¢ 4. Suppose that f: K — Lis RC(K, ) Riemann integrable; then
Sx(A)is RC(K, 4) Riemann integrable for every AeRC(K, ). Conversely, if
PeSP, P:= (P}l and if fy(P) is RC(K, y) Riemann integrable for every
I then f is RC(K, ) Riemann integrable and

R n R' n R
[fdu= Y [fx(P)du=:Y [ fdu.
K i=1K i=1p

- A constant function g: K — L defined by x—~goeL is RC(K, p)
Riemann integrable and its RC(K, ) Riemann integral is equal to u(K)g,.
The: classical result states that if X is finite-dimensional, then a bounded
function f is Riemann integrable if and only if it is continuous almost
everywhere. In infinite-dimensional spaces the theorem does not hold as
follows from

ExampLe 1 (C. S. Honig). Let 4 := {q;] ie N} be a dense set in the unit
interval [0,1]. Let {e;| ic N} be an orthonormal system in the Hilbert space
. Define f: [0,1] -1 as follows: f () = ¢, for ie N and f(x) = 0 if x¢A.
Then fis RC([0,1],4) Riemann integrable but nowhere continuous. Here A
denotes the Lebesgue measure. Using a non-separable Hilbert space and a
non-Lebesgue measurable set in [0,1] one obtains analogously an
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RC([0,1],4) Riemann integrable function which is not measurable with re-
spect to the complete Lebesgue measure.

Obviously, the class of RC(K, y) Riemann integrable functions depends
on the geometry of the topological linear space considered. We study in the
following the translation of the classical results.

3. Darboux integrability in Banach spaces. We consider a Banach
space B with the norm || || over the field R or C. f M < B then
dia(M):=sup {||x—y|[ | x,ye M} denotes the diameter of M. M is bounded
iff dia(M) <oo. Suppose that f: K—~B is a bounded map, ie, that
dia(f(K)) < 0. Let #:={P}., an RC(K, y)-partition of K. Then
dia{S(f, #)) is called the p-diameter of f with respect to . .

If # is a RC(K, p)-partition of K finer than" #, then dia(S(f, #)
> dia(S(f, #)). Indeed, for 0< A< 1 we obtain |[(Ax+(1—4)y)—(Av+(1—
—Aw)|| < max {lx—v||, [[y—w||}. We claim that f is RC(K, &) Riemann in-
tegrable iff there is a sequence {2}y of RC(K, p)-partitions with
dia(S(f, #,)) =0 for i — co. Here, the if* part follows, because dia(convex
hull of S(f, #)) = dia(S(f, £)) and because S(f, #) < convex hull of S(f, &)
if # > 2. Remark that the inequality #,., > %, can be assumed to hold
without loss of generality for all i.

We call dis(f, #):= Y dia(f(P))u(P) the u-distance sum of f with

i=1
respect to 2. We obtain 0 <dis(f, #) < dis(f, #) < o with 2 > 2. fis
called RC(K,, ) Darboux integrable if inf{dis(f, #)| PeS2} = 0.

The RC(K, y) Darboux integrability implies the RC(K, ) Riemann
integrability. If B is finite-dimensional then the converse is true due to
Riemann. It follows from Example 1 that in the infinite-dimensional case the
inverse implication need not be true. The definition of the RC(K, ]
Darboux integrability is suitable for the translation of classical results:

ProrosiTiON 4. Let K be a compact space and let u be a non-negative
Radon measure with supp(u) = K. Let B be a Banach space and let f: K — B
be a bounded map.

(a) If f is RC(K, p) Darboux integrable then f is continuous at p-almost
every point of K (i.e., the set of discontinuity points of fis contained in a y-zero
set).

(b) If f is continuous then f is RC(K, p) Darboux integrable.

(c) If K is a metrizable and if f is continuous at p-almost every point of K
then f is RC(K, w) Darboux integrable.

(d) If f is RC(K, ) Darboux inteérable, then f is [i Bochner integrable and
the two integrals coincide. Here [ denotes the completion of .

Proof. (a) Suppose that f is RC(K, u) Darboux integrable. Then for
each positive integer n we can choose an RC(K, w-partition £, such that
dis(f, #,) < l/n. Replacing these partitions, due to Lemma 2, with finer
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RC(K, w)-partitions if necessary we can assume that for each n the
" RC(K, w)-partition #,,, is a refinement of the RC(K w)-partition #,, Let
P,:={P,(m| 1<i<p()} and let Zpyi={P(n1+1)] 1<i<p(n+1)}
where p(n) and p(n+1) are positive integers. We can suppose that there are
indices {p(n,i)| L<i<pn)} with p(n, i) <p(n, i+1) for all ie{l,...
..., p(m—1} such that P;(n) = {P;(n+1}| p(n, i) <j<p(n, i+1)} for all
ie{l,..., p(n)}. Starting the above construction of a numeration with n = 1,
we can suppose that the equations are valid for each n.
For each n we define a real valued function d,: K — R as follows: If
1<i<p(n) and xeP,(m\ U_P;(n) then d,(x): = dia(f (P,(n)). Then d, is
1<) <i

a non-increasing sequence of non-negative simple Borel functions. Moreover,
[dydu = dis(f, #,)
K . .

Since {d,},.n is a non-increasing sequence of non-negative real valued
functions, we can define d:= limd pointwise. 4 is Borel measurable.

Lebesgue’s bounded convergence thcorcm implies that jddu = hm dis(f, 2,)

= 0. Since d > 0, it follows that there is a u-zero set E with

(+) d(x)=0 for all xeK\E.
Let 02,:={J{0P;(n)| 1 <i< p(n)} the union of the boundaries of the

P, sets. Since 02, is a p-zero set, it follows that ) 84, is a u-zero set. Let
neN

xeK and x¢ Eu(|) 84,). We recognize that f is continuous at x due to the

N
definition of d,. In'geed, if £ > 0 then there is an n(e)e N such that d,(x) <&
for n > n(e) because of (+). Since x is not a boundary point of ,,,, there is
a Py(n(e)) with xeint(P;(n(e))). As dia(f(P))=dyy(x) it follows that
If0)~f @) <& for all y, zeint(P;(n(e)). Hence f is continuous at x and
part (a) is proved. .
We prove (b). f is supposed to be continuous on K. This implies that
Jfis uniformly continuous on K. Let N:={U| UeU} be a neighbourhood
basis of the uniformity of K. If xe K then there is a neighbourhood basis
N(x):={N(x, U)] UeU} of x fulfilling N(x, UyxN(x, U) = U. On the
analogy of Lemma 1 we can suppose that N(x) = RC(K, ,u) Since K is
compact there are finitely many elements [x;| 1 <i<n(U)} < K such that
IN(x;, U)| 1<i<n(U)} is a covering of K. It follows from Lemma 3 that
there is a RC(K, p)-partition #y:={P,(U)] 1 <i< m(U)} such that each
P;(U) fulfils P,(U)xP,(U) = U~
If ne N then there is a U (n)e U with dia (f (N (x, U(n))) < 1/n. On the
analogy of part (a), the system of RC(K, p)-partitions {Pywm| ne N} yields
a system of RC(K, p)-partitions {2y, | neN} with the following properties:
.(1) Py 18 finer than Py, and (i) Pyw+1) Is a refinement of #y, for every
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neN. Due to our construction we obtain dis(f, Py,) <
RC(K, u) Darboux integrable and (b) is proved.

We prove part (c). K is a compact metric space. Therefore there is
a countable basis U:={U(n)| neN} of the uniformity of K. As above
we obtain a sequence 9”,,:={Pi(n)] 1<i< p(m)} of RC(K, y-partitions
of K such that (i) £, is a refinement of £, for all n and (ii) P;(n) x -
x P;(n) = U(n) for all n and i. Let f be continuous at yu-almost every point of
K. Define d,: K — R just as before. If f is continuous at xe K\ {J 8%, then

neN
limd,,(x) = 0. Hence limd,, =0 holds at p-almost every point of K. Since

: u(K)/n. Hence f is

j d,dp = dis(f, 2,), Lebesgues bounded convergence theorem implies that

hmdls(f, P,)=Hm [d,dy= 0. It follows that f is RC(K, p) Darboux

n K
1ntegrable

We prove (d). Since fis RC(K, y) Darboux integrable, we can define d,,
d and 2, as in part (a). If ne N we define a function f,: K — B as follows:
Let 1<i<p(n and yef(P(W\ U P;(m). If xeP(n)\ U _Pj(n) then

j<i

[ (x¥):=y;. f, is a simple Borel flll‘lCtlJOIl Hence f, is totally measurable (cf.
N. Dunford and J. T. Schwartz [1] for the definitions). Since d, — 0 u-almost
everywhere, we obtain f, »f p-almost everywhere. Therefore fis @
measurable (cf. [1] Corollary III 6.14). .

As f is bounded, there is a constant g with ||f,(x)|| < g for all xeK.
Due to the bounded convergence theorem, f-is Bochner jntegrable and

R
jfdﬁ=lim jf,,dﬁ. Since j'f,,dﬁeS(f, 2,), it follows that‘j"fdp= ffdy. n
K

We mentlon some pomts (1) It is well known that a functlon f [0,1]
— R which is Riemann integrable in the classical sense need not be
Lebesgue-Borel measurable. (2) We proved part (c) for the metric case only,
because the bounded convergence theorem is valid for Moore-Smith se-
quences in a slightly different version (cf. N. Dunford and J. T. Schwartz [1],
III 3.7).

W)e finish this section with two canonical generalizations of the above
proposition: (3) If F is a locally convex Fréchet space then the results remain
true. Indeed, since we can consider the -associated semi-normed spaces and
since the countable union of u-zero sets is a u-zero set, the proof can be
applied too. (4) Let oK be a locally compact space and let ou be a non-
negative Radon measure defined on oK with supp (sp) = oK. If t(c0) is the
neighbourhood basis of infinity consisting of all regular open ou-continuity
sets, then the classical definition of the Riemann integral on R can be applied
analogously with respect to 9(co).

4. An application to uniformly distributed sequences. The classical
Riemann integral is suitable for the approximation by average means with
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respect to uniformly distributed sequences (cf. L. Kuipers and H. Niederreiter
[6] Chapter 1, Corollary 1.1). We want to state an al}alogeus result for the
generalized situation. For this purpose we consider in this part 4 a non-
negative, normalized Radon measure y; defined on the compact space K with
supp(;) = K. This means that we make the additional assumption that
w (K) =1 o ) ]

A sequence {x},.x < K is called u;-uniformly distributed in K if

4.1) ' lim = Z Fix) = [ fdu

n-vmil

holds for every continuous real valued function f on K. It is well known that
{x;}ien is pq-uniformly distributed in K iff (4.1) holds for every characteristic
function y(A) where A is a p-continuity set (cf. [6] Chapter 3, Theorem 1.2).
If K is metrizable, then a p;-uniformly distributed sequence exists (cf. [6],
Chapter 3, Lemma 2.1).

ProrosiTION 5. Let K be a compact space and let u, be a non-negative
and normalized Radon measure on K with supp(u;) = K. Suppose that B is a
Banach space with dimB > 1. A sequerice {x;};exy < K is py-uniformly dis-
tributed iff for every RC(K, p,) Darboux integrable function f: K — B the
following holds:

n

4.1) Lim/(1/n) Z S

i=

R
() = [ fdpy.
K

Proof. Since every continuous function f is RC(K, u,) Darboux inte-
grable, the ‘if” part follows for dim B > 1. '

We suppose now that {x;};.y is g;-uniformly distributed in K and that f
is RC(K, p;) Darboux integrable. We need some preparations before we can
prove that (4.1') holds for f. Observe that inf{dis(f, #)| "/’ES:’/’1 0. If

A =K then dia(f(d)) = dia(convex hull of f(4)). Hence inf { Z dia (convex

hull of f(P)) uy(P)| #={P}l.1eSP}=0. If 2= (P, _leSf/' then we
write

Scon(f, #):= {3 xp; (P)| x;econvexhull of f(P)}.
i=1
Hence

lim  Scon(f, #).

Pe(SP,2)

R
[ fdu, =
K
Moreover, if xeScon(f, #)-and if dis(f, #) <s&/2, it follows that
R

(4.2 ||:£fdu1 —x|| <g/2.
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Lastly, since fis bounded, there is a constant ¢ (f) > 0 with || f (x)]| < ¢(f) for
all xekK. .

Let £e R, & > 0. Then there is an RC(K, )-partition 2(e): = {P}I_, of
K with dis(f, &) <¢/2 for all & > P(e). We define P*(s):= {P¥Ir. | as
follows:

i—1
Pri= P,.\(k!1 P,).

P*(¢) is a disjoint decomposition of K consisting of u,-continuity sets. Hence
equation (4.1) holds for the characteristic functions y(P¥) with i=1, ..., n.
Therefore we can choose an m(g)e N such that

“3) [t (21 3 0P| < e )

for m=zm() and i=1, ..., n

Due to (4.3) there are elements f(@i, m) from the convex hull of f(P¥)
with

@4 |If 6 m—m=tp PH? i T )2 PHE| < e(Nef2e() = &2
j=1

where m > m(e) and ie{l, ..., n}. Since dis (f, 2(¢)) < ¢/2, it follows that

45) Hffdul——}:f(x,)n |! f fdp, — Zlf(i, m) uy (P +

HE 7@ mun = F 1) <azesz =0

where m = m(e). Consequently

1] = im 5 s <

Since ¢ >0 was arbitrarily chosen, the proposition follows. =

On the analogy of Section 3, Proposition 5 can be formulated for metric
locally convex spaces.
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Closed subgroups of nuclear spaces are weakly closed
by
WOIJCIECH BANASZCZYK (L6d3)

Abstract. A’ proof is given that a closed additive subgroup of a huclear space is weakly
closed, This generalizes the result obtained in [1].

It has been proved in [1] that if K is a discrete additive subgroup of a
nuclear space E, then the quotient group E/K admits sufficiently many
continuous characters, which means precisely that K is weakly closed in E. It
appears, however, that it suffices to assume K to be closed. This result
admits two equivalent formulations.

THEOREM A. A closed additive subgroup of a nuclear space is weakly
closed.

TueoreM B. If K is a closed additive subgroup of a nuclear space E, rhen
the quotient group E/K admits sufficiently many continuous characters.

We shall prove Theorem A. For the equivalence of A and B see Lemma
8 below. These theorems provide another illustration of the fact that nuclear
spaces are more closely related to finite dimensional spaces than normed
spaces are, since, as it has been proved in [2], they do not hold in any
infinite dimensional normed space (see also Corollary 3 below). In fact, these
theorems characterize nuclear spaces; more precisely, if they hold in a B¥-
space E, then E is nuclear. The proof will be given elsewhere.

Let A be a subset of a topological vector space. E. The symbols 4, A%,
span 4 and intA4 will denote respectively the closure, the weak closure, the
linear span and the interior of 4. If E is a metric space, then diam A will
denote the diameter of 4, and d(u, 4) the distance of a point ueE to 4. By
gp A we shall denote the additive subgroup of E generated by A. Speaking of
subgroups of vector spaces we shall omit the word “additive”.

If E is a unitary space, then the scalar product of vectors u, we E will be
denoted by (u, w). By an ellipsoid in E we shall always mean an ellipsoid
which is closed and convex. If T is a linear operator acting between normed
spaces, then 4, (T), n=1,2,..., will denote the nth Kolmogorov number
of T. i

We shall obtain Theorem A as an easy consequence of the following
proposition.
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