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Hardy and Lipschitz spaces on subsets of R"
by
ALF JONSSON (Umed), PETER SJOGREN (Géteborg), and HANS WALLIN (Umed)

Abstract. Given a suitable closed set F in R", Lipschitz spaces on F can be defined by .
restriction or directly. We want to construct Hardy spaces H? and local Hardy spaces h? on F
with these Lipschitz spaces as duals. Using a fixed nonnegative measure p whose support is F,
we define H? and h* by means of atoms on F. Polynomials are used in the moment condition
for these atoms, and we assume that polynomials satisfy a version of Markov’s inequality on F.
Then H? and h” can (almost) be characterized in terms of a suitable maximal function. The
desired duality property follows if we also assume that F is of constant dimension in the sense
that p behaves like a Hausdorff' measure. Finally, the theory is applied to obtain a property of

the atomic decomposition of H?(R").

0. Introduction

0.1. Hardy and Lipschitz spaces in R". The Lipschitz spaces in R" are the
duals of the Hardy spaces in R". More exactly: Let HP(R"), 0 < p < 1, be the
Hardy spaces in R” and A, (R"), o > 0, the homogeneous Lipschitz spaces in
R* defined in the following way: A,(R", k <a < k-1, k a non-negative
integer, consists of all ¢ eC*(R") such that ||4,Df ¢l < ¢y [H* % if o # k+1
and |42 DF ¢l < cq|h| if a« = k41, for all heR* and all multi-indices § of
length || = k; here 4, denotes the first and AZ the second difference with
step h, || ||, denotes the L*(R"-norm and c¢; = c,(¢) is a constant; infc,
gives a semi-norm on A, (R". Then the dual (H?(R") of H?(R"), 0 <p <1, is
A, (R", where ¢ = n(1/p—1); see for instance [2], p. 575. Let A4,(R" be the
space of those peA,(R" such that |[D? ¢||,, < ¢, < o0, for || < k, normed
with the larger of infc; and infe,. If hP(R") denote the local Hardy spaces
(see §2 or [5]), then (h°(R") = A,(R"), if e =n(l/p—1), 0<p <1 ([5],
Th. 5).

The maximal function characterization of H?(R") was given in [3]. The
characterization by means of atoms (§ 2) has been given by Coifman and
Latter [10]; see [5] for h”(R").

0.2. Markov’s inequality and d-sets. The Hardy and Lipschitz spaces in
R" have been generalized. In particular, the Lipschitz spaces have been


GUEST


142 A. Jonsson, P. Sjogren, and H. Wallin

defined on closed subsets F of R (see § 0.3). A natural question is: Can we
define Hardy spaces of functions on F having these Lipschitz spaces as duals,
It turns out that.the answer is yes if F has two basic properties. The first one
is that F will be a d-set, 0 < d < n, in the sense that there exists a measure y
with support F (a d-measure on F), which behaves like a.d-dimensional
Hausdorff measure (see § 1.1 for the exact definition; d-sets were introduced
and studied in [6] and [8]). The second property was introduced in [8], § 3
and [9] and has to do with Markov’s inequality which gives an estimate of
the derivatives of polynomials on a ball B by means of the maximum on B of
the polynomials. The property is discussed in § 1 and means that Markov's
inequality holds on F in the sense.that derivatives of a polynomial on B F
may be estimated 'by means of the maximum on BAF of the polynomial
(F has the Markov property). '

0.3. Lipschitz spaces on F = R". The Lipschitz spaces A,(R") have been
generalized to Lipschitz spaces A,(F) of functions defined on ar arbitrary
closed subspace F of R", so that 4, (F) consists of the restrictions to F of the
functions in A, (R"). The space 4,(F) was introduced and studied in [71, [8],
and [9]; among other things the restriction property was proved. When F
has the Markov property the characterization of 4, (F) is particularly simple;
see §4.1 concerning this and the properties of A,(F) which we need.
Analogously, A, (R") may be generalized to A, (F) (see.§ 5.2).

0.4. Hardy spaces on F. H°(R") has for some p been generalized to
Hardy spaces of functions défined on homogeneous spaces [2]. These Hardy
spaces are defined by means of atomic sums ([2], p. 592) and a theory of the
maximal function is given in [12]. If we interpret these Hardy spaces as a
subset of (4,(F)), this theory gives a predual of A,(F) for 0 <a <1 for
global d-sets (§ 5.1) since these are homogeneous spaces. In this paper we
construct (global) Hardy spaces H?(F); 0 < p < 1, of distributions on F and
local Hardy spaces h”(F), so that (H?(F)) = A,(F) and (h?(F)) = A, (F) for all
a>0, if «=d(l/p—1), O<p<1, and F is a d-set having the Markov
property; we also cover the limit case o« = 0, p = 1. The space h?(F), and the
more general spaces h™(F), 1 < g < co, and hPos = hP45(F, 1), are intro-
duced in § 2 (Definition 2.2) by means of local atoms on F (Definition 2.1)
which, in turn, are introduced using'a measure 4 with support F satisfying
the doubling condition (§ 1, inequality (1.1)). On homogeneous spaces only
polynomials of degree zero are considered in the moment condition in the
definition of atoms (§2, Equation (2.2)). Since we assume that F has the
Markov property in relevant parts of §§ 3-5, we can handle moment
c}c;ndit;:)ns of higher degree and consequently get a more general theory for
these F. .

In § 3 we characterize hP4 (F) and h»%* by means of maximal functions

icm

Hardy and Lipschitz spaces on subsets of R" . 143

if F has the Markov property and p satisfies the doubling condition
(Theorems 3.1 and 3.2). This leads to (Corollary 3.1) the conclusion that h?%5
and h™(F) depend only on p and F for such F. This is true also for Hardy
spaces on homogeneous spaces but not on general sets F (§ 4.4, Example 3).
The duality is proved in § 4 (Theorem 4.2). The global Hardy spaces H”(F)
and H™(F) are introduced and studied in § 5. In § 5.3 we apply our results
to obtain a property of ordinary Hardy spaces in R". We prove that if the
support of fe H?(R") is contained in a bounded convex body F, then f can be
written as an atomic sum with atoms having support contained in F.

In note [15] Stromberg and Torchinsky announce some results on
weighted Hardy spaces which are related to this study.

1. Markov’s inequality and d-sets

Throughout the paper, F denotes a non-empty closed subset of the n-
dimensional Euclidean space R" and u is a positive Borel measure with
support F, supp u = F, such that y is finite on compact sets. The closed ball
with center xeR" and radius r > 0 is denoted by B(x, r).

1.1. The concept of d-set. We say that yu satisfies the doublingnconditian if,
for some constant c,,

1.1 #(B(x,2r) < cou(B(x,7) for xéF, 0<r<l.

We call u a d-measure on F (0 <d < n), and F a d-set, if, for some ‘constants
¢, " >0,

(12) cr<u(Bx,n)<c'r  for

Clearly, (1.2) implies (1.1) and we may assume that the right-hand
inequality in (1.2) holds for all xe R" If y; and p, are d-measures on F, u,
-and u, are equivalent in the sense that there are positive constants ¢; and c,
so that ¢y yy < gy < ¢z 4 ([6], Proposition 1.1). If F is a d-set, then F has
Hausdorff dimension d and the restriction to F of the d-dimensional
Hausdorff measure in R" is a d-measure on F ([6], Proposition 1.1); for d = n
this gives the n-dimensional Lebesgue measure on F. Examples of d-sets are
given in [6], Section 2. '

xeF, 0<r<1.

1.2. The Markov property. We say that F has the Markov property if I
in Theorem 1.1 below holds for all positive integers N. In Theorem 1.3

~ we prove that every d-set F < R" with d > n—1 has the Markov property;

if F=R" then I is Markov’s inequality which is usually stated for cubes
instead of balls B.
Tueorem 1.1. Consider a fixed closed subset F of R", all balls
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B =B(xy, 1), and all polynomials P(x)="Y a,(x—x)" of degree < N,
|BI<N
where N is fixed, xoeF and 0 <r < 1. Then the following two conditions 1 and
11 are equivalent:
1. max|grad P| < cr " 'max|P| for all P(x} and B.
FnB FnB
Here and from now on in §1 ¢, ¢y, ¢,, ... denote positive constants
depending only on F and N.
1L max|P| ~Y |a|r** for all P(x) and B, where a~b means that
FnB

c; Sab<c,. . o
Furthermore, 1 and 11 imply, for 1 < g < x, if u satisfies (1.1),

1/
IIL %-1—— HP(X)Pd/l(x)} ! ~ max|P| for all P(x) and B,
w(B) j FoB

but not conversely. .
Proof. Step 1, I=-1I: Repeated application of I gives

lagl = C[DP P(xo)| < ¢; r™ ¥ max|P|.
FnB

Hence, Y |ag 7! < ¢, max|P), which gives the non-trivial direction of II.
FnB
Step 2, lI=1: By using II we get, for xe BN F,
[grad P(x)| < g 171 Y |agl ¥ < ¢, v~ 2 max | ).
. FnB

Step 3, I1 =11I: We note that the left member of IIT is less than or equal
to the right-hand member. In order to prove the converse inequality we put
A =Y |a;/r"* and note that according to II there is a point yeF n B(xo, r/2)
where P(y) ~ A. Since |grad P| < ¢;r~' 4 in B, this means that |P| ~ 4 in a
ball B(y, cr), where 1/2>c=c¢(F, N) > 0. Consequently, the Ileft-hand
member of I is' > ¢, A {u(B(y, cr))/u(B)}*". According to the doubling
condition (1.1) and II this is ~ A ~ max|P|, which gives the converse

FnB
inequality.

Step 4, Il =1, II: As an example we may choose a line segment F < R?
defined by F = {x=(x;, x;)eR% x,=0,0< x,; <1}. By choosing P(x)
= X;, we see that I does not hold. On the other hand, if we consider F as a
subset of R', then the Markov property 1 is valid on F (see for instance
Theorem 1.3 below). From Steps 1 and 3 in this proof we get that III holds.

Remark. From I and IT in Theorem 1.1 it follows that the Markov
property I is equivalent to the corresponding property for B changed to
cubes with center in F and side of length < 1.

In order to verify the Markov property it is, according to the following
theorem, enough to consider polynomials of degree 1.
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TueoreM 1.2. If T in Theorem 1.1 holds for all polynomials P(x) of degree
1, then F has the Markov property, ie. | holds Jor all polynomials P(x) of
degree < N for every N, with a constant depending on N and F.

Proof. We use induction on N and suppose that I holds for N—1. Take
B=B(xo,7), xoeF, 0<r<1, P(x)= ¥ a;(x—x,) and introduce the

|Bl<N

“coefficient norm” 4 = Y’ |a| /! of P. It is enough to prove Il in Theorem 1.1,
ie. that |P| >c, A somewhere in FAB. We may assume that [P(x,)|

=laol < ) |ag| ¥, because otherwise II holds. This means that the “coeffi-
£#0

cient norm” of some component of grad P is ~ A/r. By the induction as-
sumption we then get, if B’ = B(x,, r/2),

sup |grad P| ~ A/r.
FnB'

Take a point yeF B such that |grad P(y)| ~ A/r. Introduce the ball
By =B(y,er), 0<e<1/2, and the polynomial Q(x) =(x—y)-grad P(y).
Since Q(x) has degree 1 and [grad Q| = |grad P(y)| ~ A/r, the assumption in
the theorem means that |Q (x)] > cAe for some xeF B,. We shall estimate
P(x) by means of the Taylor expansion P(x) = P(y)+ Q(x)+R(x), where the
remainder term R(x) satisfies |R(x)| < ¢, e? for xe B, since the absolute
values of the second derivatives of P in B, are < c, A/r*. By choosing &
=¢(F, N) small we may assume that |R(x)| < cAe/4 for xeB, and we may
also assume that |P(y)| < cAs/4 (since otherwise there is nothing to prove).
The estimates which we have for |Q(x)l, |[R(x), and [P(y) give that |P(x)|
=[P+ Q(x)+R(x)| > cAe/2 for some xe(F N By) = (F N B), which is what
we wanted to prove.
We now give a geometric criterion for the Markov property.

Tueorem 1.3. F has the Markov property if and only if the following
condition holds: There exists an ¢ > 0 so that none of the sets F nB(xy, 1),
xo€F, 0 <r <1, is contained in any band of type {x: [b-(x—x0)| < er} where
|b] = 1. .
Proof. (1) Suppose that the condition does not hold. Then, for any
¢ >0, we can find x;, r and b as in the theorem such' that F nB(xy, r)
< {x: [b-(x—xo)l <er]. If we check I in Theorem 1.1 on the polynomial
P(x) =b-(x—xy), we see that I does not hold.

(2) Suppose that the condition holds for a certain e > 0 and that P is a
first degree polynomial, P(x) =Y a;(x—x,} =b-(x—xo)+a, where |b] = 1.
If xoeF, and 0 <r <1, there exists an xy €F 0 B(xg, r) with [b-(x; —x,)|
=éer. *Hence, |P(x;)~P(xo)|=>er, so at x, or x; we have |P| = er/2
~ Y lag ' if Jal <r. Xf |a| > ¥, then [P(xg) = || ~Y layr!?. By 1I in
Theorem 1.1 and Theorem 1.2, F has the Markov property.
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1.3. The Markov property and d-sets.

TueoreMm 14. If F c R" is a d-set with d > n—1, then F has the Markov
property.

Proof. We verify that the condition in Theorem 1.3 holds. Take
B=B(x,,1); XoeF, 0<r<1, and a band D=Bn {x_: |b-'(x-—x_0)| <er)
where |b| =1 and 1 >¢ > 0. We can cover D by cubes w1tt'1 side ér §0 that
we need at most ¢, #" " er/(er)" = c; ¢ ~" cubes. Each cube intersecting F is
contained in a ball with radius c,er and center in F. This gives, by (1.2),

u(D) < c3er "(er).
But, by (1.2), u(B)=c'r%, ie. B\D intersects F if ¢ = ¢(F) is so small that
eyt~ < ¢t

2. Local Hardy spaces on F — R"
We assume that the exponents p and g are admissible in the sense that

0<p<l, 1<g<w, and p<y,
and that p is a fixed measure, suppu=F c R", satisfying the doubling
condition (1.1); s is a non-negative integer. If B = B(x,, r) we use, for the
sake of simplicity, the notation 2B for the ball B(x,, 2r).

DerFINTioN 2.1, A local (p, q, s)-atom (with respect to u) is a function
ae l4(u) with compact support such that for some ball B = B(x,, 1), Xo&F,

satisfying suppa < B, we have

1/q
—y
2.1) {(B)jlal"du} < p(2B)7P,
and

2.2 : faPdu=0 if r<1,

for all polynomials P of degree <s.

We call B a supporting ball of a. (2.1) gives that the If(u)-norm of
a is° <1. We remark that the results of this paper remain true if in
Definition 2.1 we change u(B) to u(2B) in the left-hand member of (2.1).

When F is a d-set, p a d-measure on F, and s = [d(1/p—1)], where [ ]
denotes the integer part, ie. the moment condition (2.2) holds for all
polynomials P of degree < [d(1/p~—1)], a is called a local (p, q)- atom on F;a
local p-atom on F is a local (p, oo)-atom on F.

We need the following simple lemma.

LemMA 2.1. Let p be a measure with support F satisfying the doubling
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condition (1.1). For any given ¢ > 0 there exzst constants ¢y = ¢y (y, 0) > 0 and
B = B(p) >0 such that -

H(B(x, )= c;*  for all xeFnB(0, ), 0<r<1.

Proof. We consider a maximal number of disjoint balls with center in
FnB(0, ¢) and radius '1/3. Then any ball B(x, 1), xeFn B(0, g), must
contain one of these finitely many disjoint balls and the desired inéquality
follows for r = 1. For xe FnB(0, g), 0 <r <1 we take an integer j such
that 1/2<2'r <1 and obtain by repeated application of (L.1) w1th co
=co(u) = 1 that

u(B(x, r) = cgly( (x,21) =
for some B = f(w) > 0. This gives the lemma.

Using Lemma 2.1 we-now prove the following basic lemm;:

LemMMA 2.2. Let yu be a measure with support F satisfying the doubling
condition (1.1), and let p and q be admissible exponents. Then there exist

a positive integer so(pt, p) and, for each @€ CP (R, a constant c(cp) =c(op, Y
so that .

(B (x: 1))/00:

[ apdy| < c(o)
Jor all local (p, q, s)-atoms a with s > so(4s P)-
Proof Let ¢eCF(R" and let a be a local (p, q, sl-atom with a

supporting ball B = B(y, 7). For 0 <r <1 we get by (2.2), Hélder’s inequal-
ity, and (2.1), if P,(x—y) is the Taylor polynomial of degree s of ¢ arcund y,

[{apdu| = [[a(x) [0 (x)—P,(x—y)] dﬂgx)l
B B

< 1(2B) VP u(B) cy et (B,
1/g+1/q =1, ¢; =c,(¢). We may assume that Bsuppg # @ and use
Lemma 2.1 with ¢; = ¢4 (i, ¢} to conclude that this is less than

HBY TP, Pt (e Y TP e, Y e, B = B(w),

if B1—~1/p)+s+120, ie. if s =>50(p, p) = B(I/p—1)—1. This is the desired
estimate for r < 1. For r > 1 we get by Holder’s inequality and (2.1)
Ha<PdH| H(2B)™ 1P u(B) ey (B < 3 p(2B)' TP, oy = cy(g).
We may assume that there exists a point x,&B N supp unsupp¢. Then
u(2B) = u(B(xo, 1)) and if we apply Lemma 2.1 with a ¢ such that
B(0, ¢) = supp ¢ we see that u( (%0, 1)) 2 ¢4, ¢; = ¢, (1, @), which gives the
desired estimate for r > 1.
We identify the local (p, g, s)}-atom a with the distribution (element in
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') whose value for @eCF(R) is {a, ¢ = fapdu. Now, suppose that a;,
j=1,2,:.., are local (p, g, s)}-atoms and that A; are complex numbers
satisfying ZM i|P < co. Then ZM,] < oo and according to Lemma 22 Y 4;a
converges in @, f s> so(u, p)=B(l/p—1)—1, to a distribution f whose
value for ¢ eC&IR is

@3 ooy =24 a0du.

DerINITION 2.2, The local Hardy space h™%® = h»**(F, u) on F with
measure p, 5 = so(u, p), is the space of all distributions f having a represen-
tation f =Y A;a;, where a; are local (p, ¢, s)-atoms and ) |4 < c0. We

introduce
”f“,,p.q.s = lnf(z M]'p)l/p’

where the infimum is taken over all such representations. This is a quasi-
norm, ie. all properties of a norm are valid except that the right-hand
member of the triangle inequality must be multiplied by a fixed constant.

We note that if the doubling condition (1.1) holds for all r > 0, then we
get the same local Hardy spaces if we replace 2B by B in the right-hand
member of (2.1). For p=1 we have [|ddu <1 for all local (p, g, s)-atoms,
ie. Y A;a; converges in I () if ). |4}/ < co. Hence, we can identify A5 with g
subset of I (1) and (23) holds for all @& L™ (p).

Now let F be a d-set, 4 a d-measure on F, and s = [d(1/p—1)]. In this
case we may choose f in Lemma 2.1 equal to d, and hence s = sq(u, p)
= B(1/p—1)—1. Thus "% is defined. It is denoted’ by h”? = h»4(F, ) and
we speak about the local Hardy space h™*(F, p) on F; we put h?*(F, u)
= hP(F, 1) = h?. We notice that it is easy to see that h?(F, ) for F = R", p
Lebesgue measure, give the local Hardy spaces in R* introduced by Goldberg
([5], pp. 36-37).

From Hélder’s inequality it follows that the left-hand member of (2.1) is
an increasing function of 4. This means that h?91° < h™92° with continuous
imbedding if g, > g,. In Section 3, Corollary 3.1, we prove that if F has the
Markov property, then we have a converse imbedding, i.e. the spaces h#%*
are the same, with equivalent quasi-norms, for fixed p and g, for all g and all
s that are sufficiently large; also, h™4(F, p) is independent of ¢ and u, and
denoted by h?(F) if F is a d-set having the Markov property, but this is not
true for general F (see § 4.4, Example 3).

3. Maximal functions and local Hardy spaces
3.1. Maximal functions of h»%* distributions. We now define a maximal

function adapted to h»** by means of a class of smooth functions supported
in the unit ball. In this subsection, we show that the maximal function of any
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KPS distribution is in I%, and § 3.2 contains a result in the converse sense.
From now on, we denote by ¢ many different constants. The norm in
IP(w) is denoted by ||,.
DerFiniTiON 3.1, Let

S, = {peCP(RY): suppp = B(0, 1), [D¢| < 1 for |f| <o)

for ceN. If f is a distribution with support in F, we set for xeF

m, f(x) =sup sup

' o<t<1H(B(1:f))<f “’< >>

TueoreM 3.1. Let u satisfy the doubling condition (1.1). If f e h?%* for
some admissible p and q and a sufficiently large s (depending on u and p), then
m, fel? (u) for ¢ >s. Further,

”ma'f”p C”f“;,pqs: c= C(F /-l’ P: q9 s, 0')

When u is a d-measure, s = [d(1/p—1)] is large enough here, so h"” can be
replaced by h™4.

This follows immediately from the next lemma.

Lemma 3.1.If u, p, q, s, o are as in Theorem 3.1, any local (p, q, s)-atom a
satisfies m,aeIf () and ||m,d||, < c.

Proof. For p <1 it is enough to consider g = 1 since a is a (p, 1, s)-
atom. We can assume that B = B(0, r) is a supporting ball of g, so that OcF.

Case 1: r < 1/2. Define the ordinary maximal function by
1
mg(x) = sup ———— du, xeF.
9= 22w B 0) j'g' "

B(x.0)

The operator m is of weak type (1,1), see e.g. [4], § 6.1. Clearly, m,a < mlal,
so if , denotes decreasing rearrangement we get (m,a),(t) <cllall, ™! and
K(2B)

| meapPdu< [ (m,a)(t)dt
0

|x| < 2r
u(2B)

<clialf j t7Pdr S cpu(2ByitiTe — ¢,

Here we used the simple fact that, because of (2.1),
3.1 llall; < n(2B) =P

Let peS,. To estimate m,a off 2B, we use the vanishing moments of a, and

denote by P, the Taylor polynomial of ¢ at z of degree s. If |1] < |x|/2, the
expression

u(B(x, )" fa(y)o ((x—y)yt)du(y)
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will vanish since |x—y| >[x/2 and so [x—y|/t =1 when |x| >2r. And if
t >|x|/2 and |x| > 2r, the same expression is at most

o522

Iylsr
< cu(B(x, )7 [la@l /0t du()
< eu(Bx, ) (B VR (r/Ixly Y,

because of (3.1). We can further assume |x| < 3/2 since we get 0 otherwise.
Then B = B(0, r) = B(x, min(2|x|, 2)), and the doubling condition implies

p(Bx, 1)?

1(B) < cp(B(x, 1). Then
[ (meapdp<cu(B)™' [ (@/Ix)™Tdu(x).
|x| > 2r 2r<|x] <3/2

Considering dyadic rings and using (1.1), we can estimate this last expression
by

B Y

2r<2t52

if s is large, where we define j, by 20 . The d-measure case with
s =[d(1/p—1)] requires some minor modifications at this point but is
otherwise similar, see e.g. [13], proof of Theorem 3.1.

Case 2: r > 1/2. Clearly, suppm,a = B(0, r+1). Using m as before, we
obtain -

{B(O,r+ 1))
fmapdusclal” [ e <e(u(BO, r+D)u(BO, M) <c,
0

w(BO, 2)(r27 e e ¥ cp 02T mer IO < ¢

i>jg

tTPdt <

where we used (1.1) to get the last inequality, in case r < 1.

This proves the lemma when p < 1. In the opposite case, g > 1 and mis

bounded on 1. Then it is enough to replace weak L' by I mn the preceding,
and use Holder’s inequality instead of decreasing rearrangements.
Lemma 3.1 and Theorem 3.1 are proved.

3.2. A converse result.

THEOREM 3.2. Let u satisfy (1.1) and assume that F has the Markov
property. If fe L. (1) satisfies m, f e I () for some o, where 0 < p < 1, then
feh™=* for any s >0, and

“f“hp,w,s K¢ ”ma f”p!

Notice that f is identified with the distribution fdu here. Similarly,
equality or convergence in the distribution sense for functions in L, (1) will
in this section refer to the distributions.obtained when the functions are
multiplied by du.

¢=c(F, u, p, s, 0).
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CoroLrary 3.1. Ler p and F be as in Theorem 3.2. The space h™%S is
independent of q and s, with equivalence of norms, provided p, q are admissible
and s is large enough. When F is also a d-set, h™ is similarly independent of q
and-of the d-measure p.

We may thus Wl'lt(.i h? = h?(F, p), and in the case of a d=set h? = h?(F).
The corollary follows if we apply the theorem and Lemma 3.1 to local
(p, g, 5)- and (p, g)-atoms. Notice here that I? () is independent of the d-
measure ¢ in the d-set case. The authors do not know whether Theorem 3.2
holds for arbitrary distributions f supported on F.

Proof of Theorem 3.2. Our method is taken from Latter-Uchiyama
[11] Theorem 1, see also [13], Theorem 3.5. We start by introducing
Whitney balls and partitions of umty

LemMma 3.2 If Q is a relatively open proper subset of F, then there exist
balls B; = B(x;, 1)), x;eF, i =1,2,... such that Q = J(F nB,), the doubled
balls 2B; = B(x;, 2r;) have boynded overlap, i.e. no x can belong to more than ¢
balls 2B;, and ’

dist (B, F\Q) _ _ dist(B, F\Q)

(3.2) o r < -

where M >4 is a preassigned constant. Further, there exist non-negative
Junctions ¢;eCg (R") such that 3 ¢, =1 on Q, ¢, ~1 on B, suppe; < 2B,
and

(33) ID* ¢f < Cp W, |8l > 0.

To find the B;, one covers R"\(F\Q) by Whitney cubes and replaces
those cubes which intersect F by suitable balls centered on F. We omit the
rest of the proof.

Now let f e I, (1) with m, feI? (1). We apply Lemma 3.2 to those sets
Q ={xeF: m,f >2%, keZ, which are not equal to F, obtaining B
=B(xf, 1Y) and ¢f, i=1,2,..  Call the doubled ball 2B* of type I if it is
contained in a unit ball B(y}, 1), for some y*eF\Q,. Otherwise, 2B is of
type 11,

_ Fixing a ball 2Bf of type I, we let 1;* denote the subspace of I* (¢ dy)
given by polynomials of degree at most s. Let n,, ..., m, be an orthonormal
basis in /%, and define the projection of f into V¥ by

Pt =Z7‘/ffﬂl<0?dll-

Lemma 3.3. We have |PY < c2* in 2B,

Proof. Since ¢f ~ 1 in Bf, the I* norm of each m, with respect to the
normalized measure du/u(BF) restricted to Bf is at most cu(BY)~Y2. By
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Theorem 1.1, this implies

(34 [DPm| < cu(BY~M2(@H~, 1B =0,

in 2B¥. Because of (3.3), we get similar bounds for the derivatives of m, ¢f. We
can find y*eF\Q, such that
suppm, of = B(yf, crf)

because of (3.2). And af <
write

1 since 2Bf is of type L It follows that we may

k——«
0 (x) @k (x) = p(BY 12y (-y-c;i;x)

. with yecS,. Since u(B(¥, crb)) < cu(Bf) because of (1.1) (compare with
B(xF, 2) if rf is close to 1), we conclude

NS mokdu| < cu(BYm, f () < cu (B2 2%,

From this and (3.4), the lemma follows.

When 2BF is of type II, let P¥=0. Following [11], p. 393, we now
denote by Pi™! the projection of (f—P¥*%)gk.into VF*1, if 2B4*! js of
type 1. Otherwise P5"! = 0. As in Lemma 3.3, one can show that

35) |PEHY < c2¥
in 2B%*1,

(3.6)

Notice that
Y Pt =0.

Write f = g,+b, on F, where
(3.7) g = fir ‘?k+z Pt of
and thus

=Y (/P
if Q#F, and g, =0, b, =fif Q=

sition of f:
LemMA 3.4. In the distribution sense,

F. This gives a preliminary decompo-

f= Z (Grs1— gk)—~2(

k=—om

—byes).

Proof. We need only verify that g, —0 as k— —oo and g, = f as
k — 40, Now m, is of weak type (1,1), which via differentiation of integrals
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implies that |f] < cm, f p-a.e. Because of Lemma 3.3, |g,|
k — —oo, p-a.e. and in the sense of distributions.

As k— +00, (@) —0, so the first term in (3.7) tends to f pu-ae. and
in the distribution sense. To show that the second term tends to 0, we take a

Yy €eC§ and denote by pr the projection operator into V¥ Then pr is
symmetric and

<c?, 50 g, =0 as

[P¥yotdu=[fpryokdu.

But |[ym pkdu| < cu(BH? sup|y| because of (3.4), so
pryy| = thNm@ dy| < csuplyl.
Since Z(p, ¢, this gives
;”PWCD;“W < cflfldu-suplyl,

where the last integral is taken over the union of those 2B¥ of type I which
intersect suppy. This union is contained in a fixed compact set, and its p-
measure tends to 0 as k — +co. It follows that

Y[ Peyotdy -0, k- +oo,
i

and so g, — f in the distribution sense as k — +o0o. Lemma 3.4 is proved.
Assuming to begin with that no €, is F, we have

 be=beus = [~ Phot =S U= P ot o],

since ) ¢f =1in Q> Q,H.l..SO because of (3.6) and Lemma 34, f =3 g,
i ki

1
where

S (- B ot

J

Bt = (f— P} ot —Pgl) el
We shall now see that these B¥ are essentially the atom multiples we are
looking for. :

The terms in B contammg f cancel in Qk+1: since Zqo““ =1 there.

Off Q.1 we have |f| € ¢2* p-ae. Because of Lemma 3.3 and (3.5) it follows
that |Bf| <c2% Notice that P4"' vanishes when 2Bf and 2B§*' ‘are disjoint.
Therefore, the support of f is seen to be contained in the union of 2Bf and
those balls 2B%*! intersecting it. Since such 2B** must have radii at most -
cr¥/M because of (3.2) and the fact that Q,,; < Qk, this union is contained in
a ball Bf = B(x¥, cr¥). We may assume that the balls (2B), do not intersect
F\Q, and have bounded overlap, by choosing a suitable M in (3.2).

5 — Studia Mathematica, T. LXXX
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Because of (3.2), there exists a ¢ = ¢(M) > 0 such that if r¥ < ¢, then 2B%
and all balls 2B§** intersecting it are of type I. For these r¥, the 8* will have

vanishing moments up to order s. Then we may write S* = J¥d*, where

Af = c2p2Bh'r

and af is a local (p, o0, s)-atom with supporting ball BfY. When rk > 1,
no moment condition is necessary, so we define 4f and af in the same way.
For ¢ <rf <1, we avoid moment conditions by covering supp 8* by at
most ¢ unit balls B(x,, 1) with x,eF nBf. Write =Y p¥, where
supp B¢, < B(x,, 1) and |} < c2*. With A, = c2* u(B(x,, 2))''?, we may
write Bf, = Ak, a¥,. This af, will be a local (p, o, s)-atom if we let its
supporting ball be B(x,, 1+&), where ¢ is so small that

#(B(x,, 2(1+8) < 2u(B(x,, 2)).
Altogether, we have

f=2Aa+ ) i,d,,
ki

kii,v
/

where the first sum is over those k, i for which ¥ < ¢ or rf> 1, and the
second sum over the remaining k, i and at most ¢ values of v. For ¥ we have

TIHP < e Y2 u(2B) < ¢ X2 (@) < ¢ [ (m, 117 dp,
ki k

k,i

since the balls (2B¥); have bounded overlap. For 1¥,, notice first that
B(x,, 1) = B(x}, max (2, 27)
k

where 7 is the radius of B*. And ¢ <r* < 1. Because of the doubling
condition, we may therefore estimate #(B{x,, 1)) and thus u(B(x,, 2)) by
cu(2BY). This implies that the A%, can be estimated like the 2. It follows that
FehP™ and we get the right estimate for the quasi-norm of f.

The case where some Q, = F remains. Denoting by k' the first k with
2, #F, it is enough to decompose g, =gy —gy-, into atoms since the
differences g, —g,, k > k' can be treated as before. Cover F with unit balls
B, centered on F and having bounded overlap. Since |g,| < c2* as before, we
may write g, =y a,, where «, has support contained in B, and |a,| < c2.
Choose balls B} conceritric to B, with slightly larger radii so that

(38 1(2B)) < 2u(2B,).

Then «, = c2¥ u(2B))"'7 a, for atoms a, with supporting balls B, so that no
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moment conditions apply. For the coefficients here, we use (3.8) and the
bounded overlap of the B, to get

Y. 2P u(2B) < c[(m, f)Pdu
since m,f>2¥"1in Q,._, =F.
This ends the proof of Theorem 3.2.

4. Duality

4.1. The Lipschitz spaces A,(F). These spaces have been studied .for
arbitrary closed sets F in.R", but we define them here only when F has the
Markov property. The characterization of A, (F) which we take as definition
here was given in [9]; there we used cubes instead of balls, but it is easily
seen that balls give equivalent spaces. :

DerFiNiTION 4.1. Let a >0, and let F be a set having the Markov
property. A function f defined on F belongs to A, (F) if and only if there is a
constant M such that

(a) for every ball B = B(x,, 1), xo€F, r < 1, there exists a polynomial P,
of degree at most [a] such that .

@4.1) If (x)— Py (0| < Mr*,

(b) .
(4.2) [f ol < M,

xeBNF,

xeF.

The norm of f in A,(F) is the infimum of the constants M.

For F = R", the spaces A, (F) coincide with the classical Lipschitz spaces
A, (R", defined in § 0.1, see [9]. A basic property of the spaces A,(F) is the
following trace property: The pointwise restriction to F of a function in

. A, (R") belongs to A,(F) (this is obvious), and, conversely, every function in

A,(F) may be extended, by means of a bounded extension operator, to a
function in A, (R"). This result, which for non-integer « is a version of the
Whitney extension theorem, is given (for an arbitrary F) in [9].

In the proof of the duality theorem for AP spaces, it is convenient to
have characterizations of A, (F) for d-sets F- where one approximates with
polynomials in the If(u)-norm instead of the maximum norm. We give a

result of that kind, and to describe it, we introduce certain spaces AZ(F).

DerFniTiON 4.2, Let F be a d-set, u a d-measure on F, ¢ >0 and
1<g< oo, ora=0and 1<g< . A function f defined u-a.e. on F belongs
to A4(F) if and only if there is a constant M such that for every ball B
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= B(xq, 1), xo€F, r <1, there exists a polynormal Py of degree at most [«]
" such that if r < 1, then

(4.3{ (EEIB—) J | f—P,,l"d,u)llq < M,
and-if r =1, then ’ '
1 1/q
(4.4) (HF) Jl 11 du> <M.
B

The norm of f € AZ(F) is defined as the infimum of all possible constants M.
Different d-measures—y on F give equivalent norms, and as a canonical
choice for the norm in A4(F), one may take the restriction to F of the
d-dimensional Hausdorff measure, cf. § 1.1.

Remark. Using a covering argument, one obtains from (4.4) that

(J1f1ed)'s < cM(u(2B))*  for balls B = B(xg, ), xo€F, r> 1.
B
For F = R" the space A§(F) is the bmo space introduced in [5], and in
analogy with this we will below also denote the spaces A3(F) by bmo, o (F)
qnd A§(F) by bmo (F).

The following theorem is well known in many special cases, cf. [1].

TrroreM 4.1. Let F be a d-set with the Markov property, a>0,
1<4q;,9, <. Then

A F) = A2 (F)

with equivalent norms.

Proof. Since it is readily seen that A;% = A?* continuously if <D it
is enough to verify that A} c A® (then A"1 c A AR AP, g, <q,).
So take fin A} with norm 1, and let B be a ball of radius r < 1 centered on F.
Let P be a polynomial of degree < [«] such that

1
W) j = Pldp<

2B

(if 2> 1 one takes P = (),

Take x in BN F, and put B, = B(x 27¥7), k = 0. Choose a polynomial '

P, of degree < [a] so that

4, e
“3) | u(B)JIf Pldu< c(27try,
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then for k =1

1 1
—— | |Py =Py _y|dp € —=— | |f~ Pyl du+
% (By) j| = Pi-1l H\#(Bk) Jlf Wl dp
By

By

By 1 j -k
+ - |f—= Py ddu < c(27%r)%.
(B  p(Bi-y) k-ul K ( )
Byg—1
Using III in Theorém 1.1 we get,
(4.6) .max|Py,~P,_ | <c27*
FnBy
Hence, using (4.5) and (4.6),
1T 1
L {—p )dn<—~J1f—P dus»—flf—md +
PR J Sy [Tl gy [V R
By, By
3 1 - k
+ [P,—P,_{|du<c2"®r+ ¥ 27" < or,
y= 1#(Bk)f il \;
By

and letting k tend to infinity, we obtain for w-almost all x in BnF
|f(x)—Po(x)] < cr*. Then we also have [f(x)—P(x)] <|f(x)—Po(x)+
+|Po(x)— P(x)| <cr°‘ p-ae. in BNF, since |Py(x)—P(x) <cr*, xeBAF,
may be obtained simply in a similar way as we obtained (4.6) (consider
1/u(Bg) [ |Po— Pldp). Thus (4.3) holds for g = co, and to prove (4.4), con-

B,
sider a l;)all B = B(xy, 1), xo€F, and let P be as above. Then, as we have
seen, |f(x)| = |f(x)—P(x)| <c p-ae. in B, and the proof is complete.
Obviously, a function in 4, (F) belongs to A (F). The converse holds in
the following sense.
ProrosiTiON 4.1. Let F be a d-set having the Markov property and a > 0.

" Then every function in A>(F) may be changed on a set of u-measure zero so

that it becomes a function in A, (F), with norm in A,(F) equal to the norm in
AZ(F).

Proof. Let y #0 be a nonnegative function in C®(R") supported in
B(0, 1), put

—y\ -1 _
(p(x,y,f)=”t//(£;ﬁ)d#(u)} ,p("_t_li) x, yeF, t >0,

and define for feA;°(F) f, by
) =[fB)elx, y, 1)du(y),
f

Then the functions f, are continuous, and we shall see that |

xeF.

"} converges
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uniformly as t—0, and that fi(x)— f(x) p-ae, t -0, which proves the
theorem. Take 0 <1; <t, <1. Using [o(x, y, f)du(y) =1 we get

1y G)=fi, ) = [[{f D) =f @} o (x, y, 1) @ (x, 2, t2) dp(y)du(z).

Taking B=B(x, t;), f<1, p<a, and Py as in the definition of A we
obtain
LfO)=f @] =1f () —Ps () +|Ps(y)— Pp(2)l +|Py(2) S ()]

Sctb+cth+cets < cth

for p-almost all y and z in B(x, t,) N F (for the estimate of [Py (y)— P,(z), see
below). Thus, since the integrand is non-zero only for z, ye B(x, t,), we get
[fe, ) =£, () < ct4, so we have uniform convergence.

Let next xoeF. Then, eg. for r <t <1/2,

1
Boor) j 14,9~ (9l dua(x)
B(xq.r)
1
(B, J {7 0) =160} p(x, v, D0 dutx) < et

B(xq,r)

and letting r tend to zero, we get |f(x)—f (x)| < |t u-almost all x. As a
consequence, S, = f p-ae. for some sequence t, —0 and hence fi— f wrae.

The estimate |Pp(z)—Py(y) <clz—)yf, z, yeB=B(x,r), <1, r<1
follows from the mean value theorem and the estimate lgrad Pyl < ¢ in B
> 1 and |grad Pyl < cfinv], o = 1. ’

These estimates are easily obtained with the aid of Markov's inequality,
upon writing Py = -~Z1 (Ps,_, —Pp)+ Py, where B; = B(x, 2'r) and n is the
integer such that 4 < 2'r < 1. -

4.2. Local Hardy spaces as subsets of (A, (F))’. Let F be a d-set with the
Markov property and u a d-measure on F. We put Aq (F) = bmo(F) = A}(F)
and (4, (F)) denotes the dual space of A, (F). We need

Lemma 41. If 0<p<1 and « = d(1/p—1), then

[fapdyl < clloll 4 ms
i) is i
j;o,:daa. @A, (F) and all local p-atoms a on F. Here ¢ is independent of ¢

.Proof. Let B =B(x,,7), xocF, be a supporting ball of @ and P a
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polynomial of degree at most [o]. By the definitions of local p-atoms, A,(F),
and d-measure, we get, if P is suitably chosen and r <1,

| ag du| = |faleo—P)dp| <l gy 10— Plly 1,5 < R B)™ 2 {10l gy 77
. B

< el 4 my = cllol] g

For r >1 we get analogously without using. P,
[{ap du| < u(2B)™ 1" [|@ldu < ¢ |9l a,eys
B

since pu(B) = ¢’ > 0. This proves the lemma.

Now, assume that a;, j=1,2, ..., are local p-atoms on F, 0<p<l,
and that A; are complex numbers such that S 1AP < co. The element f
=Y Aja;eh?(F) = &' is determined by the formula {(f, ¢ = Y. 4; fa; pdp, for
@eCZ(R). For the duality theorem below (Theorem 4.2) it is essential that
this formula in a unique way may be extended to hold for all peA,(F).
However, from Lemma 4.1 it follows that ¥ A;a; also defines an element
fre(A (F)) given by (fi, 0> =Y. 4; [a;@du for all peA,(F), a =d(1/p—1).
Since @eCP(R") implies ¢[Fed,(F), [ is uniquely determined by f;.
Conversely we shall prove

LemMa 4.2. f; is uniquely determined by f.

From this lemma it follows that we may identify f = le a;eh?(F)c &'
with f; =Y 4;a;€(A,(F)), where a =d(l/p—1). If f =3 A a;eh?(F) =2,
then f is uniquely determined on A, (F) by </, ¢> =2.4; [a;0dy, peA,(F),
and Lemma 4.1 gives, since Y |4] < (3 |4/7)'7,

(4.7 K o < clifllyp 0l @ =d(1/p—=1),

ie. h?(F) = (A,(F)) with continuous imbedding.

Proof of Lemma 4.2. (1) The case p < 1. We take a ¢ € 4,(F). Since
A4 (F) is the trace to F of A,(R"), we may assume that ge4,(R"). This allows
us to follow the method in [13], § 5. We first assume that supp ¢ is compact.
Take a nonnegative function e C® (R") with support in B(0, 1) satisfying (n
=1, and put 5,(x) =t~ "n(x/1), for t > 0. Then 7, @€ C§ (R") and the norm,
in the space A, (R, of 7, * ¢ is less than or equal to the norm of ¢, for ¢ > 0.
By dominated convergence and Lemma 4.1 this gives, as 1 =0,

Sonrod =Y Afanrodu—Y A fa;edu= i, @),

.ie. the value of f; on A,(R" ~{¢p: supp¢compact} is uniquely determined

by f. If supp ¢ is not compact we introduct a function me Cg’(R") which is 1
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. in B(0, 1/2) and 0 outside B(0, 1), and define m®(x) = m(x/R), R > 1. If we
can prove that, for some constant ¢ independent of R and o,
(4.8) fIm® Oll ayim < cllell aams

then we get by dominated convergence, as R — 0,

i mRoy =Y Js faymRodu Y4, [a,0du = {fy, o,

ie. f; is uniquely determined by its values on A,(R") N {¢: supp ¢ compact}
and hence by f. Consequently, Lemma 4.2 follows for p < 1 if we prove (4.8).
We do that when « is an integer which is the more difficult case. We then

- assume that |47 (DVo(x) < M|h, for |jl=oa—1, x, heR", and that
[DY ¢(x) < M, for |jl Sa~1, xeR"; the norm of ¢ in A, (RY is the infimum
of the constants M. We have to prove that ‘

|47 (D* m® D? ) (x)| < cM || B+ =a=1, x, heR",
DFmRDY @) (x)| < cM Cfor Bl +]y] Sa—1, xeR".

The second -inequality follows since |D? m®| < ¢RI, and the first follows

immediately if we estimate each term in the right-hand member of the
formula '

for

42 (GH) (x) = 42 G (x) H (x)+24, G (x-+ ) 4, H (x)+ G (x +2h) 42 H (x)

used with G = Dfm® and H = D7 ¢. This proves (4.8) when « is an integer;
the case where « is not an integer is simpler since we then have to use ﬁrst,
differences only in the definition *of A, (RY.

(2) The case p=1. We have f=Y A a,eh!(F) < I! (#) and <f, 0>
=Zijjaj(pdp, for all peL®(u). Hence, if @€ 4,(F) = bmo(F) is bounded,
then (f1, > = {f, >. If peAy(F) is not bounded we introduce, for con-
stant“s.M. 21, ¢y by Re ¢y, = sup(inf(Re o, M),— M) and similarly for Im g,,.
Then 1t 15 easy to show, compare [13], Lemma 5.7, that the norm in Ay (F)
o-f ©u is less than a constant, independent of M, times the norm of . This
gives by dominated convergence as. M — 00,

Sy ou> =le§a‘1¢udﬂ"’zijjaj¢dﬂ = {f1, ¢,
ie. fi is uniquely determined by f. Lemma 4.2 is proved.

43. The duality theorem. The discussion in Section 4.2 (see formula (4.7))

%1;)\55) one half of the following theorem where (h*(F)) denotes the dual of

Tueorem 4.2. Let F be a d-set havin '
g the Markov property. I <
and o« = d(1/p—1), then property- 10 <p <1

(P (F)) = A, (F),
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with equivalent norms; here A, (F) =bmo (F). The duality holds in the sense
that every @& A,(F) defines an element in (h*(F)) by the formula
froy=Y4laedn, f=Ylaeh(F),

and that conversely every element in (h*(F)Y
unique @A, (F).

Proof. Let L be a bounded linear functional on h? with ||L]| = 1. Take
B =B(x, 1), XoeF, r>1, and 1 <g < o0, and let leI#(u) be a non-zero
function supported in B. Then a = u(2B)™ "7 u(B)*4||l[|7* 1 is a local (p, g)-
atom, and thus |La| < ||all,, < cllall,,,q < ¢ since kP and kP are equivalent
(Corollary 3.1). Consequently, |L < cu(2B)"? u(B)~'4||l||,, leI% (u, B), and
thus there is a function ¢ in If(u, B), l/g+1/¢ =1, with norm
<cu(BMPuB)y"Mi<c if r<2 so that Li=[lpdy lel(u, B).
Constructing functions ¢, and ¢, corresponding to different balls B, and B,
in this way, the functions ¢; and ¢, must coincide p-ae. on B, "B, NF,
and thus we can obtain a function ¢ such that LI = [lodu if le I8 (4) and |
has compact support. In particular, La = jaqo du if a is a local p-atom, and it
is easy to see that ¢ is the only locally integrable function having this
property. . ,

Consider next a ball B=B(xy, F), xoeF, r<1, and put = inf([|p—

. B

— P/ du)*?, where the infimum is taken over all polynomials P of degree

< [o]. Then there is a bounded linear functional K on I (u, B) such that
K(¢) =1, K(P) =0 if P is a polynomial of degree < [«], and ||K]| = 1/5. Let
g be the function in I(p, B) with norm 1/5 such that Kh= [hgdpy,
hel¥(u, B). Then b=6u(2B) """ u(B)*g is a local (p, q)-atom, so
ILb| = |[bpdy| <c. Thus 1=K (p)= [pgdu=35""u(2B)""” u(B)™"* [ ob dp
<67 u(2B)MP u(B)~ ¢, so & < cu(B)YP u(B)V7 1 < cr* u(BY9. Together
with the estimate for the I¢ (4, B)-norm of ¢, 1 <r < 2, given above, this
shows that @peAZ (F), and consequently, if p <1, by Theorem 4.1 and
Proposition 4.1, we have found a unique function ¢ in A, (F) such that La
= ({apdy if a is a local p-atom, and for f =) A;a;eh” we get Lf
= 21; {a,pdp. .

For p = 1, we have shown that L is given by a function ¢ which belongs
to A%, 1 < g’ < oo, and thus to A}(F) = bmo (F).

Remark. The proof of Theorem 4.2 shows that (h*(F)) = bmo, (F) for
1 <'q < . Thus the spaces bmo,(F) are equivalent for 1 < g < o if F has
the Markov property.

is given by this formula by a

4.4. Sets without the Markov property. It is possible to get a duality
theorem for d-sets F which do not have the Markov property, if the elements .
of the Hardy spaces are defined as elements in the dual of suitable AZ spaces.
This is done in the following way. Let u be a fixed d-measure on F,

-
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or-—d(l/p 1), 1/q+1/q =1, 1 <g<co, and let hP4(F) consist of all el-
ements in (A‘i (F)) of the form h =3} A;a;, where a; are local (p, g)-atoms
and ZMP’ < . () A;a; converges, in the norm of (A” (FYY, if Y4 < 00)
Then it is easy to verlfy that every ¢ in A (F) defines a bounded linear
functional on #”(F) by means of

<f» (P> =Zij.fa}(pdﬂa

and conversely, the proof of the second part of the duality theorem in § 4.3
shows that every bounded linear functional on hA™(F) is given by an element
¢ in AL (F) by this formula. Thus we have

=d(1/p-1),

for 1 <q<oo and p< 1, even if F does not have the Markov property.
However, properties of the spaces h”? and A% which are fundamental in the
classical theory, are in general no longer valid, as we shall see in some
examples. We construct a closed set M < R%, which in some sense is very
regular (a C*-manifold), and show that defining 4,(M) as in Definition 4.1
one obtains a space which does not have the trace property (Example 1), that
AH(M) # A(M), q, # q, (Example 2), and that K1 (M, p) # K™% (M, p),
4, # g2 (Example 3).

We start by constructing M. Let ¢ be a C*® functlon supported in

=Y aehr(F),

(FPa(F)Y = AL (F), o

[—1,1]suchthat 0 < ¢ <1 and ¢(0) =1, put ¢,(x) =2"" (p((x 27"/2" "2) .

and g(x) =
define the set M < R* by

={(x,y); y=g(), 0 x< 1}

This set M is a d-set with d =1.

ExampLE 1. In this example, we furnish a function f defined on M which
is bounded and satisfies (4.1), but which cannot be extended to a function in
A, (R"); in other words, if we attempted to define 4,(M) as in Definition 4.1,

* then 4,(M) would fail to have the restriction property. We introduce some
more notation: Put M, = {(x, y)eM; 272" < x 2‘”—}—2’"2}, Pn
=27 27"), a,=(27"=2""*0), and b, =(2""+2""%, 0). Now we con-
struct f on M as follows. Take 1 <a <2 and let for n =3 f(x, y) coincide
on M, with the first-degree polynomial which is zero at a, and b, and 2™
at p,, and put f =0 elsewhere. Then .

F @) ~f bl _ 27

272" 4277 - o0,

= n-— o0 )

Ipn - bnl |pn nl
sof dogs not satisfy a Lipschitz condition, and hence f cannot be extended to
a function in A, (R"). .

Y. @a(x). Then g is infinitely differentiable on [—1, 1], and we’
n=3

icm®
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On the other hand, it is clear that fis bounded, and we shall show that
condition (a) in_Definition 4.1 is fulfilled. Let B be a ball centered at

(X0, Vo)€M with radius r < -no-1

<r<27". If xo<4:277, put Py=0; then |[f—Pgl <2 " V¥ < e* in B,
since if B intersects some M, with n> 3, then n> ny—2. If xo >4-27"°, let
Py coincide with f on B (this is possible since then B intersects at most one
of the sets M,, n>3), so |f—Pg =0 in B. Thus condition (a) is satisfied.

ExampLe 2. If 1<q,<q, <0, axzl, then A(M)# A2 (M)
Construct f as in the preceding example, but define now fat p, by f(p,)

1, and let the integer n, satisfy 2

= pn¥lay-re+ /a1 Taking P, as in Example 1, it is easy to verify that
feA (M), and that fis not even in L'?(u, M) if g, > g, ; we omit the details.

ExampLE 3. If 1 < g, < g, < o0, p < 1/2, then K" (M, 1) # K"2(M, p).
To see this, let 1/g;+1/g; =1, i=1, 2, (then g5 <g}) and take as above
feA:'z(M),fe;’sA(,‘q'1 (M), « = 1/p—1, and let f, be as fif (x, y)eM,, n <k, and
zero elsewhere. Then it is clear that f, may }36 extended to a function in C§’ (R"),

and easy to show that Lh=1lim ¥ Afafidy hel™ h=Y ia,
N—oo j=1
Y |A4P <, a (p, q;)-atoms, defines a bounded linear functional on

with norm less than cl|fil| gz Now, if hP?2 is equivalent to A™%, then L, is

hl’,l]z

also in (K”'y, and by the proof of the second part of the duality theorem
. N

L, has a representation Lyh= lim Y A (aj@ du, h=7 Aajeh™, where

N-wi=1

<c|lLJl. It is easy to realize that ¢, = f, ae. (take as h atoms

[l '1’1
u(2B)'1“’ {sgn(@.—f)} xs Where B are balls centered in F of radius 2), and

thus || fill @1 < cll Sl s, which leads to a contradiction as k tends to infinity:
[ a

5. Global Hardy spaces

5.1. Global atoms and Hardy spaces. We shall say that u satisfies the.
global doubling condition if (1.1) holds for balls of arbitrary radii. Similarly,
F is called a global d-set if there exists a measure p > 0, called a global d-
measure, whose support is F and which satisfies (1.2) for arbitrary r > 0 and
xeF. As to the Markov property, Theorems 1.1 and 1.2 are seen to hold also
if balls of arbitrary radii are considered. The equivalent properties thus
obtained are called the global Markov property. The analogues of Theorems
1.3 and 1.4 also remain valid. Notice that global d-sets and sets with the
global Markov property are always unbounded.

Now assume u satisfies the global doubling condition and suppu =F.
Let p and g be admissible as in § 2, and s >0 an integer. Then (global)
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(p, g, s)-atoms are defined like Jocal (p, q, s)-atoms, except that the moment
condition is always present, independently of the radius of the supporting
ball. The (global) Hardy space HP** = HP%*(F, 1) is defined by means of

sums of such atoms with # coefficients, like h***. When F is a global d-set, .

.we choose s=[d(1/p—1)], as in § 3, and write H?? Since Lemma 2.2
remains valid for global atoms, H?#*(F, u) is a space of distributions in R"
and is contained in L'(y) for p=1. ’

The maximal function needed for HP%* is

M, f (x) = supsup u(B(x, 1))™* <f, ® (5-1»
9eSy 1> 0 t

The proof of the following theorem is analogous to those in § 3 although
simpler, since we do not have to treat large balls differently from small balls.

TueorReM S5.1. Let u satisfy the global doubling condition, and assume
that F has the global Markov property and that p, q are admissible.

(a) If s is large enough and ¢ > s, then f e H™** implies M, f eI (u).

(b) If feLi.(w) and M, feI?(u) for some ¢ >0, then fe H"** for any
s> 0.

(c) For large s, H?** is independent of q and s, and of u in the d-set case.
Norm inequalities hold as in § 3.

We can thus write H? for H™%*, When F is a global d-set, s = [d(1/p—
~1)] is large enough, as in § 3, and H? = HM4, ‘

5.2. Duality. In this section, F is a global d-set with the global Markov
property, and we consider 0 <p <1 (the case p =1 is covered in [2]). P¥
denotes the space.of polynomials in R" of degree < N.

DeriNiTioN 5.1, Let « > 0. A function f defined on F belongs to A, (F) if
and only if there is a constant M such that for every ball B(x,, r), x,&F,
r> I;), there exists a polynomial PgeP™ such that |f(x)—Py(x) < Mr?,
xeBNF.

The infimum of the constants M is a seminorm on A, (F), and the null
space of A,(F) is P™. '
‘ The spaces' 4,(F) coincide for F = R" with the spaces A, (R") defined in
§ 0.1, and A,(F) is the trace to F of A, (R"); this is seen by inspection of the
proofs of the corresponding statements for the A,-case given in [7] and [9].
The natural analogues of Theorem 4.1 and Proposition 4.1 are also valid,
Each element in H?(F) may be identified with an clement in the dual of
A,(F), a = d(1/p—1). To see this one proceeds as in § 4.2; the function m*
gseglzlilere must, however, for integer « be replaced by the function #® used
in .

TreoREM S.2. Let 0 <p <1 and 2 = d(1/p~1). Then

(HP(F)) = A, (F)/P¥

icm®
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with equivalent norms. The duality holds in the sense that any ¥ e A,(F)/P™
defines an element in (H?(F)) by the formula.

> =Y. 2fapdp, f=3 4aeH(F),
where ¢ is any representative in A,(F) of W, and that conversely every element
in (H?(F)) is given through this formula by a unique Ve A, (F)/P.
In the proof of this theorem, in order to find a function ¢ representing a

given functional Le(H?(F)), one must argue a little differently than in § 4.2,
of. the proof of the duality theorem for HP(R") e.g. in [13].

5.3. An application to Hardy spaces in R"

TuroreM 5.3. Let F be a closed convex bounded, set with nonempty
interior. If f belongs to the standard Hardy space HP(R"), 0 <p<1, and
supp f < F, then f has an atomic decomposition whose atoms are supported in F.

However, the supporting balls of the atoms need not be contained in F.

Proof. Notice that F is a d-set with d = n having the Markov property.
As p we take the restfiction of Lebesgue measure to F. We apply. our space
h(F). Clearly, m, feI? (), but since f need not be in L. (), we start by
approximating f. Assume O is dn interior point of F. Using the mapping
x—(1—e)x, we may contract f to a distribution f, supported in (1—¢)F.
Clearly, M, f, € I? (1), uniformly for small & > 0. Then take a C* approximate
identity #,(x) = 8~ "n(x/d), with [ndx =1 and suppn = B(0, 1). If 6(e) is
stall, f, = f, 7y, is a C* function with support in F. Clearly, fiof as
& —0, in the distribution sense. Considering convolutions of §, functions with
#, one verifies that m, f; < ¢cM, f,, so' by Theorem 3.2 freh?(F), uniformly in &.

Thus f has an atomic decomposition with local (p, oo, s)-atoms,
s = [n{l/p—1)]. We want these atoms to be global, ie, all of them should

. have vanishing moments up to order s. If we assume that diam F is small

enough, all balls 2B¥ appearing in the proof of Theorem 3.2 will be of type 1,
and the corresponding atoms global. Since Theorem 5.3 is invariant under
scaling, this assumption is no restriction. The assumption also implies that

" there will be only one ball B, and one atom g, in the decomposition of g in

the last part of the same proof. But then the moments of a, must aiso vanish

since those of f and . vanish, and we have decomposed f; into global atoms.
Extending these atoms by 0 in R"\F, we obtain standard p-atoms for H?(R"),

supported in F. N

It remains to let & — 0. We follow the method of [2], Lemma 4.2 p. 638,

or [13], Lemma 5.13, which we only briefly sketch. Indexing the atoms by

‘means. of dyadic cubes containing their supporting balls, we may find a

sequence &; — 0 for which each atom in the decomposition of ];j converges

weakly* in I®. The limits must be p-atoms supported in F. The’ coefficients
in the decomposition of f ; are uniformly in /,, so we can make them
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converge also, to limits forming an I/ sequence. To verify that the atomic
sum converges in the distribution sense, we notice that the terms correspond-
ing to cubes larger than some & >0 are finite in number, so their sum
converges. We need thus only verify that the integrals of the remaining terms
have a small sum when integrated against a test function ¢. Now e C®, so
o is small in the dual space A, in a small dyadic cube, and this gives the
necessary estimate. Hence, the atomic decomposition of £ , converges in the
distribution sense to an atomic sum representing an H? distribution which
must be f. This gives the required decomposition of f, completing the proof.
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Generalized convolutions III
by
K. URBANIK (Wroctaw)

Abstract. This is a study of characteristic functions of generalized convolutions. In
particular, we obtain some uniqueness and characterization theorems. Moreover, the concepts of
representability and order of generalized convolutions are discussed. The paper is a continuation
of [11] and [13].

1. Preliminaries and notation. We denote by %, the space of bounded
continuous real-valued functions on the positive half-line R* with the
topology of uniform convergence on every compact subset of R*. Further, by
% we shall denote the set of all probability measures defined on Borel
subsets of R™. The set P is endowed with the topology of weak convergence.
For acR* we delfine the mapping T,: R™ - R* by T, x = ax. For a function
fe%,, T, f denotes the function (T, f)(x) = f(ax) and for a measure ue'P,
T, u denotes the measure defined by (T, W)(E}) = pu(a™*E) if >0 and Tyu
= 0,, where a"'E = {a” ' x: xeE} and 4, is the probability measure con-
centrated at the point ¢. We say that two functions f and g from %, are
similar, in symbols f ~ g, if f = T, ¢ for a certain positive number a. Further,
two measures u and v from ¥ are said to be similar, in symbols u ~v, if u
= T,v for a certain positive number a.

A continuous commutative and associative Y3-valued binary operation o
defined on B is called a generalized convolution if the following conditions
are fulfilled: :

(i) the measure J, is a unit element, i.e. pod, = u (peP),

(i) (cu+(1—c)v)od=c(uolj+(1—c)(vod) (0<c <1, 4, v, 1eP),

(iii) (T, ) o(T,v) = T,(rov) (aeR*, p,ve'P),

(iv) there exists a sequence ¢y, ¢, ... of positive numbers such that the
sequence T, 1" converges to a measure different from &,. The power 7" is
taken here in the sense of the operation o. )

The set ‘B with the operation o and the operations of convex linear
combinations is called a generalized convolution alyebra and denoted by
(*B, o). For basic properties of generalized convolution algebras we refer to
[2]-[7] and [10]-[14]. In particular, generalized convolution algebras admit-
ting a non-trivial homomorphism into the algebra of real numbers with the
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