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On the ratio maximal function for an ergodic flow
by
RYOTARO SATO (Okayama)

Abstract. In this paper an integrabikty problem is investigated for the supremum of
ergodic ratios defined by means of a conservative and ergodic measurable flow of measure
preserving transformations on a o-finite measure space. The results obtained below include, as a
special case, the continuous parameter versions of Davis’s recent results concerning the sup-
remum of ergodic averages defined Uy means of an invertible and crgodic measure preserving
transformation on a probability measure space.

1. Introduction. Let (2, &, 1) be a o-finite measure space and {T},x &
conservative and ergodic measurable flow of measure preserving transform-
ations on (2, &, ). In what follows we shall assume that y is nonatomic and
complete. As is easily seen, this is done without loss of generality.

Fix any 0 < ee L, (4) such that {edu = 1. If f e L, (4), the ratio maximal
function M, (f){w) with respect to ¢ is defined by

b b
Me(f)(w)=sbu;0>”f(7;w)dt/j'e(T,w)dt] (wef).
>0 0 0
Let £, denote the decreasing function on the interval [0, 1) which is equidis-

tributed with f/e (€ L, (edu)) with respect to the measure edu. Extending f,
to the real line R by f,(t+1) = f,(t) for teR, we define

172t
H(f) = j %fos)ds dt.
[ -t

Clearly, H,(f)=0 if and only if f/fe and —f/e are equidistributed with
respect to edp. Further it is known (cf. [8]) that if £ > O then H, (f) < o0 if
and only if [flog™ (f/e)du < oo, where log* a = log(max {a, 1}) for a = 0.
This, together with Theorem 2 in [8], shows that if f > 0 then H,(f) < oo if
and only if [M,(f) edp < oo. However, if the nonnegativity of f is not
assumed, then, as is easily seen by a simple example, H,(f) < co does not
necessarily imply (M.(f)-edup<oco. (It will be proved below that
[M,(f)-edu < oo implies H,(f} < c0.) Therefore it would be of interest to
know what condition on the ratio maximal function with respect to e is
necessary (and sufficient) for the condition H,.(f) < co. This is the starting
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point for the study in this paper. We shall show that H,(f) < oo if and only
if there exists an f’eL,(u) such that f'/e and f/e are equidistributed with
respect to edy and [M,(f")-edu < co. When (2, &, ) is a probability space
and e =1 on @, this characterization reduces to the one which corresponds
to the continuous parameter version of Davis’s result [4] for an invertible
and ergodic measure preserving transformation on a probability space.

2. Results. In this section we will prove our results using the ideas in [4]
adapted to our situation.

Tueorem 1 (cf. [9]). Let (@, & 1), |Ther and eeLy(y) be as in
Introduction. There exists an absolute comtanr ¢ >0 such that

(M, (f) edp> cH, (f) Jor all feLy(w.

To prove Theorem 1 we need some Jemmas. For convenience we will
write yt, = edu. The letters ¢ and C will denote positive absolute constants;
the same letters do not necessarily denote the same numbers.

LemMA 1. Let T be a conservative measure preserving transformation on
(Q, &. w) and feL;(u). Define, for we®,

M(T o) f (e —supl Z f(T‘w)I/Z e(T'o

(M(T, e) f > a}
Sfap
[M(T,e)f <a] ~(AUT ~ 14)
where -[M(T, e) f <u«] denotes the smallest set in §& containing the set
{M(T, e) f <a} and invariant under T.
Proof. Clearly, it suffices to consider the case where u({M(T, ef
<a})>0. Let us write B=[M(T, e)f <a]. For simplicity, assume that

B = Q. This is done without loss of generality. Since T is conservative, it
then follows from [57 that :

[fin= 3, j

Given an o > 0, let 4 = }. Then we have

Sap, ([M(T, O f <a] N(AUT™* 4)),

n
(X T'f)dp,
n=1 n s =
(@=Ain( 0 177 Fg) T =k L9 4)
where T'f(w)= f(T'w). Since T™'A is the disjoint union of the sets
n
([ﬂ THA)NT " D(Q—A), n2 1, We have
=1
[ Jdw={fdu+ | fdy
AUT™ 14 A @~ A)ynT~ 14
-] n
-3 j (%, Tf)du

n t=0
(@~ A)r\(lﬁ]T"iA)nT"(” -4
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e}
<y |
n=1 n B}
(Q“A)ﬂ(.ﬂlT—'A)nT"("* -4
i=

=a [ edy,
AT~ 14

~ which completes the proof.

LemMA 2. Given an o >0, let A =
[fdp < op(4).
A

Proof. By virtue of Lemma 1 this follows from an easy modification of
the proof of Theorem 1 in [8]. We omit the details.

Now suppose that feL,(y) satisfies [fdu=0. 1 1>0, let 0,(f, 1)
=supire[0,-1): f.(t) = A}. Then 0 < 0,(f, 1) < 1; and there exists a unique
number ¢,(f, 4) in (—1, 0] such that

0(1,2)

[ fwadt

e/, 4)

M, (fy=a). If u(@—A) >0 then

=210, (f, D= o (f, D).

Define ¥, (f, A) = 0.(f, A)—@.(f, 4) for 1> 0.
LemMA 3. Suppose that felL;(y) satisfies | fdu =0. Then we have

B({Mo(f) = A1) = Yo, )

Proof. Put A= {M,.(f) = 4}. Since ¥ (f, }) <
the case where p,(A) < 1. Then Lemma 2 implies

ff d/u At (A).

4 >0.

1, it suffices to consider

On the other hand, since f/e <
e.g. [10]), it follows that
immediately.

For any feL(u), define

M, (f) on Q by the local ergodic theorem (see
{fle= A} = A, from which the lemma follows

- £ 1] 70

n=0 ~b,

whate b, = 27+D

LemMmA 4 (Davis [4]) There exists an absolute constant ¢ > 0 such that if
feL,(w) satisfies |fdu =0, then '

[T D+ (=f, A2 eA. )

Proof. See [4], pp. 157-158.
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Proof of Theorem 1. Let feLs () and a = | fdu. Putting g = f~ue,
we have f = g+ae with [gdu = 0. Since for ae. weQ

b b
a = lim [ /(T w)dt/fe(T w)dt
b= 0 0
by the ratio ergodic theorem (see e.g. [7]), it follows that
o) < M. (f) and M,(g) < 2M.(f) on Q.

Since f, = . +a,

A <A@ | lolde < CLAG) +] < CLA(0)+ M. () ed].

n=0 ~by,

Here, 4,(f) = cH.(f)~C [|fldu by Lemma 2.1 in [3]. To estimate 4,(y), we

apply Lemma 3 and get

[M.(g)-edu = g“e({Me(g) =) da 2 E[l//e(gv A)da

Replacing g by —g, we also get

0

M. (g) eduz [.(~g, Adi.
0

Therefore

o0

2[M.(f)-edu> [M,( )edﬂ?ﬂ[l (9> D+be(—g, N]dA = cAy(g),

and this completes the proof of Theorem 1.

For any f and g in L, (), we will denote f < g if f, = §,, ie. if f/e and
g/e are equidistributed with respect to the measure edu. With this under-
standing we have the following

THEOREM 2. Let (2, &, 1), {T}er and eeLy(w) be as in Introduction.
There exists an absolute constant C >0 such that to each f& L, (u) there
corresponds an'f'e L, (u) such that f' £ f and

[M,(f)-edu< CLH.(f)+ 11 du].

To prove Theorem 2 we need a representation theorem for the con-
servative and ergodic flow.

Let (X, B, m) be a o-finite complete measure space, T an invertible
measure preserving transférmation on (X, B, m), and 4 a positive real valued
measurable function on (X, B, m) such that k(x) = d for all xeX, where
d >0 is a constant. Let X ={(x, u): xeX, 0<u < h(x)}, Considering the
restriction of the completed product measure of x and the Lebesgue measure
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on the real line to X, we have a o-finite complete measure space (X, B, /).

Define a family {S,};.zx of transformations from X onto itself by
S, (x, u)=(x,u+t), if O0<u+r<h(x),
n—1
=(T"x, u+t= Y h(T'x)),
: i=0

n—1 n
if Y MT'x<ut+r< )y h(T'x), nzl,

i=0 i=0

=(T7"x,u+t+ Y h(T"'x),
i=1
n X n—1 )
if —Y RT x)<ut+t<—3 KT7'x), n>1.

i=1 i=1
It is easily seen that {S ),z is a measurable flow of measure preserving
transformations on (X, B, m). This flow is called the flow built under the
function h on the measure preserving transformation T (cf. Ambrose [L]).
(X, B, m) is a base measure space, T is a base transformation, and h is called
a ceiling function.

TueoreM A. Let (Q, &, 1) and {T}ex be as in Introduction. There exists
a o-finite complete measure space (X, B, m), an invertible conservative
and ergodic measure preserving transformation T on (X, B, m), and a positive
real valued measurable function h on (X, B, m) satisfying h(x) = d for all xe X
and some constant d > 0 such that {T},cx is isomorphic to the flow {S},x on
(X, B, m) built under the function h on the measure preserving transformation
T

Proof. If u(X) < oo, this.theorem reduces to Theorem 2 in [1]. Thus
we consider the case where u(X)= co. Since the argument resembles
Ambrose’s in [1], we only sketch the proof.

Fix any Ae & with 0 < u(4) < 0. Denoting by 1, the indicator function
of A, it follows from the local ergodic theorem that

3

1
lim ~JIA(T;w)dt =1,()
e-+08&

0

for a.e. weQ; thus we can choose a positive number p so that if the function
P(w) on Q is defined by

p
P(w)%fu(rw)dr
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then for some A,, A,e &, with 0 < u(4) <o (i=1,2), Ay = A and 4,
cQ—A, we get

A, = {P >3/4}
Let @ denote the rational numbers. Since {T},x is conservative, each T, is

also conservative, and hence there exists a set By in § satisfying By < 4,
u(A,—B,;) =0 and

and A, < {P<1/4},

0
Z 141 ('I;"w) = 00
n=0 . .
for every we B, and all reQ. Denote By = |J T, B,. Since T, B, = B, for all

reQ - N
reQ, an easy approximation argument shows that u(B; AT, B;) =0 for all
te R, where the symbol A denotes the symmetric difference. This implies
w(Q—By) =0, because {T},x is ergodic. Therefore to ae. weQ there
corresponds an re@, with r # 0, such that

] 0

Y ly(Fo)=o and Y L, (F'e)=.

n=0 n= - o
Since a similar result holds for A,, it follows that there exists an E e §§, with
w(E)=0and T E =E for all teR, such that if w¢E then the trajectory T, w
has points in common with each of 4, and A, for arbitrarily large and
negatively arbitrarily large te R. In what follows we may assume that E is
empty. We now apply the argument in Theorem 2 in [1] and observe that if
we let - . ‘

X ={we®: P(w)=4% and P(T,w)>% for all 0 <t < p/8},

h(x) =min{t >0: TxeX} for xeX,
and : )
Tx = Tyyx for xeX,
then h(x) > p/8 for all xeX and T is an invertible transformation from X
onto itself. We may and will regard without loss of generality that

Q=X={(xu: xeX,0<u<h(x)}
and
. {T;}:ak = {S,}1e

where {S,},cz is defined by means of h and T as in a previous paragraph.
Further we see that both the functions F and G on X defined by F(x, u)
= h(x) and G(x, w) = u are measurable with respect to .

Next, to finish the proof, we intend to apply the argument in Theorem 1
in [1]. To do this we must check the o-finiteness condition of the measure
'space (X, B, m), where B is defined to be the o-field of those sets A in X

icm
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with the property that the tube 4* ="{(x, u): xe A4, 0 < u < h(x)} based on
A belongs to &, and where m(4), for Ae B, is defined by

. 1
md) = 5u(4* 0, d), .

where d >0 is a constant satisfying h(x) >d for all xeX and A*(0, d)
= A* N {G < d}. Since the measure space (X, §, p) is o-finite, we can take a
finite equivalent measure v on ¥ Let

M={AeB: A= |) 4 for some 4;cB with m(4;) < o0}
: i=1
and

a =sup {v(4*(0, d)): AeM}.
Clearly, there exists an 4 such that a =v(A*(0, 4)). It will be proved
that (X —A*) = 0, which, in turn, implies that m(X — A) = 0, and hence that
(X, B, m) is o-finite. Suppose the contrary: u(X—A%*) > 0. Let

H={(x,u: xeX,0<u<d}.
Then we can choose a set M in § satisfying

Mc Hm()?——A*) and 0 < p(M) < .

Write

*M = {(x, u, t): S, ,(x, WeM, 0Su<d, 0<t<d.

It follows (cf. [1], p. 731) that if (X xR, ¥ ® &, fi) denotes the completed
product measure space of (X, &, 1) and the Lebesgue measure space on the

real line, then )
*Me&@ﬁ 0 <fi(*M) < o0;

further if we define, for reR,

and
M, ={xeX: (x, )eM},
*M = {(x, w): (x,u, )e*M},
then, for all te[0, d),
M =Hn {xeX: (x, )e M}
C={(x, WeX: (x, )eM, 0 <u<d};

d

since JI(*M) = | p(*M")dt by Fubini’s theorem, there exists re[0, d) such
0

that

and

*Me R 0 < u(*MY < 0.
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Then, immediately, M, e B and 0 < m(M,) < co, But this is a contradiction,
because if we set B = M, U A4, then Be 9 and v(B*(0, d)) > a = v(4*(0, d)).
Since we have proved that (X, B, m) is o-finite, the proof of Theorem 1
in [1] can be applied directly to establish our Theorem A. We omit the
details.
Proof of Theorem 2. First, by Theorem 3.1 in [3], any f e L, (4) can

o0
be written f =g+ Z £, where the f; have disjoint supports and

() lig/ello < 3I|fl dp,
(i) each fi/e takes on only two nonzero values and [fidp=0,

(i) Z [H,(f)+ 1) di] < C[H.(f)+[11du).

Suppose there exist functions ¢;, i1, in L, (y) such that the sets

{g; # 0) are disjoint, g; < f}, and

(M. (g) edu< C[H,(f)+[1fil du].
Then, letting k, for i>1, be any function in L;(u) such that
{h; # 0} = {g, # 0},

- @ e
hilgso % Gl and  Bily oy~ Gl <o

and h, be any function in L, (1) such that {hy 5 0} < {g, =0 for all i> 1}
and

e -
hy ~ 91«1;,:0 for all i1}

it follows that Z h; £ g, and the function f' = hy+ Z (g;+h,) satisfies f' £ f
i=0 i=1
and

00

IM(f)edu< Y, [Me(g) edp+g/ell

i=

o0
< C Y [H.(f)+ (1Al du]+3 1S dp.

i=1
Thus, to establish Theorem 2, it suffices to prove the existence of such
functions ¢;, i = 1. For this purpose we apply Theorem A and assume
without loss of generality that (Q, &, 1) = (X, B, M) and {T)r = (Siler-
Define

h(x)

G(x)= [ e(x,uydu for xeX,
0

where h is the ceiling function on the base measure space (X, B, m). It

icm
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follows from Fubini’s theorem that for each i > 1 there exists a measurable
‘function h; on (X, B, m) such that 0 <h, <h on X and :
hy(x)

[ elx,wdu=G

0

() e (1 fi # 0 for some 1<k <i})

for xe X. Let us write 4; = [(x, u): xeX, h_{(x) <
ho(x) =0 for xeX.

Fix- any i> 1. For an integer N >
functions j;, 0<k<

u < h;(x)}, where we let

1 then there exist measurable

N, on (X, B, m) such that h_ | =j, <j, < ... <ju
=R on X and
Jrx)
[ e(x, wdu =~~G(x ([fi#0})  (xeX);
Jg- ()

further there exist measurable functions ji, 1<k <

N, on (X, 8B, m) such
that j,.; <ji <Jj, on X and

Jk(x) 1
[ elx, uydu =7V—G(x) He ({1 > 0})
Jg- 1(%)
Denoting by « and f, with « >0 > §, the two nonzero values which fi/e
takes on, define a function ¢; on = X by

(xe X).

we(x, w), i ooy (9 <u<jild, 1<kSN,
gilx, wy=<Be(x,u), I j()<u<jix), I<k<N,
. 0, otherwise.
Then, clearly, {g; # 0} = 4; and g; £ f;. It is easily seen that if N is suf-

ficiently large then '
[ M.(g)-edu<[Ifldu.

X—Ai
Next, for any fe Ly (u), define

b

b
M¥(f) (@) =sup [ f(Tw)dt/{e(Tw)dt for weQ.
400 0

By a maximal ergodic theorem (see e.g. [6]) for flows, we have

(gi—Ae)du=0 (4>0).
(M6 2 A}
Since g; = 0 on X—A4,, this gives
grdu = A, ((MX(g) 2 A} n4)) - (4>0).

(Mg Z A1 nA;

4 — Sidia Mathematica, T, LXXX
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Using the facts that {g/e > A} = [M¥(g;) > A} and g,/e takes on only the two
nonzero values o and B, we observe from the definition of y,(g;, 4) that

m({M*(g) > 1} nA) < Ye(gin ) (4> 0).

Similarly,

e (IME(=g) = A 0 A) <V (—g0 ) (A >0).

Thus, by the fact that M, (g;) (w) = max {M*(g,)(®), M¥*(—g,)(w)}, we obtain

[Mala)edu= [1,(M.6) > 7} 0 A) a2

>} N4, )+ue({M*( ) = A} N A)]dA

n
E[ue( (M¥(g) >
<]

[l//e(gn )+|//e('_g(, A«)] dA

< C[H.(g)+]lgddu]
= C[H (f)+]|fldu],

where the last equality is due to the fact that f; £ g;. Hence, if N is chosen
sufficiently large, then the function g; ‘satisfies

[fl e(g)-edp < C[H.(f)+] Ifldu]

(by Lemma 3.2 in [4])

Since {g;# 0} = 4; and A, nA; =@ if i #j, this completes the proof of

Theorem 2. )

THEOREM 3. Let (Q, &, 1), {T)icr and ecL () be as in Introduction.
Suppose that f €L, () satisfies [|f|log™ (|f|/e)du= co. Then there exists an
f'eLy () such that f'% f and [M,(f) edu = co.

Proof If necessary, considering —f instead of f, we may assume that
there. ekists a set 4 in § such that f/le>1 on A4, Jfdu<1 and

: A

{ flog(f/e)du = co; further we may assume by Theorem A that (€2, ¥ 0
A

=(X, B, m) and {T},.x = {S, },ER Choose a positive number o so that if we
let A={(x,u)eX: 0<u<a} then ue (A) = p.(A). Next, take an increasing
function w(u) on the interval [0, «) so that if a function gon Q=2Xis
defined by g(x, u) = w(u) e(x, u) for (x, uye A and 0 otherwise, then g~ 1,
By Theorem 2 in [8], we have

[M ) edy = oo

icm
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Thus,-if f* is any function in L, (u) such that f' =g on 4 and f’ £ f, then
M, (f")-edu = 0. The proof is complete.

3. Remarks. (i) The proof of Theorem 1 shows that this theorem holds
for any conservative and ergodic semiffow {T},5,. (ii) It is not difficult to
check that Ambrose and Kakutani’s representation theorem [2] for con-
servative flows holds even if the underlying measure space is not a prob-
ability space but a g-finite measure space; thus it follows that, except for a
pathological case, Theorems 2 and 3 hold for any conservative flow {T},g.
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