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converge also, to limits forming an I/ sequence. To verify that the atomic
sum converges in the distribution sense, we notice that the terms correspond-
ing to cubes larger than some & >0 are finite in number, so their sum
converges. We need thus only verify that the integrals of the remaining terms
have a small sum when integrated against a test function ¢. Now e C®, so
o is small in the dual space A, in a small dyadic cube, and this gives the
necessary estimate. Hence, the atomic decomposition of £ , converges in the
distribution sense to an atomic sum representing an H? distribution which
must be f. This gives the required decomposition of f, completing the proof.
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Generalized convolutions III
by
K. URBANIK (Wroctaw)

Abstract. This is a study of characteristic functions of generalized convolutions. In
particular, we obtain some uniqueness and characterization theorems. Moreover, the concepts of
representability and order of generalized convolutions are discussed. The paper is a continuation
of [11] and [13].

1. Preliminaries and notation. We denote by %, the space of bounded
continuous real-valued functions on the positive half-line R* with the
topology of uniform convergence on every compact subset of R*. Further, by
% we shall denote the set of all probability measures defined on Borel
subsets of R™. The set P is endowed with the topology of weak convergence.
For acR* we delfine the mapping T,: R™ - R* by T, x = ax. For a function
fe%,, T, f denotes the function (T, f)(x) = f(ax) and for a measure ue'P,
T, u denotes the measure defined by (T, W)(E}) = pu(a™*E) if >0 and Tyu
= 0,, where a"'E = {a” ' x: xeE} and 4, is the probability measure con-
centrated at the point ¢. We say that two functions f and g from %, are
similar, in symbols f ~ g, if f = T, ¢ for a certain positive number a. Further,
two measures u and v from ¥ are said to be similar, in symbols u ~v, if u
= T,v for a certain positive number a.

A continuous commutative and associative Y3-valued binary operation o
defined on B is called a generalized convolution if the following conditions
are fulfilled: :

(i) the measure J, is a unit element, i.e. pod, = u (peP),

(i) (cu+(1—c)v)od=c(uolj+(1—c)(vod) (0<c <1, 4, v, 1eP),

(iii) (T, ) o(T,v) = T,(rov) (aeR*, p,ve'P),

(iv) there exists a sequence ¢y, ¢, ... of positive numbers such that the
sequence T, 1" converges to a measure different from &,. The power 7" is
taken here in the sense of the operation o. )

The set ‘B with the operation o and the operations of convex linear
combinations is called a generalized convolution alyebra and denoted by
(*B, o). For basic properties of generalized convolution algebras we refer to
[2]-[7] and [10]-[14]. In particular, generalized convolution algebras admit-
ting a non-trivial homomorphism into the algebra of real numbers with the
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operations of multiplication and convex linear combinations are called
regular. We recall that a homomorphism h is trivial if either h =0 or h =1.
All generalized convolution algebras under consideration in the sequel will

tacitly be assumed to be regular.
Now we shall quote some simple examples of generalized convolutions.
In all examples generalized convolutions yov will be defined by means of the

functional j F ) (pov)(dx) (fe%,).

EXAMPLE 1.1 The convolutions %, (0 <a < o0)

7609 @9 = [T+ ni@ vy,

For « =1 we obtain the ordinary convolution.
EXAMPLE 1.2. Kingman convolutions #,, (0 <a < o0, 1

l SO 500 (@) =5 T [ L0+ 7)1 (= 11%)] e(dx) v (dy)
0

<p <o)

V]
and for f>1
o o 1 .
F(ﬁ/z) fj‘ J 2a 2a o % 1) 200
¥q V) (dX SO+ y* +2x* y* 2) X
Jf(x)(u p¥)(dx) = TG0 EIRE ( )

X (1=2)# 372 dzp (dx) v (dy):

ExampLe 1.3. The convolutions o,, (0 <a< oo, n=1,2,..)

11091047 (d) = TT[(L—min (¢ y™%, ¥ x~ ) f (max(x, y))+
0 00

g

x f

max (x,y)
where min(0-07*%, 0-:0™!) is assumed to be O.
" We say that an algebra (B, o) admits a characteristic function if there
exists a homeomorphic map from W into %,: u — fi such that

S @ =y h e i ) v (@),

FLA=O = cit(1—c)3

(L) O0<ec<),
(1.2) oV =i,
(13) "I=T,i (acR")

for all u, ve P. The characteristic function plays the same fundamental role
in generalized convolution algebras as the Laplace transform in the ordinary
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convolution algebra ("B, ;). It has been proved in [11] (Theorem 6) that an'
algebra admits a characteristic function if and only if it is regular. Moreover,
each characteristic function is an integral transform

(1.4) at) = 1 Q(tx) pu(dx)

with a continuous kernel Q sausfymg the conditions |Q (1) < 1

(1.5) Q(t)=1~rL(r),
where » > 0 and the function L is slowly varying at the origin. Moreovex,
using Lemma 1 in [13] one can show that L is continuous at the origin. The
constant % in (1.5) does not depend upon the choice of a characterls\nc
function and is called the characteristic exponent of the generalized con-
volution ©, in symbols x(0) = x. For a description of kernels corresponding
to characteristic functions of generalized convolutions we refer to [8].

A probability measure y is said to be o-stable if the relations u, ~ u and
Kz ~ i yield gy op; ~ . It was shown in [11] (Chapter 6) that the set of all
o-stable measures coincides with the set of all possible limit distributions of
sequences T; v°", where ¢, > 0 and ve 8. Moreover, the characteristic func-
tion of non-degenerate o-stable measures u is of the form

(reR*) and

i) = exp(—ct?)

where ¢ > 0 and 0 < p < x(0) ([13], Theorem 2). The constant p does not
depend upon the choice of the characteristic function and is called the
exponent of u. By '(1.3) all o-stable measures with the same exponent are
similar. When in the sequel we are dealing with a fixed generalized con-
volution o, we always use the notation o, (0 <p<x(c) for the non-
degenerate o-stable measure with exponent p and the characteristic function

G (t) = exp(—1t").

The measure o, where x = x(0) is called the characteristic measure of the
generalized convolution in question.

Now we shall quote some examples of kernels of characteristic functions
and characteristic exponents and measures of generalized convolutions.

ExampLE 14. For the convolution x, (0 <a <oo) we have Q)
=exp(~1*), (%) =a and o, =J,.

ExampLE 1.5. For the convolution #,, (O <o < oo, 1<

B\ /2 V21 .
Q) = F(E) (;a-) J 21 (1), where J,, is the Bessel function, () = 2u

B < o) we have

20
x| apamt AN P
(1.6) o, (E)y = ST J.\ exp( 7] )dx
E

6 — Siudia Mathematics, T. LXXX
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ExampLE 1.6. For the convolution o, , (0 <a <o, n=1,2,..) we have

Q) =(1—-t) if 0<r<1 and Q(t) = 0 otherwise, %(0,,) =« and
) o, (E) =1Jx-1_a("+”c>ip(—x'“)d><~
7 on! ‘
E

For any pair g, v from 9, by uv we shall denote the probability
distribution of the product XY of two independent random: variables X and
Y with probability distributions x and v, respectively. The operation uv is a

commutative semigroup operation with the following properties:

(18) (T wv=T,(w) (aeR),
(1.9) Tu=38u (acR"),
(1.10) (eut (=0 A =c(+1—(v) (O<e<).

Moreover, we have the following propositions.
ProposiTION 1.1, If p, =, then p,v — uv for all ve'P.
PropoSITION 1.2. If v # 8, and p,v — A, then the sequence u, is con-
ditionally compact and each its limit point p fulfils the equation v = A.
This statement is an immediate consequence of the inequalities
(#,¥) ([a, ) = v([b, o0))ua([ab™*, o))
for a,b>0, n=1,2,..., and Proposition 1.1.

PropoSITION: 13. Let j be a characteristic function of a generalized
convolution. Then

(L11) WO = | Ax)v(d).
. 1)

Proof. By Proposition 1.1 it is enough to show (1.11) for measures v of

the form v= 3 ¢4, (¢, =0 k=1,2,.

k=1
a dense subset of ®. By (1.9) and-(1.10) wv = Z T,
(L1) and (13),

, n), because these measures form

o 4 Consequently, by

n

Z Ckﬂ(a]f

k=1

w() = ? {tx) v (dx)
0

which completes the proof.

ProposiTioN 14. Let o be an arbitrary generalized convolution with
#(0) = . Then each o-stable measure o, (0 <p < x(0)) is of the form

v

0, =0y Ap,

where A, denotes the x,-stable measure with exponent p.
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Proof. Taking into account Example 14, we infer

[ exp(— )4, (d) = exp(~17),
0 .

8,(1%) 2, (dx) = 6, (1),

O 8

Now our assertion is a direct consequence of Proposition 1.3.
We apply Proposition 1.4 to the case o = *,.5- The Smitnov measure

(1.12) Jo(E) = o /25 [ x~Lexp(— 271 x %) dx
E

is *,,-stable with exponent «. Using (1.6) we get by a simple computation the
+, g-stable measure ¢, with exponent «,

'Zaﬂml

Zr(ﬂ)za—llz
Jrreg- Gy

A measure pu from P is said to be cancellable if the equation uv = pul
yields v = A. The following statement is obvious.

ProrositioN 1.5. All factors of a cancellable measure are cancellable too.

Furthermore, Propositions 1.1 and 1.2 imply the following result.

ProposiTioN 1.6. For cancellable measures v the relation p,v — A yields
the convergence of the sequence p, to a measure p with the property pv = A.

ProPosITION 1.7. For every generalized convolution o all o-stable-
measures o, (0-< p < x(0)) are cancellable.

Proof: Suppose that ¢,v =0,A. Then, by (1.11),

(1.13) o, (E) =

w©

[ &, (rx)v(dx) = T&,,(tx)/'l('dx)

o

and, consequently,

_f exp(— t? xP) v(dx) = j exp(~—t* xP) l(dx)

Now our assertion is a direct consequence of the Uniqueness Theorem for
the Laplace transform.

2. Characteristic functions. The main aim of this section is to prove some
uniqueness and characterization theorems for characteristic functions of
generalized convolutions. We start by establishing some properties of linear
operators induced by probability measures.

Let 4, be the space of all real-valued bounded and continuous at the
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origin Borel functions on R*. For every ue¥ we define the linear operator
L, on A, by setting

L= If(xy)u(z!y).

It is clear that the operators L, (ue ) commute with one another and
(21 L,(NO) =10  (ueP).

Moreover, for any characteristic function i of a generalized convolution we
have, by (1.11),

22 L) =M (1, vep.
In particular,
(23) , L(@) =i

where Q is the kernel of the characteristic function .
Lemma 2.1. Suppose that f, ge #q, u, ve'R,

(24) fO=0

and

(2.5 Tx‘l L@ (x)dx < =<, . }ox‘l |L,(9)(x)|dx < oc.
0 0

Then

(2.6) T T1L(9) () Ly(f) (x ™ Hdx ]? [x71f(x71) Ly(g) (xy) dxp(dy).
0 00

Proof. By (2.5) we have -

Ix‘lLﬂ@(x)Lv(f)(x*l =:f°fz'—1L(g ()£ (2™ ) v(dy) d.
0]

Taking into account (2.4) and setting z = xy (y > 0), we get the formula

?X'IL.L(Q) ()L, (f)(x" Y dx = ﬂjc T1L,(g) (xp) S (x™ ) v(dydx)
[} 0

= [x7 L, (L,(9))(x) f(x™ ydx

oh—aa O'—-S

which, by the commutability of L, and L,, yields the assertion of the lemma.

Lemma 2.2. Let 0, (0 < p<x(0)) be a o-stable measure. If fe By and
L,,p( f)=0 almost everywhere with respect to the Lebesgue measure on R™,
then f =0 almost everywhere with respect to the Lebesgue measure on RY.
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Proof. Put y,=6,0 Tyuo, (n=1,2,..) and
g,(x) = Q" x)—Q((t +1)'*x)  (teR¥)

where @ is the kernel corresponding to the characteristic function of o, It is
easy to verify the formulas

L, ,(9}(x) = exp(~1xP)—exp(—(t + 1) x?),
@7
L, (9)(%) = Q(tx)exp(—n"’tx")—!l((t+l)x)exp(—n"’(t-{— 1)x?)

which, by (1.5), yield the inequalities

XML, (9)(x)

| < cexP™lexp(—tx?),
XML, () (0] S (x4 x* " Yexp(—n~P1x7),
where #=x(0) and ¢ is a positive constant. Moreover, by (2.1), f(0)
o, (f)(0) = 0. Thus, setting y =y, v=0, and g = g,, we infer that the
condltlons of Lemma 2.1 are fulfilled. By the assumption, the left-hand side
of (2.6) is equal to 0. Consequently,
[x71f (7Y Ly (9 (xp) dxpe, (dy) =

(n=1,2,...,teR").

O 8
o8

Since, by (2.7), the function

Tx71 £ L, (@) () dx
0 .

is continuous and u, — &,, the last equation yields, as n — oo,

©

[x7 (L, (9) () dx =0

0

(teR").

. Thus, by (2.7),

Tx"‘f(x‘l)(l—e“xp)e“”‘”dx =0
0

(reR™)

which, by the Uniqueness Theorem for the Laplace transform implies the
assertion of the lemma.

We can now formulate a result on the uniqueness of the characteristic
function, which plays a crucial role in our considerations.

TueoreM 2.1. All kernels corresponding to characteristic functions of a
generalized convolution are similar.

Proof. Let Q and @ be two kernels corresponding to characteristic
functions of the generalized convolution in question. Passing if necessary to
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similar - kernels we may assume without loss of generality that for the
characteristic measure o, the equation .

?Q(Ix) o, (dx) = TQ'(tx) g, (dx) = exp(—t¥)
0 0

is true. In other words, we have the equation L, ()= L, (2) which by
Lemma 2.2 and continuity of both kernels Q and Q' yields Q = ', The
theorem is thus proved. ‘

Theorem 2.1 enables us to associate with every generalized convolution
o the set )

%(0) = {fi: pe P}
which does not depend upon the choice of a characteristic function. Taking
into account Example 1.4, we obtain the inclusion

(2.8) % (x) =G (0) (0<a<x(0).

THEOREM 2.2. % (0) = 6 (') if and only if o =0

Proof. Let 2 and Q' be the kernels of characteristic functions of o and
o', respectively. Suppose that % (o) = % (o). Then Q€% (o) and Q' e % (o) or,
equivalently, :

Q@) = TQ’(rx) wd, Q) = Tﬂ(rx_)v(dx)
0 0

_for some measures p, ve . Hence it follows that
o0 0 ‘

Q1) = [ [ Q(rxy) u(dx)v(dy)
00

or, in other words, §; = uv. The last equation yields u =8, for a certain
positive number ¢. Thus Q(7) = Q'(cz) which implies the equation o = o',

From Theorem 2.1 it follows that the generalized convolution is com-
pletely described by its characteristic exponent and characteristic measure.
More precisely, we have the following theorem.

THEOREM 2.3. If %(0) = % (') and the characteristic measures of © and o
are similar, then o =¢'.

Proof. Suppose that x =x(0) =x(0') and o, is the characteristic
measure of o and o simultaneously. Then

o0 o

[ Q) 0ldx) = [ @ (1) 0, (dx) = exp(— 1)
0 0

for suitably chosen kernels Q and @' of characteristic functions of o and o,
respectively. Consequently, L, (@) = L, ('), which, by Theorem 2.1 and the
continuity of Q and €', yields the equation @ = Q'. Thus % (0) = % (0),
which, by Theorem 2.2, completes the proof. '
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We proceed now to a description of the set % (c) in terms of o-stable
measures.

Lemma 2.3. Let 0, (0 < p <x(0)) be a o-stable measure with exponent p.
Let fe B, and f(0) = 1. If the function L, (f)(t'/?) is completely monotone,
then there exists a function fyeC (o) such that f = fo almost everywhere with
respect to the Lebesgue measure on R*.

Proof. By the Bernstein Theorem L,p(f)(t‘/") = :fexp(—-tx”) u(dx). for
a certain pe®P. Put fo = = L,(Q). Then, by tge commutability of L,, and
L, we have L, (fo)= LM’(Lf,p(Q)) =L,(6,)= B[e"’p ** (dx). Consequently,
L,,p f) = Lap( fo) which, by Theorem 2.1, yields the assertion of the lemma.
LemMma 24. Let 0, (0 < p <x(0)) be a o-stable measure with exponent p.

If fe% (o), then the funcrion L,,"( )7y is completely monotone.

" Proof. By the assumption and (23) f =ji= L,(Q) for a certain us¥P.
Thus

Lo, (10 = Ly (L@)(©) = Ly(L, (2)0) = | exp(—1x7) u(dlx)
[

which completes the proof. :
As a consequence of Lemmas 2.3 and 2.4 we get the following character-
ization of the set % (o).

THEOREM 24. Let g, (0 < p < x(0)) be a o-stable measure with exponent
p- Let fe%, and f(0)=1 Then fe%(0) if and only if the function
{ f(t*"x)0,(dx) is completely monotone.

We shall now illustrate the above theorem by some examples.

ExampLe 2.1. The ordinary convolution *,. Taking the Smirnov measure

. Ayj2 defined by (1.12), we infer that a continuous function f with £(0) =1 is

in %(+;) or, in other words, is completely monotone if and only if the
«©

function [ f(r*x) x™¥?exp(—(2x)”*)dx is completely monotone.
0

ExaMmpLE 2.2. The comvolution *1.p (B=1). Taking the characteristic
measure ¢, defined by (1.6), we conclude that a continuous function f with
f(0) =1 admits a representation

©
~

f@)= F(—g—)(%)ﬂﬂ—l J Jp2-1 (T_X)-“x_ﬂ/zl«l(d.x)

[

(29)

0
where pe¥ if and only if the function [ f(r*?x)x2#~2exp(x*/4)dx is
0
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completely monotone. Further, taking the measure o, defined by (1.13), we
infer that (2.9) is equivalent to the complete monotonicity of the function

[ (032224 x3# d.
o

ExampLE 2.3. The convolution oy, (n =1, 2, ...). Taking the characteris-
tic measure ¢; defined by (1.7), we conclude that a continuous function f with
f(0) =1 admits a representation

1/t

F@y = fd—ex) p(dx)
0

if and only if the function [f(rx)x™""2exp(—x"")dx is completely
monotone. 0

3. Representability of generalized convolutions. Let us consider two
generalized convolutions o and o'. The convolution o is said to be
representable in o', in symbols o < o', if there exists a continuous map h:
P — R with the properties

(3.1) h{p) 2 b0,

(3.2) hep+(I—c)v) =ch(w+1~c)h(y) (0<c<,
(33) h(uov) = h{u) o' h(v),

(34 W(To) = T, h(s)

for all p, ve¥P. Some of the most important properties of the map h are
summed up in the following lemma.

Lemma 3.1. Suppose that h realizes the relation o < o'. Then

(3.5) hw=h@)pe (ueW),

the measure h(8,) is cancellable, for any o-stable measure o, (0 < p < %(0))

the measure h(a,) is o'-stable with the same exponent p and if u—mis a

characteristic function of o, then p-» h(w) is a characteristic Junction of o.
Proof. If a measure u is of the form ’

(3.6) w=7Y ¢;6,.

n
' where c;, aeR* (j=1,2,...,n) and Y. ¢; =1, then, by (1.2), (1.3), (3.2) and
f=1
(3.4) we have the formula

n

h(y) = Z (4] 7;jh(51) = Z Cj]7(51)5aj = h(d;) 1.

i=1 =1
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Since the measures (3.6) form a dense subset of ¥, we obtain, by (1.5),
formula (3.5) for all peP. Since h(w) # 0y, formula (3.5) yields

3.7 h(S,) # 5.

Let ¢, be a o-stable measure and T, v°" — o, for some constants a, and
ve P. Then, by the continuity of h, (3.3) and (3.4), we have T, h(p)™ - h(c,).
Thus the measure /(c,) is o'-stable and by (3.5), h(o,) = h(d,)o,, which by
(3.7) yields h(s,) # 8,. Consequently, h(o,) is non-degenerate. The measure
h(6,),being a factor of h(,),is cancellable by Propositions 1,5 and 1.7. Thus,
by (3.5), the map u — h(u) is one-to-one, Consequently the map p— h(y) is
also one-to-one. Evidently, it is continuous and, by (3.2), (3.3) and (3.4), fulfils
conditions (1.1), (1.2) and (1.3) for characteristic functions. Moreover, by (3.5)

and Proposition 1.6, the inverse map A(y) —u is also continuous. In other
words, the map p — i(u) is a characteristic function of the convolution o. By

the Uniqueness THeorem 2.1, E(cr,,)’ =e " Since h(s,) # é,, we conclude
that (o) has the exponent p. The lemma is thus proved.
TueoreM 3.1. The following conditions are equivalent:

(3.8)
(3.9)

Jor some ZeR and 0 < p<x(0), where G, o, are o-stable and o'-stable
measures with exponent p, respectively.

(3.10)

o< o,

%0y < %(0")  and o, =0,
<

%(0) < % (o).
Moreover, if (3.9) holds for a certain p, then it holds for all p (0 <p<x(0)).

Proof. Suppose that o <o'. Then, by Lemma 3.1, for every positive
number p<x(0) the measure h(c,) is o'-stable with exponent p.
Consequently, x(o) < x(¢). Moreover, by (3.5), h(o,) =h (6,) o, which yields
(3.9) for all p (0 < p< (o).

Suppose now that (3.9) is fulfilled for a certain p (0 < p < % (o). Passing
to similar kernels if necessary, we may assume without loss of generality that
G, =26, where p—fi and p—- [’ are characteristic functions- of o and o,
respectively. Let Q be the kernel of the characteristic function i ji. Then,
by (23), L,,(Q) =6, and L, (1) =7, =3, which implies the equation
L,p(Q) = L,p(i’). Thus, by Lemma 2.2, @ = [, which yields Qe % (o) and,
consequently, % (o) < % (o).

Finally, let us assume that % (o) = % (o). Let  and €' be the kernels of
characteristic functions u — i and y— i’ of o and o, respectively. Then

(3.11) Q@) = [ Q' (1x) Adx)
0

.
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for a certain 1e . Of course, 4 # 8. Put h(y) = Ap (ue *P). The map h fulfils
- condition (3.1). Moreover, by (1.8), (1.10) it fulfils conditions (3.2) and (3.4).
The continuity of h is a consequence.of Proposition 1.1. From (3.11) we get

the formula f =74 = h{y) which for all y, ve$p yields-

R(uovy =ov= a0 = h(w' Ky = k(W o ()
Consequently; h fulfils condition (3.3). In other words, the map h defines the
relation o < o’ which completes the proof of the theorem.
As a direct consequence of Theorems 2.2 and 3.1 we get the following
result.
COROLLARY 3.1. The relation < is transitive. If 0 <0’ and o' <o, then
o=0
" As an immediate consequence of inclusion (2.8) and Theorem 3,1 we get
the following property. .
ProposiTION 3.1. The convolution %, is representable in a generalized
convolution o if and only if 2 < %(0).

4. Examples of representability of o, , and #, ;. Theorem 3. 1 gives useful
criterions for the representability of generalized convolutions. We shall
illustrate this by some examples of the representability of generalized con-
volations ©,, and #,;.

Lemma 4.1. Let o be an arbitrary L)eneralz zed convolution with % (0) > a
Suppose that the o-stable measure with exponent o has the density d,. Then
On =<0 if and only if the function d,(t™*®)t~=""=1 js completely monotone
for t>0.

Proof. Let o,, be the characteristic measure of o,,. Denoting by v,
the o-stable measure with the density d,, we conclude, by Theorem 3.1, that
0., <0 if and only if v, = g, , 4 for a certain A< *p. Taking into account (1.7)
and writing the above criterion in terms of densities, we have o, , << o if and
only if '

(n+ .
du(x) = f ;IK—(—T, e 2 (dy).
(1]

Substituting x~% =, we get an equivalent criterion: o,, <o if and only if

0

J ya(n+1)e—(y"‘ Z.(cly)

(1}

o
~ligys~1/a—n—1 _.
d (17" =

for r >0, whence, by the Bernstein representation theorem, the assertion of
the lemma follows.
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Putting 0 =0,,-; (n>2) into Lemma 4.1, we observe that x(o,,)
=%(0,,~1) =2 and in this case d, is the density of the characterxstxc
measure of o,,_;. Consequently, by (1.7),

dd(f 1/e t—l/a-*n—l —_ ct‘le‘;
where ¢ is a positive constant. Since t~1e”* is completely monotone for
t > 0, we have by Lemma 4.1 the following corollary.
CoROLLARY 4.1. 0, 11 <0, (2 >0,n=1,2,..).
It is convenieny to introduce the operators U, (y > 0) defined on %, by

(U, 1)) = | f0)y~ " dy.

It is clear that U,(%,) <%, and (Uf)(0) = f(0) (fe%,). Moreover, by
integrating by parts it is easy to establish the following formula:
_l‘ (Um(n+ l)f)(tlu x) ga,|1+ 1 (dx) = z ,,(dX)
° .

[ f@*"*x)e, (x>0, n=1,2,..)
) .

for all f€%,, where o, is the characteristic measure of o,,. This proves, by
Theorem 2.4, the following result.

Lemma 4.2, Let fe%, and j(0)=1. Then fe%(o,,) if and only if
Um(ni-ljfe(é»(oa,n»%l) (a > 0’ n= 17 2: )

We can now formulate the following corollary.

CoRrOLLARY 4.2. 0, , <0g, (d< B, n=1,2,..).

Proof. We shall prove our corollary by induction with respect to n. Let
Q,, denote the kernmel of the characteristic ‘function of o,, defined in
Example 1.6. Setting for o <

x"* Vdx,

E) =28, (B)+2(B—u) |
Vo (E) B 1 ( H’B(ﬁ “)En[lyw)

we have the formula

Qo1 (1) = [ Qp,1.(t%) Vo, (d)
0

which shows that (o,
Op,1 <Op,;-
Suppose now that the relation Oan =< Oy is vahd Put

R g Z'B_Qz.n+<1~%)ga.n+1'

We have, by Corollary 4.1 and Theorem 3.1, ge%(o,,) which implies
g€ % (0y,,). Now, applying Lemma 4.2, we get Uy, 1,9€ % (0g,,+1)- But, by a

1) < €(0g,;) and consequently, by Theorem 3.1,
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simple computation, U,J(::H,g =Q, n+1, Which yields 6(0yn41) & G (0p pi1)
or in other words, by Theorem 3.1, 0, y+1 <Opn+1- This completes the proof.

Further, as a direct consequence of the formula x(o,,) =« and Theorem
3.1 we have the following result.

COROLLARY 4.3. If 0y, < Op» then o < .

We next observe that the relation o,, < 0, yields the formula

o

Qa.n(r) = ( Qll.m([x)}'(dx)
0

for a certain Ae'. This expression can be written in the form

1/t
Qo) = | (1=1 xPy" A(dx)
0

which shows that ([0, 1)) = 0. Consequently, for 0 <r <1

1/t
(1= = | (1=t XPym A(dx) < (1 =),
[}
But this inequality is valid in the case n>m only. Thus we obtain the
following implication:

CoroLLARY 4.4. If 0, <Oy, then n=m.

Finally, by Corollaries 4.1-4.4, we obtain the follovying result.

PropoSITION 4.1. The generalized convolution o, , is representable in the
generalized convolution oy, if and only if a < f and nzm.

We now proceed to the study of the generalized convolutions x,,. We
shall use the notation £, and oy for the kernel of the characteristic
function and the characteristic measure of ,; delined in Example 1.5,
respectively.

LeMMA 4.3. Let o be an arbitrary generalized convolution with x(0) 2 2a.
Suppose that the o-stable measure with exponent 2x has the density dy,. Then
4,5 < Q if and only if the function dy, (1'/2%) 112+ 1/24=F is completely monotone
for t>0.

Proof. Denoting by v,, the o-stable measure with the density d,,, we
conclude by Theorem 3.1 that #,, <o if and only if vy, =04 for a
‘certain Ae Y. Taking into account (1.6) and writing the above criterion in
terms of densities, we have #,, <o if and only if

o
" {* x2ep-a-1

- x 20420
“Erges) e o
!

d 4, (X)
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Substituting x** =1, we get an equivalent criterion: *,5 <0 if and only if
o
a—2ap —1/4.;:2°L
22ﬂ~2r(ﬂ_1/2)u[y e )'(dy)
0
for t > 0, whence by the Bernstein Representation Theorem the assertion of
the lemma follows. >

Putting 0 = %y, (y <B) into Lemma 43, we observe that x(x,,)
=% (%,p) = 2o and in this case d, is the density of o,,. Consequently,

by (1.6),

dza (rl/h) l‘1/2+ 1/2a-8 —

dZa (rl“z‘z) t1/2+ 1/2e—f = cry—/}e—rm

where ¢ is a positive constant. Since *"#e~%* is completely monotone for
y<pB and t >0, we have by Lemma 4.3 the following result.

ProPosITION 4.2. If y < B, then for every o #,p5 < %,
We note that from the Sonine integral ([1], 7.7 (5)) we get

1

[ Qo (tX) X2V L (1 —x2P == gy
g .

for x>0 and B>y This shows that % (%) =% (:"a.v) provided B > y.

Applying Theorem 3.1, we get an alternative proof of Proposition 4.2.
For the further discussion we need a lemma. For any fe%, we put

I (B—1/2)

Can ) = oI TG

m(f)=inf{f(x): xeR*}.
Lemma 4.4, Let Q and Q' be the kernels of characteristic functions of o
and o', respectively. Suppose that 0 <o, m(Q) = m(Q') = m, the set {x: Q(x)
=m} is non-void and the set {x: Q'(x) =m) is bounded. Then x (o) = x(0').
Proof. Since o < o', we have, by virtue of Theorem 3.1,
4.1) Q) = | @ x)v(dx)
0

for a certain ve'R. Evidently, m < 1, because the kernel Q is not identically
equal to 1. Therefore Q(to) =m for a certain t, > 0. Then

§ (@ (tox)—m)v(dx) = 0,
]

which yields Q'(tox) =m v-almost everywhere. In other words, by the
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continuity of €, the support of v is contained in ry! {x: Q'(x) = m)} and,
consequent]y, is bounded. This, by (1.5) and (4.1), yields the formula

o 100
l~1'0+ I“Q(T

%(0)
3

whence the equation (o) = x (o) follows. -

PROPOSITION 43. Subpose that y > 1. The relation %, , < %; , holds if and
only if =p.

Proof, Of course, it is enough to prove the necessity of the gondition. It
is clear that m(Qq,) = m(Qq,) =m <0 and xlirz Qo ()= ‘ILn; Ry =

Hence it follows that both sets {x:. Q. (x) =m} and {x: Q. (x) = m}-'are
non-void and bounded. By Lemma 44, the relation #,, <#g, implies the
equation 2x = x(,,) = x(%;,,) = 2f which completes the proof.
PROPOSITION 44, If #,, < %5, then o< f and y 2 4.
Proof The first inequality is a direct consequence of the formula
% (%) = o and Theorem 3.1. Suppose that

‘(4.2) *uy < *ps
and

4.3) y < 5
Then, by Proposition 4.2, we have

(44) ’ -

which implies the relation. x, 5 < *; 5. Taking into account Proposition 4.3,
we infer that o = f. Now, by Corollary 3.1, relations (4.2) and (4.4) imply
%,y = %, 5. Consequently, y =, which contradicts (4.3). The proposition is
thus proved.

We define the family of operators ¥V, (y >0) on #, by settin_g

(V, fix) =

It is clear that V(&) =%, and (V, )(0) = f(0) (fe%,). Moreover, by
integrating by parts it is easy to verify the formula '

Tyt S dy.
)

T(Vzag—uf){fmx)f’(a,pﬂ;(dx [f(t”"‘ U(m.ﬂ)(dx) (>0, 5'3 1)

for all f e #,, where o, denotes the characterlstlc measure of ,, defined
by (1.6). This proves, by Lemma 23 and Theorem 24, the following
statement.

©
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LemMA 4.5. Let fe Ao and f(0) = 1. Then Vayp_o f €6 (%, 5+y) if and only
if there exists a function foe% (%, ;) such that f = fy almost everywhere with
respect to the Lebesgue measure on R*.

ProrosITION 4.5. The generalized convolution g, is not representable in
the generalized convolution +, .. for any n=1,2, ... and a, B > 0.
Proof. Let us suppose the contrary, i.e.
4.5)

for a triple «, §, n. Put

Opn < Hami1

g(x) = nt?? 2_"a”"x“F(n+1/2)_1(xl_Z“%)n(xzf“—“(l~xﬁ)")

in the interval 0 < x <1 and g(x) = 0 otherwise. It is easy to check by a
simple computation that g is continuous in the interval 0< x < 1, g(0) =1
and lim g(x) =(—B)"2""2""n!n*?I'(n+1/2)"*. Thus geB, and.g is not

x—-1-
equal almost everywhere with respect to the Lebesgue measure on R* to a
continuous function. Moreover, by a simple computation we get the formula

(Mzn-11 V(Zn—a)a o Veg) ()= (1)
ig the interval 0 < x <1 and
(I/(Zn—l)zz KZn—3)d sa I{zg)(x) = 0
otherwise. In other words,
V(Zn—l)u.V(vZn-—B)a . V;g = Qﬂ.n’

where 5, is the kernel of the characteristic function of o;,. Consequently,
by (4.5) and Theorem 3.1,

Vage t (*z.n+ 1)~

Now applying Lemma 4.5 n times, we conclude that there exists a function
go €% (%) such that g = g, almost everywhere with respect to the Lebesgue
measure on R*. But % (%,,) < %, which yields the contradiction. The prop-

I/EZH-- L VEZ"—3)1 .-

. osition is thus proved.

Put o= #,,; in Lemma 4.1. We know that x(%,;) = 2x and d, is the

“density -of the measure (1.13). Consequently,

"(1+2u?)"f
where c_is a positive constant. Substituting u = 271/t into the right-hand -
side of the last formula and applying Lemma 4.1, we get the following result.

CoROLLARY 4.5. ©,, <%, if and only if the function t™"(1+t%)7* is
completely monotone.

da (u-— 1/a)u—1/rz—-n—1 =cu”


GUEST


184 * K. Urbanik !

Put o =#,,, in Lemma 43. We know that x(x,,,) =4 and, by
(1.13),
x4av2a-1
dy(x) = L“(?:F—\ci&ﬁ
where ¢ is a positive constant. Consequently,

y2r B 12

dz:z (ul/Za) u1/2+ 120~ =¢

Substituting: u=\/§r into the right-hand side of the last formula and
applying Lemma 4.3, we get the following criterion.

COROLLARY 4.6. #, < %y, if and only if the function (2= V2({ 4,2~
is completely monotone.

Lemma 4.6. Suppose that real numbers a and b fulfil the conditions

(4.6) 2a+4b >3, b1, a<h.

Then the function t~*(1-+1%7" is not completely monotone,
Proof. Contrary to this let us assume that the tunction (113 s

completely monotone. Setting f = a+2b—1/2, y = b, we have, by (4.6), f > 1-

and y > 1. Consider the generalized convolutions *1y and #,,. Sincé
TR = 174(1=1%)7", we have, by Corollary 4.6,

4.7) *pp < Hp e

Taking into account the inequalities b > 1 and a <b, we may select a
rational number b, satisfying the conditions b, > 1 and a+2(b—by)
< b < b. Let ap be an arbitrary positive rational number from the interval

4.8) a+2(b—bg) < ap < by.

Put .ﬁn = a(.,—.f»ZbO‘—l/2 and yo = bo. From the definition of a, and b, we get
the megx_xahtms B <o and 1 <y, < 7. From these inequalities, by virtue of
Proposition 4.2, we get the relations *1.p0 < *1,p and #, , < #2,49, Which, by
(4.7), yield %, 5 < *2,50- COnsequently, by Corollary 4.6, we conclude that the
function t “°(1 —'—tz)_b0 is completely monotone. Writing the positive rational
pumbers dy, be in the form a, = n/r, by = mfr, where n, m and r are positive
integers, we infer by (4.8) that

(4.9) n<m.

_Since the r-th power of a completely monotone function is completely
monotone too, the function = "(1+43)" is completely monotone. By
Corollary 4.5 this proves the relation Ot = *1.m» Which, by (4.9) and

Proposition 4.2, yields O1,n<#,,+1. But this contradicts Proposition 4.5.
The lemma is thus proved. '
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ProposITION 4.6. O, , < %, if and only .if B<n
Proof. The necessity of the condition f <n follows at once from

Corollary 4.5 and Lemma 4.6. To prove the sufficiency, by Proposition 4.2 it
is enough to show the relation

(4.10) O < g e

We note that t7'(14+1%~* as the Laplace transform of 1—cosx is com-
pletely monotone. Consequently, t~"(1+¢%)~" is also completely monotone.
which, by Corollary 4.5, implies (4.10). The proposition is thus proved.

Arguing as before we obtain by Corollary 4.6 and Lemma 4.6 the
following result.

PROPOSITION 4.7. %, 5 < %y, if and only if B = 3n—1/2.

5. The order of generalized convolutions. The main topic of this section is
a description of generalized convolutions in terms of the asymptotic
behaviour of their characteristic functions. By %; we shall denote the subset
of %, containing all positive functions. Further, we put % (0) = %(0) N %,
for every generalized convolution o. It is clear that #* () = %(x,) and,
by (2.8), ’

G(x) c%t(0) (0<x<x(0)

which shows that the set %* (o) is always non-void. The order o(f) of a
function f from %, is defined by the formula : '

log* (—log (1)
Q(f)=r1’1:12-—-~(logt
where log* x =logx if x> 1 and log* x = 0 otherwise.
We start by giving some elementary properties of the order g.
Prorosition 5.1. If f(t) = g (t) for t large enough, then o(f) < o(g).
Proposirion 5.2, If a>0 and f(t) =g(at) for t large enough, then
e(f) =elg) 4
ProrosiTioN 53. If a>0 and f(t) =ag(t) for t large enough, then .
o(f) =elg)
PROPOSITION 5.4. Serting for any fe%; fu.(t) =min{f(u): 0<u <t}
we have @(f) = 0(foun)- : .

=]

ProrosiTioN 5.5. If g(1) = [ f(tx)u(dx) for a certain pe'p, then o(f)
0 »
= 0(g). . ) , .
We define the order p(o) of a generalized convolution o by assuming
e(0) =sup{e(f): fe4™ (9)}.

As an immediate consequence of Theorem 3.1 we get the following result.

7 ~ Swdia Mathematica, T. LXXX .
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THEOREM 5.1. The relation o < o' yields the inequality o(0) < g(0).

By Proposition 5.5 we have the following property.

PROPOSITION 5.6. If the kernel Q of the characteristic function of o is
positive, then g(o) = o(Q). .

Applying this proposition to the generalized convolution #, with the
kernel defined in Example 1.4, we obtain the formula :

5.1 o(%) =a.

As an application of Proposition 3.1, Theorem 5.1 and formula (5.1) we get a
relation between the characteristic exponent and the order of generalized
convolutions.

TueoreM 5.2. For every generalized convolutions o the inequality
%(0) < g(0) is fulfilled.

We shall see that in the extremal case x(0) = g(0) the generalized
convolution is uniquely determined. For the proof we will need some
lemmas. ,

LemMa 5.1. If (o) < oo, then the kernel of the characteristic function of o
is positive. :

Proof. Contrary to our assertion, let us suppose that the kernel Q of
the characteristic function of o is non-positive at a certain point and (o)

's< 0. By the continvity of £ and the formula Q(0) = 1, we conclude that
- Q(to) =0 for a certain to > 0. Put h() = Q*(27!to1). Of course, he %(0),

(52 h(2)=0
and, setting x (o) = x, we have, by (1.5) and the continuity of L at the origin,
—h(f
im 1200 _
10+

Hence it follows that the infinite product
; o
= H h(2774)

is "uniformly convergent on every compact subset of R*. Consequently,
ge% (o) and by (5.2),

53 g2m =0 (m=1,2,..).

For every positive integer n we put

o0 .
= Z ck,ng(z‘_kr)
k=0
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where
Cyu = €Xp(— 25 —exp(—20Fm)  (k=1,2,..)
and

Con=1—exp(~2")."

Since Z ¢ =1 and.
k=0

(54) cm>o‘mmmhnqn=Lz”%

we infer that f,e% (o) (n=1,2,..). The function g is non-negative on
R* and positive in a neighbourhood of the origin because of the formula
g(0) =1 and the continuity. Hence by (5.4) it follows that the functions f,
belong to %" (o). Further, by (5.3),

f Zm)'— Z Ckng 2m k)< Z Ckn”eXP( 2"'")1

k=m
which yields ¢(f,) = n (n =1, 2, ...). Consequently, g(c) = co which gives the
contradiction. The lemma is thus proved.
As a direct consequence of Lemma 5.1 we get the following formulas

Q(*a.ﬂ) = Q(Oa,n) = 0.
Lemma 5.2. If ¢(0) < c0, then
. (6,068,)([0, 21/ = 0.

Proof. Let @ be the kernel of the characteristic function of o. By
Lemma 4.1 the kernel Q is positive on R*, Consequently, by Proposition 5.6
and Theorem 5.2, we have ¢(0) = ¢(Q) and 0 < 0(£) < oo. Theorem 1.6 in
[9] (p. 52) asserts that there exists then a differentiable function r on R*
fulfilling the conditions

(5.5) lim r (1) = g(0),

T =rop
(5.6) Q0= exp(~1")  (teR"),
(57, (1) = exp(—1,")

for a certain sequence r, < t, < ... tending to oo and

lnmtlogtir(') 0.
. dt

Applying the Mean Value Theorem, we get
lim (r (ct)—r () logt = 0
[ ]
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and, consequently, by (5.5),
(5.8) lim €010 griet) = (o)

t— o0

for every ¢ > 0. Setting v = ;09,;, we have the formula
2(0) = | (00 v(dx)
0
which, by (5.6), yields the inequality

b
Q(t) = v({0}) + [ exp (—(tx)*) v (dx)

for all b > a > 0. Using (5.7), we have the inequality
b
v({0}) exp 267 + [exp(Zt:,("‘)-—(t,,x)'“"x))v(dx)

for n=1, 2, ... which, by (5.5), (5.8) and the Fatou Lemma, yields v({0})+
+v([a,b]) =0 provided b < 2%, Thus v([0,2"#®)) =0 which completes
the proof.

We are now in a position to prove

TueoreM 5.3. (0) = x(0) if and only if © =, where » = %(o)

Proof. Let @ be the kernel of the characteristic function of o and
v =68,06,. Suppose that ¢(0) = %{0). Then, by Lemma 4.2, v([0,2"") =
and, consequently,

(59) - Q = | Q@tx)v(dx)
21/%
which yields, the formula
_ I—Q(txl
1+Q() = J T v(dx).
2l/x

Using the Fatou Lemma as t— 0%, we get by (1.5)

o
2= | x*v(dx).
21/%
It is clear that the last inequality is fulfilled if and only if the measure v is
concentrated at the point 2%, This, by (4.10), Q2(1) = Q(2"*1) (re R™). Since
Q(0) ='1, we infer that Q is positive.on R*. Applying Lemma 3.2 in [12] we

conclude that o= x,. The converse implication follows frorh (5.1) which
completes the proof. : :
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