W. Banaszczyk

[3] W. Banaszczyk and J. Grabowski, Connected subgroups of nuclear spaces, Studia Math. 78 (1984), 161-163.

[4] G. Polya, Mathematics and Plausible Reasoning, Princeton 1954.

INSTYTUT MATEMATYKI UNIWERSYTET ŁÓDZKI INSTITUTE OF MATHEMATICS ŁÓDŹ UNIVERSITY ul. Banacha 22 PL-90-238 Łódź. Poland

128

Received April 12, 1983 Revised version October 5, 1983 (1880)

STUDIA MATHEMATICA, T. LXXX. (1984)

On the ratio maximal function for an ergodic flow

by

RYOTARO SATO (Okayama)

Abstract. In this paper an integrability problem is investigated for the supremum of ergodic ratios defined by means of a conservative and ergodic measurable flow of measure preserving transformations on a σ -finite measure space. The results obtained below include, as a special case, the continuous parameter versions of Davis's recent results concerning the supremum of ergodic averages defined by means of an invertible and ergodic measure preserving transformation on a probability measure space.

1. Introduction. Let $(\Omega, \mathfrak{F}, \mu)$ be a σ -finite measure space and $\{T_t\}_{t\in\mathbb{R}}$ a conservative and ergodic measurable flow of measure preserving transformations on $(\Omega, \mathfrak{F}, \mu)$. In what follows we shall assume that μ is nonatomic and complete. As is easily seen, this is done without loss of generality.

Fix any $0 < e \in L_1(\mu)$ such that $\int ed\mu = 1$. If $f \in L_1(\mu)$, the ratio maximal function $M_e(f)(\omega)$ with respect to e is defined by

$$M_{e}(f)(\omega) = \sup_{b>0} \left| \int_{0}^{b} f(T_{t}\omega) dt / \int_{0}^{b} e(T_{t}\omega) dt \right| \quad (\omega \in \Omega).$$

Let $\hat{f_e}$ denote the decreasing function on the interval [0, 1) which is equidistributed with f/e ($\in L_1(ed\mu)$) with respect to the measure $ed\mu$. Extending $\hat{f_e}$ to the real line R by $\hat{f_e}(t+1) = \hat{f_e}(t)$ for $t \in R$, we define

$$H_e(f) = \int_0^{1/2} \frac{1}{t} \left| \int_{-t}^t \hat{f}_e(s) \, ds \right| dt.$$

Clearly, $H_e(f)=0$ if and only if f/e and -f/e are equidistributed with respect to $e\,d\mu$. Further it is known (cf. [8]) that if $f\geqslant 0$ then $H_e(f)<\infty$ if and only if $\int f\log^+(f/e)\,d\mu<\infty$, where $\log^+a=\log(\max\{a,1\})$ for $a\geqslant 0$. This, together with Theorem 2 in [8], shows that if $f\geqslant 0$ then $H_e(f)<\infty$ if and only if $\int M_e(f)\cdot e\,d\mu<\infty$. However, if the nonnegativity of f is not assumed, then, as is easily seen by a simple example, $H_e(f)<\infty$ does not necessarily imply $\int M_e(f)\cdot e\,d\mu<\infty$. (It will be proved below that $\int M_e(f)\cdot e\,d\mu<\infty$ implies $H_e(f)<\infty$.) Therefore it would be of interest to know what condition on the ratio maximal function with respect to e is necessary (and sufficient) for the condition $H_e(f)<\infty$. This is the starting

point for the study in this paper. We shall show that $H_e(f) < \infty$ if and only if there exists an $f' \in L_1(\mu)$ such that f'/e and f/e are equidistributed with respect to $ed\mu$ and $\int M_e(f') \cdot ed\mu < \infty$. When $(\Omega, \mathfrak{F}, \mu)$ is a probability space and e=1 on Ω , this characterization reduces to the one which corresponds to the continuous parameter version of Davis's result [4] for an invertible and ergodic measure preserving transformation on a probability space.

2. Results. In this section we will prove our results using the ideas in [4] adapted to our situation.

THEOREM 1 (cf. [9]). Let $(\Omega, \mathfrak{F}, \mu)$, $\{T_i\}_{i\in\mathbb{R}}$ and $e\in L_1(\mu)$ be as in Introduction. There exists an absolute constant c>0 such that

$$\int M_e(f) \cdot e \, d\mu \geqslant cH_e(f)$$
 for all $f \in L_1(\mu)$.

To prove Theorem 1 we need some lemmas. For convenience we will write $\mu_e = e d\mu$. The letters c and C will denote positive absolute constants; the same letters do not necessarily denote the same numbers.

Lemma 1. Let T be a conservative measure preserving transformation on $(\Omega, \mathcal{F}, \mu)$ and $f \in L_1(\mu)$. Define, for $\omega \in \Omega$,

$$M(T, e) f(\omega) = \sup_{n \ge 1} \Big| \sum_{i=0}^{n-1} f(T^i \omega) \Big| \Big/ \sum_{i=0}^{n-1} e(T^i \omega).$$

Given an $\alpha > 0$, let $A = \{M(T, e) | f \ge \alpha\}$. Then we have

$$\int_{[M(T,e)f < \alpha] \cap (A \cup T^{-1}A)} f d\mu \leqslant \alpha \mu_e ([M(T,e)f < \alpha] \cap (A \cup T^{-1}A)),$$

where $[M(T, e)f < \alpha]$ denotes the smallest set in \mathfrak{F} containing the set $\{M(T, e)f < \alpha\}$ and invariant under T.

Proof. Clearly, it suffices to consider the case where $\mu(\{M(T,e)f < \alpha\}) > 0$. Let us write $B = [M(T,e)f < \alpha]$. For simplicity, assume that $B = \Omega$. This is done without loss of generality. Since T is conservative, it then follows from [5] that

$$\int_{A} f d\mu = \sum_{n=1}^{\infty} \int_{(\Omega - A) \cap \left(\prod_{i=1}^{n} T^{-i} A\right) \cap T^{-(n+1)}(\Omega - A)} \left(\sum_{i=1}^{n} T^{i} f\right) d\mu,$$

where $T^i f(\omega) = f(T^i \omega)$. Since $T^{-1} A$ is the disjoint union of the sets $\binom{n}{i-1} T^{-i} A \cap T^{-(n+1)}(\Omega - A)$, $n \ge 1$, we have

$$\int_{A \cup T^{-1}A} f d\mu = \int_{A} f d\mu + \int_{(\Omega - A) \cap T^{-1}A} f d\mu$$

$$\cdot = \sum_{n=1}^{\infty} \int_{(\Omega - A) \cap \left(\bigcap_{i=1}^{n} T^{-i}A\right) \cap T^{-(n+1)}(\Omega - A)} \left(\sum_{i=0}^{n} T^{i} f\right) d\mu$$

$$\leq \sum_{n=1}^{\infty} \int_{(\Omega-A)\cap(\bigcap_{i=1}^{n} T^{-i}A)\cap T^{-(n+1)}(\Omega-A)} \alpha \left(\sum_{i=0}^{n} T^{i} e\right) d\mu$$

$$= \alpha \int_{A\cup T^{-1}A} e \, d\mu,$$

which completes the proof.

Lemma 2. Given an $\alpha > 0$, let $A = \{M_e(f) \ge \alpha\}$. If $\mu(\Omega - A) > 0$ then $\int_A f d\mu \le \alpha \mu_e(A)$.

Proof. By virtue of Lemma 1 this follows from an easy modification of the proof of Theorem 1 in [8]. We omit the details.

Now suppose that $f \in L_1(\mu)$ satisfies $\int f d\mu = 0$. If $\lambda > 0$, let $\theta_e(f, \lambda) = \sup\{t \in [0, 1): \hat{f}_e(t) \ge \lambda\}$. Then $0 \le \theta_e(f, \lambda) < 1$; and there exists a unique number $\varphi_e(f, \lambda)$ in (-1, 0] such that

$$\int_{\varphi_{e}(f,\lambda)}^{\theta_{e}(f,\lambda)} \hat{f}_{e}(t) dt = \lambda \left[\theta_{e}(f,\lambda) - \varphi_{e}(f,\lambda) \right].$$

Define $\psi_e(f, \lambda) = \theta_e(f, \lambda) - \varphi_e(f, \lambda)$ for $\lambda > 0$.

LEMMA 3. Suppose that $f \in L_1(\mu)$ satisfies $\int f d\mu = 0$. Then we have

$$\mu_e(\{M_e(f) \geqslant \lambda\}) \geqslant \psi_e(f, \lambda) \quad (\lambda > 0).$$

Proof. Put $A = \{M_e(f) \ge \lambda\}$. Since $\psi_e(f, \lambda) \le 1$, it suffices to consider the case where $\mu_e(A) < 1$. Then Lemma 2 implies

$$\int_A f d\mu \leqslant \lambda \mu_e(A).$$

On the other hand, since $f/e \le M_e(f)$ on Ω by the local ergodic theorem (see e.g. [10]), it follows that $\{f/e \ge \lambda\} \subset A$, from which the lemma follows immediately.

For any $f \in L_1(\mu)$, define

$$A_e(f) = \sum_{n=0}^{\infty} \left| \int_{-b_n}^{b_n} \hat{f}_e(t) dt \right|$$
 where $b_n = 2^{-(n+1)}$

LEMMA 4 (Davis [4]) There exists an absolute constant c > 0 such that if $f \in L_1(\mu)$ satisfies $\int f d\mu = 0$, then

$$\int_{0}^{\infty} \left[\psi_{e}(f,\lambda) + \psi_{e}(-f,\lambda) \right] d\lambda \geqslant cA_{e}(f)$$

Proof. See [4], pp. 157-158.

Proof of Theorem 1. Let $f \in L_1(\mu)$ and $\alpha = \int f d\mu$. Putting $g = f - \alpha e$, we have $f = g + \alpha e$ with $\int g d\mu = 0$. Since for a.e. $\omega \in \Omega$

$$\alpha = \lim_{b \to \infty} \int_{0}^{b} f(T_{t} \omega) dt / \int_{0}^{b} e(T_{t} \omega) dt$$

by the ratio ergodic theorem (see e.g. [7]), it follows that

$$|\alpha| \leq M_e(f)$$
 and $M_e(g) \leq 2M_e(f)$ on Ω .

Since $\hat{f}_e = \hat{g}_e + \alpha$

$$A_e(f) \leqslant A_e(g) + \sum_{n=0}^{\infty} \int_{-b_n}^{b_n} |\alpha| dt \leqslant C \left[A_e(g) + |\alpha| \right] \leqslant C \left[A_e(g) + \int M_e(f) \cdot e \, d\mu \right].$$

Here, $A_e(f) \geqslant cH_e(f) - C \int |f| d\mu$ by Lemma 2.1 in [3]. To estimate $A_e(g)$, we apply Lemma 3 and get

$$\int M_e(g) \cdot e \, d\mu = \int_0^\infty \mu_e \big(\{ M_e(g) \geqslant \lambda \} \big) d\lambda \geqslant \int_0^\infty \psi_e(g, \lambda) \, d\lambda.$$

Replacing g by -g, we also get

$$\int M_e(g) \cdot e \, d\mu \geqslant \int_0^\infty \psi_e(-g, \lambda) \, d\lambda.$$

Therefore

$$2\int M_{e}(f) \cdot e \, d\mu \geqslant \int M_{e}(g) \cdot e \, d\mu \geqslant \frac{1}{2} \int_{0}^{\infty} \left[\psi_{e}(g, \lambda) + \psi_{e}(-g, \lambda) \right] d\lambda \geqslant c A_{e}(g),$$

and this completes the proof of Theorem 1.

For any \hat{f} and g in $L_1(\mu)$, we will denote $f \stackrel{e}{\sim} g$ if $\hat{f_e} = \hat{g_e}$, i.e. if f/e and g/e are equidistributed with respect to the measure $e d\mu$. With this understanding we have the following

Theorem 2. Let $(\Omega, \mathfrak{F}, \mu)$, $\{T_i\}_{i\in R}$ and $e\in L_1(\mu)$ be as in Introduction. There exists an absolute constant C>0 such that to each $f\in L_1(\mu)$ there corresponds an $f'\in L_1(\mu)$ such that $f'\stackrel{e}{\sim} f$ and

$$\int M_{e}(f') \cdot e \, d\mu \leqslant C \left[H_{e}(f) + \int |f| \, d\mu \right].$$

To prove Theorem 2 we need a representation theorem for the conservative and ergodic flow.

Let (X, \mathfrak{B}, m) be a σ -finite complete measure space, T an invertible measure preserving transformation on (X, \mathfrak{B}, m) , and h a positive real valued measurable function on (X, \mathfrak{B}, m) such that $h(x) \ge d$ for all $x \in X$, where d > 0 is a constant. Let $\overline{X} = \{(x, u): x \in X, 0 \le u < h(x)\}$. Considering the restriction of the completed product measure of μ and the Lebesgue measure

on the real line to \bar{X} , we have a σ -finite complete measure space $(\bar{X}, \bar{\mathfrak{B}}, \bar{m})$. Define a family $\{S_i\}_{i\in R}$ of transformations from \bar{X} onto itself by

$$\begin{split} S_t(x, u) &= (x, u + t), & \text{if} \quad 0 \leqslant u + t < h(x), \\ &= \left(T^n x, u + t - \sum_{i=0}^{n-1} h(T^i x)\right), \\ & \text{if} \quad \sum_{i=0}^{n-1} h(T^i x) \leqslant u + t < \sum_{i=0}^{n} h(T^i x), \quad n \geqslant 1, \\ &= \left(T^{-n} x, u + t + \sum_{i=1}^{n} h(T^{-i} x)\right), \\ & \text{if} \quad - \sum_{i=0}^{n} h(T^{-i} x) \leqslant u + t < - \sum_{i=1}^{n-1} h(T^{-i} x), \quad n \geqslant 1. \end{split}$$

It is easily seen that $\{S_t\}_{t\in\mathbb{R}}$ is a measurable flow of measure preserving transformations on $(\overline{X}, \overline{\mathfrak{B}}, \overline{m})$. This flow is called the flow built under the function h on the measure preserving transformation T (cf. Ambrose [1]). (X, \mathfrak{B}, m) is a base measure space, T is a base transformation, and h is called a ceiling function.

Theorem A. Let $(\Omega, \mathfrak{F}, \mu)$ and $\{T_t\}_{t\in R}$ be as in Introduction. There exists a σ -finite complete measure space (X, \mathfrak{B}, m) , an invertible conservative and ergodic measure preserving transformation T on (X, \mathfrak{B}, m) , and a positive real valued measurable function h on (X, \mathfrak{B}, m) satisfying $h(x) \geq d$ for all $x \in X$ and some constant d > 0 such that $\{T_t\}_{t\in R}$ is isomorphic to the flow $\{S_t\}_{t\in R}$ on $(\bar{X}, \bar{\mathfrak{B}}, \bar{m})$ built under the function h on the measure preserving transformation T.

Proof. If $\mu(X) < \infty$, this theorem reduces to Theorem 2 in [1]. Thus we consider the case where $\mu(X) = \infty$. Since the argument resembles Ambrose's in [1], we only sketch the proof.

Fix any $A \in \mathfrak{F}$ with $0 < \mu(A) < \infty$. Denoting by 1_A the indicator function of A, it follows from the local ergodic theorem that

$$\lim_{\varepsilon \to +0} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} 1_{A}(T_{t}\omega) dt = 1_{A}(\omega)$$

for a.e. $\omega \in \Omega$; thus we can choose a positive number p so that if the function $P(\omega)$ on Ω is defined by

$$P(\omega) = \frac{1}{p} \int_{0}^{p} 1_{A}(T_{t}\omega) dt,$$

then for some $A_1, A_2 \in \mathfrak{F}$, with $0 < \mu(A_i) < \infty$ $(i = 1, 2), A_1 \subset A$ and $A_2 \subset \Omega - A$, we get

$$A_1 \subset \{P > 3/4\}$$
 and $A_2 \subset \{P < 1/4\}$

Let Q denote the rational numbers. Since $\{T_i\}_{i\in R}$ is conservative, each T_i is also conservative, and hence there exists a set B_1 in \mathfrak{F} satisfying $B_1 \subset A_1$, $\mu(A_1 - B_1) = 0$ and

$$\sum_{n=0}^{\infty} 1_{A_1}(T_r^n \omega) = \infty$$

for every $\omega \in B_1$ and all $r \in Q$. Denote $\hat{B}_1 = \bigcup_{r \in Q} T_r B_1$. Since $T_r \hat{B}_1 = \hat{B}_1$ for all $r \in Q$, an easy approximation argument shows that $\mu(\hat{B}_1 \triangle T_r \hat{B}_1) = 0$ for all $t \in R$, where the symbol \triangle denotes the symmetric difference. This implies $\mu(\Omega - \hat{B}_1) = 0$, because $\{T_i\}_{i \in R}$ is ergodic. Therefore to a.e. $\omega \in \Omega$ there corresponds an $r \in Q$, with $r \neq 0$, such that

$$\sum_{n=0}^{\infty} 1_{A_1}(T_r^n \omega) = \infty \quad \text{and} \quad \sum_{n=-\infty}^{0} 1_{A_1}(T_r^n \omega) = \infty.$$

Since a similar result holds for A_2 , it follows that there exists an $E \in \mathcal{F}$, with $\mu(E) = 0$ and $T_i E = E$ for all $t \in R$, such that if $\omega \notin E$ then the trajectory $T_i \omega$ has points in common with each of A_1 and A_2 for arbitrarily large and negatively arbitrarily large $t \in R$. In what follows we may assume that E is empty. We now apply the argument in Theorem 2 in [1] and observe that if we let

$$X = \{\omega \in \Omega : P(\omega) = \frac{1}{2} \text{ and } P(T_t \omega) > \frac{1}{2} \text{ for all } 0 < t \le p/8\},$$
$$h(x) = \min\{t > 0 : T_t x \in X\} \quad \text{for} \quad x \in X.$$

and

134

$$Tx = T_{h(x)}x$$
 for $x \in X$,

then $h(x) \ge p/8$ for all $x \in X$ and T is an invertible transformation from X onto itself. We may and will regard without loss of generality that

$$\Omega = \overline{X} = \{(x, u) \colon x \in X, \ 0 \leqslant u < h(x)\}$$

and

$$\{T_t\}_{t\in R}=\{S_t\}_{t\in R}$$

where $\{S_t\}_{t\in\mathbb{R}}$ is defined by means of h and T as in a previous paragraph. Further we see that both the functions F and G on X defined by F(x, u) = h(x) and G(x, u) = u are measurable with respect to \mathfrak{F} .

Next, to finish the proof, we intend to apply the argument in Theorem 1 in [1]. To do this we must check the σ -finiteness condition of the measure space (X, \mathfrak{B}, m) , where \mathfrak{B} is defined to be the σ -field of those sets A in X

with the property that the tube $A^* = \{(x, u): x \in A, 0 \le u < h(x)\}$ based on A belongs to \mathfrak{F} , and where m(A), for $A \in \mathfrak{B}$, is defined by

$$m(A) = \frac{1}{d} \mu (A^*(0, d)),$$

where d>0 is a constant satisfying $h(x) \ge d$ for all $x \in X$ and $A^*(0, d) = A^* \cap \{G < d\}$. Since the measure space $(\overline{X}, \mathfrak{F}, \mu)$ is σ -finite, we can take a finite equivalent measure ν on \mathfrak{F} . Let

$$\mathfrak{M} = \{A \in \mathfrak{B}: A = \bigcup_{i=1}^{\infty} A_i \text{ for some } A_i \in \mathfrak{B} \text{ with } m(A_i) < \infty\}$$

and

$$a = \sup \{ v (A^*(0, d)) : A \in \mathfrak{M} \}.$$

Clearly, there exists an $A \in \mathfrak{M}$ such that $a = v(A^*(0, d))$. It will be proved that $\mu(\overline{X} - A^*) = 0$, which, in turn, implies that m(X - A) = 0, and hence that (X, \mathfrak{B}, m) is σ -finite. Suppose the contrary: $\mu(\overline{X} - A^*) > 0$. Let

$$\bar{H} = \{(x, u): x \in X, 0 \le u < d\}.$$

Then we can choose a set \bar{M} in \mathfrak{F} satisfying

$$\bar{M} \subset \bar{H} \cap (\bar{X} - A^*)$$
 and $0 < \mu(\bar{M}) < \infty$.

Write

*
$$\tilde{M} = \{(x, u, t): S_{t-u}(x, u) \in \bar{M}, 0 \le u < d, 0 \le t < d\}.$$

It follows (cf. [1], p. 731) that if $(\bar{X} \times R, \mathfrak{F} \otimes \Omega, \tilde{\mu})$ denotes the completed product measure space of $(\bar{X}, \mathfrak{F}, \mu)$ and the Lebesgue measure space on the real line, then

$$*\tilde{M} \in \mathfrak{F} \otimes \mathfrak{L}$$
 and $0 < \tilde{\mu}(*\tilde{M}) < \infty$;

further if we define, for $t \in R$,

$$\bar{M}_t = \{x \in X \colon (x, t) \in \bar{M}\},\,$$

$$*\tilde{M}^t = \{(x, u): (x, u, t) \in *\tilde{M}\},\$$

then, for all $t \in [0, d)$,

$$*\tilde{M}^t = \bar{H} \cap \{x \in X \colon (x, t) \in \bar{M}\}$$
$$= \{(x, u) \in \bar{X} \colon (x, t) \in \bar{M}, 0 \le u < d\};$$

since $\tilde{\mu}(*\tilde{M}) = \int_{0}^{d} \mu(*\tilde{M}') dt$ by Fubini's theorem, there exists $t \in [0, d)$ such that

$$*\tilde{M}^t \in \mathfrak{F}$$
 and $0 < \mu(*\tilde{M}^t) < \infty$.

Then, immediately, $\overline{M}_t \in \mathfrak{B}$ and $0 < m(\overline{M}_t) < \infty$. But this is a contradiction, because if we set $B = \overline{M}_t \cup A$, then $B \in \mathfrak{M}$ and $v(B^*(0, d)) > a = v(A^*(0, d))$.

Since we have proved that (X, \mathfrak{B}, m) is σ -finite, the proof of Theorem 1 in [1] can be applied directly to establish our Theorem A. We omit the details.

Proof of Theorem 2. First, by Theorem 3.1 in [3], any $f \in L_1(\mu)$ can be written $f = \bar{g} + \sum_{i=1}^{\infty} f_i$, where the f_i have disjoint supports and

- (i) $||\bar{g}/e||_{\infty} \leq 3 \int |f| d\mu$,
- (ii) each f_i/e takes on only two nonzero values and $\int f_i d\mu = 0$,

(iii)
$$\sum_{i=1}^{\infty} \left[H_e(f_i) + \int |f_i| \, d\mu \right] \le C \left[H_e(f) + \int |f| \, d\mu \right].$$

Suppose there exist functions g_i , $i \ge 1$, in $L_1(\mu)$ such that the sets $\{g_i \ne 0\}$ are disjoint, $g_i \stackrel{e}{\sim} f_i$, and

$$\int M_{e}(g_{i}) \cdot ed\mu \leqslant C \left[H_{e}(f_{i}) + \int |f_{i}| d\mu \right].$$

Then, letting h_i , for $i \ge 1$, be any function in $L_1(\mu)$ such that $\{h_i \ne 0\} \subset \{g_i \ne 0\}$,

$$h_i 1_{\{g_i > 0\}} \stackrel{e}{\sim} \bar{g} 1_{\{f_i > 0\}}$$
 and $h_i 1_{\{g_i < 0\}} \stackrel{e}{\sim} \bar{g} 1_{\{f_i < 0\}}$

and h_0 be any function in $L_1(\mu)$ such that $\{h_0 \neq 0\} \subset \{g_i = 0 \text{ for all } i \geqslant 1\}$ and

$$h_0 \stackrel{e}{\sim} \bar{g} \mathbf{1}_{\{a_i = 0 \text{ for all } i \ge 1\}}$$

it follows that $\sum_{i=0}^{\infty} h_i \stackrel{e}{\sim} \overline{g}$, and the function $f' = h_0 + \sum_{i=1}^{\infty} (g_i + h_i)$ satisfies $f' \stackrel{e}{\sim} f$ and

$$\begin{split} \int M_e(f') \cdot e \, d\mu &\leqslant \sum_{i=1}^{\infty} \int M_e(g_i) \cdot e \, d\mu + ||\overline{g}/e||_{\infty} \\ &\leqslant C \sum_{i=1}^{\infty} \left[H_e(f_i) + \int |f_i| \, d\mu \right] + 3 \int |f| \, d\mu. \end{split}$$

Thus, to establish Theorem 2, it suffices to prove the existence of such functions g_i , $i \ge 1$. For this purpose we apply Theorem A and assume without loss of generality that $(\Omega, \mathfrak{F}, \mu) = (\bar{X}, \mathfrak{F}, \bar{m})$ and $\{T_i\}_{i \in R} = \{S_i\}_{i \in R}$. Define

$$G(x) = \int_{0}^{h(x)} e(x, u) du \quad \text{for} \quad x \in X,$$

where h is the ceiling function on the base measure space (X, \mathfrak{B}, m) . It

follows from Fubini's theorem that for each $i \ge 1$ there exists a measurable function h_i on (X, \mathfrak{B}, m) such that $0 < h_i < h$ on X and

$$\int_{0}^{h_{l}(x)} e(x, u) du = G(x) \mu_{e}(\{f_{k} \neq 0 \text{ for some } 1 \leqslant k \leqslant i\})$$

for $x \in X$. Let us write $A_i = \{(x, u): x \in X, h_{i-1}(x) \le u < h_i(x)\}$, where we let $h_0(x) = 0$ for $x \in X$.

Fix any $i \ge 1$. For an integer $N \ge 1$ then there exist measurable functions j_k , $0 \le k \le N$, on (X, \mathfrak{B}, m) such that $h_{i-1} = j_0 < j_1 < \ldots < j_N = h_i$ on X and

$$\int_{J_{k-1}(x)}^{J_k(x)} e(x, u) du = \frac{1}{N} G(x) \mu_e(\{f_i \neq 0\}) \quad (x \in X);$$

further there exist measurable functions j'_k , $1 \le k \le N$, on (X, \mathfrak{B}, m) such that $j_{k-1} < j'_k < j_k$ on X and

$$\int_{j_{k-1}(x)}^{j_{k(x)}} e(x, u) du = \frac{1}{N} G(x) \mu_{e}(\{f_{i} > 0\}) \quad (x \in X).$$

Denoting by α and β , with $\alpha > 0 > \beta$, the two nonzero values which f_i/e takes on, define a function g_i on $\Omega = \overline{X}$ by

$$g_i(x, u) = \begin{cases} \alpha e(x, u), & \text{if} \quad j_{k-1}(x) \leqslant u < j_k'(x), \ 1 \leqslant k \leqslant N, \\ \beta e(x, u), & \text{if} \quad j_k'(x) \leqslant u < j_k(x), \ 1 \leqslant k \leqslant N, \\ 0, & \text{otherwise.} \end{cases}$$

Then, clearly, $\{g_i \neq 0\} = A_i$ and $g_i \stackrel{e}{\sim} f_i$. It is easily seen that if N is sufficiently large then

$$\int_{X-A_i} M_e(g_i) \cdot e \, d\mu < \int |f_i| \, d\mu.$$

Next, for any $f \in L_1(\mu)$, define

$$M_e^*(f)(\omega) = \sup_{b>0} \int_0^b f(T_t\omega) dt / \int_0^b e(T_t\omega) dt \quad \text{for} \quad \omega \in \Omega.$$

By a maximal ergodic theorem (see e.g. [6]) for flows, we have

$$\int\limits_{\{M_e^{\omega}(g_i)\geq\lambda\}}(g_i-\lambda e)\,d\mu\geqslant0\qquad (\lambda>0).$$

Since $g_i = 0$ on $\vec{X} - A_i$, this gives

$$\int\limits_{\{M_e^{\lambda}(g_l)\geqslant \lambda\}\cap A_l}g_l\,d\mu\geqslant \lambda\mu_e\left(\left\{M_e^{\bigstar}(g_l)\geqslant \lambda\right\}\cap A_l\right)\quad (\lambda>0).$$

(1889)

Using the facts that $\{g_i/e \geqslant \lambda\} \subset \{M_e^*(g_i) \geqslant \lambda\}$ and g_i/e takes on only the two nonzero values α and β , we observe from the definition of $\psi_e(g_i, \lambda)$ that

$$\mu_e(\lbrace M_e^*(g_i) \geqslant \lambda \rbrace \cap A_i) \leqslant \psi_e(g_i, \lambda) \quad (\lambda > 0).$$

Similarly,

$$\mu_e(\{M_e^*(-g_i) \geqslant \lambda\} \cap A_i) \leqslant \psi_e(-g_i, \lambda) \quad (\lambda > 0).$$

Thus, by the fact that $M_e(g_i)(\omega) = \max\{M_e^*(g_i)(\omega), M_e^*(-g_i)(\omega)\}\$, we obtain

$$\begin{split} &\int\limits_{A_{i}}M_{e}(g_{i})\cdot e\,d\mu = \int\limits_{0}^{\infty}\mu_{e}\big(\{M_{e}(g_{i})\geqslant\lambda\}\cap A_{i})\,d\lambda\\ &\leqslant \int\limits_{0}^{\infty}\big[\mu_{e}\big(\{M_{e}^{*}(g_{i})\geqslant\lambda\}\cap A_{i}\big) + \mu_{e}\big(\{M_{e}^{*}(-g_{i})\geqslant\lambda\}\cap A_{i}\big)\big]\,d\lambda\\ &\leqslant \int\limits_{0}^{\infty}\big[\psi_{e}(g_{i},\,\lambda) + \psi_{e}(-g_{i},\,\lambda)\big]\,d\lambda\\ &\leqslant C\big[H_{e}(g_{i}) + \int |g_{i}|\,d\mu\big] \qquad \text{(by Lemma 3.2 in [4])}\\ &= C\big[H_{e}(f_{i}) + \int |f_{i}|\,d\mu\big], \end{split}$$

where the last equality is due to the fact that $f_i \stackrel{e}{\sim} g_i$. Hence, if N is chosen sufficiently large, then the function g_i satisfies

$$\int_{\Omega} M_{e}(g_{i}) \cdot e \, d\mu \leqslant C \left[H_{e}(f_{i}) + \int |f_{i}| \, d\mu \right].$$

Since $\{g_i \neq 0\} = A_i$ and $A_i \cap A_j = \emptyset$ if $i \neq j$, this completes the proof of Theorem 2.

THEOREM 3. Let $(\Omega, \mathfrak{F}, \mu)$, $\{T_i\}_{i\in R}$ and $e \in L_1(\mu)$ be as in Introduction. Suppose that $f \in L_1(\mu)$ satisfies $\int |f| \log^+(|f|/e) d\mu = \infty$. Then there exists an $f' \in L_1(\mu)$ such that $f' \stackrel{e}{\sim} f$ and $\int M_e(f') \cdot e d\mu = \infty$.

Proof. If necessary, considering -f instead of f, we may assume that there exists a set A in \mathfrak{F} such that f/e > 1 on A, $\int_A f d\mu < 1$ and $\int_A f \log(f/e) d\mu = \infty$; further we may assume by Theorem A that $(\Omega, \mathfrak{F}, \mu) = (\bar{X}, \mathfrak{B}, \bar{m})$ and $\{T_t\}_{t \in \mathbb{R}} = \{S_t\}_{t \in \mathbb{R}}$. Choose a positive number α so that if we let $\bar{A} = \{(x, u) \in \bar{X}: 0 \le u < \alpha\}$ then $\mu_e(\bar{A}) = \mu_e(A)$. Next, take an increasing function u(u) on the interval $[0, \alpha)$ so that if a function g on $\Omega = \bar{X}$ is defined by g(x, u) = w(u)e(x, u) for $(x, u) \in \bar{A}$ and 0 otherwise, then $g \stackrel{e}{\sim} f1_A$. By Theorem 2 in [8], we have

$$\int_{\bar{A}} M_e(g) \cdot e \, d\mu = \infty \, .$$

Thus, if f' is any function in $L_1(\mu)$ such that f' = g on \bar{A} and $f' \stackrel{e}{\sim} f$, then $\int M_e(f') \cdot ed\mu = \infty$. The proof is complete.

3. Remarks. (i) The proof of Theorem 1 shows that this theorem holds for any conservative and ergodic semiflow $\{T_i\}_{i\geq 0}$. (ii) It is not difficult to check that Ambrose and Kakutani's representation theorem [2] for conservative flows holds even if the underlying measure space is not a probability space but a σ -finite measure space; thus it follows that, except for a pathological case, Theorems 2 and 3 hold for any conservative flow $\{T_i\}_{i\in\mathbb{R}}$.

References

- [1] W. Ambrose, Representation of ergodic flows, Ann. of Math. 42 (1941), 723-739.
- [2] W. Ambrose and S. Kakutani, Structure and continuity of measurable flows, Duke Math. J. 9 (1942), 25-42.
- [3] B. Davis, Hardy spaces and rearrangements, Trans. Amer. Math. Soc. 261 (1980), 211–233.
- [4] -, On the integrability of the ergodic maximal function, Studia Math. 73 (1982), 153-167.
- [5] Y. Derriennic, On the integrability of the supremum of ergodic ratios, Ann. Probability 1 (1973), 338-340.
- [6] U. Krengel, A local ergodic theorem, Invent. Math. 6 (1969), 329-333.
- [7] M. Lin, Semi-groups of Markov operators, Boll. Un. Mat. Ital. (4) 6 (1972), 20-44.
- [8] R. Sato, Maximal functions for a semiflow in an infinite measure space, Pacific J. Math. 100 (1982), 437–443.
- [9] Z. N. Vakhania, On the ergodic theorems of N. Wiener and D. Ornstein, Soobshch. Akad. Nauk Gruzin. SSR 88 (1977), 281-284.
- [10] N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), 1-18.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY OKAYAMA, 700 JAPAN

Received May 23, 1983 Revised version October 3, 1983