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Trigonometric approximation in the norms and seminorms
by
ROMAN TABERSKI (Poznan)

Dedicated to Professor W, Orlicz on the occasion of his 80th birthday

Abstract, The author proves four theorems on approximation by trigonometric poly-
nomials of some periodic functions and their Weyl derivatives. Estimates obtained here can be
treated as generalizations of the results of Ganelius [4] and Popov [6].

1. Preliminaries. Let I” (1 < p < o0) be the space of all 2m-periodic
complex-valued functions f Lebesgue-integrable to the pth power over the
interval <0, 2r) with the norm

' 1 2n , e
nf||,.={5,;J|f(x)4 dx} :
0o

Write L instead of L!. Denote by L® the space of all functions feL
essentially bounded on (0, 2r> with the norm

. Il = esssup [ ()]
xe0,2n)

The subspace of L® consisting of all real-valued functions bounded on
<0, 2n) will be denoted by L3. Moreover, C [resp. AC] will mean the class
of all 2n-periodic functions continuous [absolutely continuous] on <0, 27}.

Let H, be the set of all 2r-periodic trigonometric polynomials of order
less than n, neN ={1,2,..}. If feL}, we can also introduce the sets
. H,;(f) and Hy(f) of real-valued 2r-periodic trigonometric polynomials
t, Te H, such that, for all real x,

H)</() and TS S,
respectively.
The best trigonometric approximation of an arbitrary function f belong-
ing to the space LF is defined by
E,(f), = inf [|f=5ll,.

sel,
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Denote by w(5;f),
L?-norm, ie.,

(11 @(0;f), = sup 4, fll, (O<
he(0,8)

the modulus of continuity of f with respect to the

6 < o0),

where

4, = f(x+h)—=f (x)

For any function feLy, the quantities

E; ()p=iof |If=tll,, EF(f),=
)

inf (I T11,
e, TeH (1)
are called the best lower one-sided approximation and the best upper one-sided
approximation of f in L”-metrics, respectively. Putting
M;f(x)=sup [4,fW), Gslx)=<x—5/2, x+5/2),

u,u+ heG 5(x)

we can define the modified modulus of continuity of f as
(12) 0 N)y =M fll, (0<8<o0).

The moduli (1.1), (1.2) are non-negative, non-decreasing and subadditive
functions of & and have also some other similar propertles For every feL}
and p > 1, the Jackson type mcquallty
(13) E¥(f); < Cot(n™*;f), (Co=const, neN)
holds (see [1]).

Suppose that fel?(p>
transform

1) and geL. Introduce the finite Fourier

2r

FA(3) ——Jf(u) gy k=0, +1, +2,..)
[V
and the convolution

2n 2n
(f +)) =§;ff(x—u)g(u)du=21—njf(v)g(x—v)dv.

As is well known, this convolution exists for almost every xe(—o0, o), is
measurable and

Lf =gl < 111, gl -
In the case feC [resp. fe AC], f*geC [f*geAC]

icm
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Write, for arbitrary numbers a >0, ne N and ue(— oo, 00),

n l’vu

Verld = ¥ s

the prime indicates that the term “corresponding to v = 0” is omitted in the
summation. It is easily seen that

(iv)* = |v|*exp (1% sign v),

cos (vu —% nar).

Voul) =23 v7*
v=1
Therefore, the function
ao( eivu
Y () =lim ¥, ,u= 3

W )

is defined for all real u [resp. u# 2kn, k=0, +1, +2,..]if I<a<w
[0 <o < 1]. Moreover, ¥,eL for every positive o (see [9], pp. 70, 186).
Consider now a function fel? (1< p< o0) and its Fourier series

T ad™ (o= F).

k=—a

(1.4 S =
In this case, for any « > 0, the convolution
A e R T L
0

is of class I and

i' Cr el
k== o UK

In several cases, the last Fourier series converges for every or almost
every Xx; its sum

(— o0 < x < o0).

SR =

SO = L1,
called the ath integral of f, coincides with f,(x) almost everywhere (see [9], -
pp. 69-70, 36, 93-94, 90 and 77-78).

Write

n

LAy

(n)
[P (x) or Fa

for the ordinary (iterative) derivative of a function f at x of positive integer
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order n. By convention, let f®(x) = f(x). The (Weyl) derivative of Jel
(p21) of non-integer order r+a (r+1eN, ae(0, 1)) will be defined by
r+1

oo =L,

dxr+1

provided that the right-hand side exists.
Let f be a complex-valued function defined in the interval <a, b>. Then

n—1
Vo(fs a,b) = Slzlrp{z 1f i ) =S GDIPFP (0 < p < 00),
j=0

where II denotes the partition {a = xq < x; < ... <x,=b}, is often called
the p-th variation of f in {a, b>. Write

Vo (f;a,b) = sup [f(u)~f(v).

wrela,b)
We shall denote by BV, the set of all 2n-periodic functions f for which
| V,(f) = V,(f: 0, 21) < oo.

A complex-valued function f of period 2r is said to belong to the class
WP LF [resp. W* BY,], with finite § > 0, if feC and

f(‘?—”EAC, f””eL” [f“”eBV;,].
By convention,

worr =1z, WOBY, = BY,.

The aim of this paper is to present some approximation theorems for
functions of classes W* L? and W* B V, (B 20, p > 1). Their proofs are based
on the suitable results announced in [3] and [2]. In our considerations, only
the norms ||¢||, and seminorms V,(®) will be used.

Cyu. Cy(a,..), where p veN, will denote, respectively, some positive
absolute constants and positive numbers depending only on the indicated
parameters a, ...

2. Basic estimates for functions of classes W’ I7 and W' BV,,. Let us start
with the following

Tueorem 1. Suppose that [ is a function of class WIP (1 <8 < oo,
1< p< ). Then

(21) f9edAC if 0<a<f—1
Moreover, for every ae 0, B>,

£, <D g (po,

and  f@elr if -1 <u<f.

2.2) m=1,2,..).

-

icm®
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In the case of a real-valued f and we 0, f—15.

03 B2 (1), < 22 g, o),

7 (n=1,2,..).

Proof. (1) Let (1.4) be the Fourier eries of feW? I and let r be the
positive integer such that r < f <r+1.
By the assumption,

el

d ;
SO0 =l 10 = - 5 alikp o™

k=—m

for all real x. Moreover,

(24 S[AP1(x) = f i (ik)P €;
k=—a
hence
o =0(k™®% as k- too.
Consequently, '
(25) SO) = FO+(FP x ¥5) (x)

for all real x. Therefore, under the restriction f=1, feAC.
In the case 0 <a < f—1 [resp. f—1 <a < f],

FO0 = Y clikre™ =S[fO«w, ](x),
©k=-m
uniformly in x [resp. for almost every x]. Hence

(2.6) O = (P % ¥y_)(x)

for every [almost every] x if 0 <o < f—1 [resp. f—1<a < 6]. Thus,
assertion (2.1) is established.

(2) For a =0, f > 1, the estimate (2.2) is known (e.g., see [8], Ths. 1, 3).
Therefore, we may suppose that 0 <o < f.

In the class H,, let S,, be the trigonometric polynomial of best
approximation of ¥,_, with respect to the L-norm, ie.

”Sa,n_ Wﬂ—u”l = En('llﬂ—a)l .
Consider in H, the trigonometric polynomial '
@7 Uenf1=fP4S,, (neN).
From (2.6) and (2.7) it follows that

SOV L1169 =5 f L) { Py (et =S, p(x—10)} du
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(a.e); hence, by the generalized Minkowski inequality,
1f O = U LMy S N1¥gma~Sanllall S,

Consequently (see [3], Th. 6),

(29) E,(f™), < C3(B—a)m*~ | fP)|,  (neN).

Denote by Q, = @,[f®] the trigonometric polynomial of order less
than n such that

ISP =Qull, = En(f®),

Introduce the auxiliary function

Px) =S =L [2](0) (-0 <x<o0).

(neN).

Clearly,
P (x) = fP ()~ Q,(x)+,(0)
and
10701 = 5| [ (@0~ ] < £, (5,
' 0
Hence
(29 le®ll, < ISP —Qull, +12,(0) < 2E; (),

Applying (2.8) to ¢, we obtain
En ((P(a))y < C3 (ﬂ— a) na—ﬁ ”(p(m”p <

Now, the obvious identity
E,(¢®), = E,(f®),

2C5 (B—o)n* =P B, (f 7).

leads to (2.2).

(3) Given real-valued f, f>1 and ae<0, §~ 1), we shall deduce the
estimate (2.3) (for @ = 0, f =1 see [6], Th. 1).
Write

AW =41 )+ W)},

for all real u. Then

S0 ) ="%{l_f"”(u)l —f P (w))}
f(ﬁ)(u)
and formulae (2.5)~(2.6) imply )
(2.10) ) = O+E ) ()= ([« ¥y) (%),
Q1) %) = ([P * P ()= (2 % ¥p_) (%)

= P @W-A? (),

O<axg

B-1).

icm
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Consider the trigonometric polynomials
anEH_(qlﬂ a); an€H+(Wﬂ a)

of the best one-sided approximation of 5",, —e in the L-metric. Introduce the
trigonometric polynomials

(212) USa[f1= 1O+ * To)— (2 xto,0),
(213) Usnlf1= SO+ @ *t0,)— ([P * Tp,.)
and, for ae(0, f—1),

(219 Uil 1=(9+ L) —(f® x1,,,),

(2.15) U [f1 = (P * 1. — (O T,,)
By (2.10), (2.11), (2.12) and (2.14);

ULLIW-1909 =5 f SO {Top (e )= By, (e} du+
(]

. f SO (B (=) =ty plc— 10} d
]

for all real x. Hence

Ugn[f1(0) 2 f@(x)  (—o0 <x <),
ie.,
ULLf1eH (f*) when «e(0, f—1).
Analogously (2.10), (2.11), (2.13), (2.15) imply
Ugonlf1eH, (fP)> when ae]0, f—1).

Arguing further as in [2], pp. 369-370, we obtain
216)  NUGLLA A=, < CaB—a) w119,  (0<a< B-1).

Let 0,=Q,[f®] and ¢ be as in (2). Then, by (2.16) and (2.9),
@17 U, L] - 0®ll, < 2C4 (B—a) =P E, (),
Since

Usn[o]() < ¢ (%) < UL [91 (%)

and

P9 = 9()- Q8P (),
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we have

U Lol()+ 08P () < £ (x) < UL, [0 (0)+ Q5P (x)
for- all real x. Thus

E£(/%), <IIU&[01+05™P~f ¥, = U4 (01 o,

and, in view of (2.17), the estimates (2.3) for all non-negative « < f—1 are
proved.

By a Jackson type inequality (due to S.B. Stechkin) and the correspond-
ing Marcinkiewicz result ([5], p. 38), we get for the best one-sided approxi-
mation the following useful corollary:

CoROLLARY 1. For any real-valued function f of class WP IP (1 € f < o0,
1 < p< o) and every number ae 0, f~15,

3C2(f~-a)

CWER (neN).

EX (f®), <

w(n/n; fP),

In particular, if fe W* BV,
3nt? Cy(B—a)

EX (/%) < == Vo(f®)  (neN).

Remark 1. If feW!IF 0<f<1, 1<p< ) then the represen-
tation formulae (2.5), (2.6) also hold for almost every x whenever oe(0, A).

"Consequently, f®eI? and the estimate (2.2) remains valid for each ae <0, B -

(cf. [8], pp. 21-23).
TueoreM 2. Consider a function f of class WPI (1< B < o0, 1 < p < ).
(1) Suppose that, for some trigonometric polynomial s, H,, the following

inequality holds: :

(2.18)

Then, for every ae{0, B>,

/=5l < Cs Eu(f)y-

’ Cela, B) . .,
o=, < <P g (o,

(2.19)
(ii).If f is a real-valued function and if, for some trigonometric polynomial

tLeH, (f) or T,eH} (f), we have the corresponding estimates

(220 W=l <CrE; (f), and TSI, < Cy Ef (/)

then, for every ae{0, B,

(2.21) -, < 2% D

nf-e
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Trigonometric approximation in the norms and seminorms 205
and
Ciola, )
(222 1707, <252 2 E, (1o,
respectively.

Proof. In the case a =0, (2.19) and (2.21)-(2.22) follow at once from
Theorem 1. If « = f, the estimate (2.19) was obtained in [8], Ths. 2, 4; for
positive a < B, the proof of (2.19) runs analogously.

Now, we shall deduce the inequality (2.21) when ae {0, B>. For these a,
f®el?, by Theorem 1.

Let @ be an arbitrary function in the space I (p = 1). Denote by

- 8,[@](x) the vth partial sum of the Fourier series S [1(x). Introduce the de

la Vallée-Poussin mean
2n—-2

(223) S, [e](x)
1

1
W,lol(x) = 7

and a polynomial s,[¢]eH, such that

(2.24)

llo—3,Lelll, = En(@),-
As is known, ’

2n
29 Wil =5 f P~ K,Wdu (-0 <x < ),
0
where
1222 sin(v+3)u
Kol = ;\v:;—l sinfu
and
2n
(2.26) 2‘115 j 1K, ()| du < 4.
0

Applying (2.25), (2.26) and the generalized Minkowski inequality, we obtain
(227) W Lelll, < llell, 1Kl < 4110l
Clearly,
WL/ ®1(x) = W [£1(x)
hence, by Minkowski’s inequality,
L7 =621, < 1S = W L@+ 59 (W, L2 —189]],+
+HW2 L 1=32 D L,

(—0o0 < x < o0);
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“In view of (2.24), (2.23) and (2.27),
17 =W LS, < ISP =8, L, +115, LS 9T— W, LA,
= E, (/) +|[Wa [5, L/ T, < 5E,(/™),,.
By a Bernstein type inequality (e.g, see [7], p. 392),
(185 WL ] =11, < 20— 1[5, [ W, L1 T] = 1.
W2 Lr1=32 [ Ll < 2@n—2¢ W, Ly 1= 5, [ W, L/ 1)),
<2t E, (W, L1 1),
Further, (2.24), (2.20) and (2.23) lead to

I8, D L T] = tullp < 5 LWL LA 1] = W [ ||+
HIWLLF 1= N+ 1S = tly < EyOW, LS Dyt SEa(f)p+Co By (f),

and

E WL Dy IV 1=8,00 W, = WL /=5, L1001y < 4401,
Consequently,
ILf@ = 820, < SEx(f )+ 20° {E, (W, [ D+ SE, (), + Co Ey ()} +
+22 B, (W, [fD),
< SE,(f™),+(18+ 22 ) i E, (), + 202 C; Ey (),
Applying Theorem 1, we get (2.21). The estimate (2.22) can be obtained

in a parallel manner.

CoroLLARY 2. Given a real-valued function feW? BV,(1 < B < w,
1<p< ) and a positive integer n, there are trigonometric  polynomials
tneHy (f), Te HY(f) such that, for every ae<0, g5,

L s AT

(cf. Corollary 1, and Theorem III of [4)).

Remark 2. Under the same hypothesis as in Remark 1, inequality (2.18)
implies (2.19) for every ae 0, B> (cf. Th. 4 of [8]).

3. Estimates in the norms and seminorms. We begin with two auxiliary
results.

Lemva L. If feBV, (1 <p < o), then

©6;1), KAV, ()Y for all €0, .

icm
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Proof. Given any §e(0, n), let us take the positive integer m = m(9)
satisfying the condition
am+1)" ' <d< wm L.
Write

2r n
Zy=[IM;f()fPdx= [{ sup |f@w)—f(@)}*de¢.
0 —n hve§,¢+a)

Clearly,

m+1 vo
Z,< Y [ { sup
v=—m (v—-1)8 wve(E,E+8)

f (W) —f (w)}*de.

Substituting 1 = ¢—¢,, &, = vn/m, we have
’
m+1 ve=¢,
Z;< Yy [ sup
v=om (v-1)6~¢, woeAtE,a+E,+o

§ m+t1l
1 @~f @1 da.

)If(u)—f(U)I}”di

<f ¥ sup
=38 v=—m upe{d+&,A+E,+5

Further, for every ¢ >0 and every 1e {~38, 6, the last sum does not
exceed

m+1 g
Z If(uﬂ.l.v)‘f(vz,}.,v)lp+_’_}

¥l
v=—m 2

for some u,;,,, v,;,€(A+¢E, A+E&,+8>. Hence
8 ] 0 e
Zs< | {V(fs —n—36, 2n+20)}PdA+ I ¥ SprdA-
~35 352w 2
Passing to the limit as & -0+, we obtain
Zs < {V,(f; —4rm, 4n)}7-46

Consequently,
1 \1/p 26\/P
1630, = (i}EZﬁ) < (7{) Vy(f; —4n, 4n)

and this immediately implies the lemma.

Lemma 2. Suppose that the real-valued function f is, alternately, non-
increasing [non-decreasing] and non-decreasing [non-increasing] in the neigh-
bouring intervals

<uv-—1’ uv>3'

for every de(0, n).

<uvvuv+1> (V——-I, 2;--'1"”‘1)'
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Then, for any number p =1,
r—1
Vp(f; Ug, ty) = {Z if(“ﬂ- 1)”f(uj)|p}”p-
j=0

Proof. Consider the special case r = 2. Write a =uy, b =u,, ¢ =u,.
Choose a partition {a=x, <X < ... <X,y <X, =b} in which x, <c,
Xpe1 >C (0<m<n—1).

By the well-known inequality

I+p 4

6 Lars(Z Ay

k=1

(4, =0, I+1, u+1€eN),

n—1

m—1
1S o) =S (P = Zo [f (e 1) = (el P+
k=

‘ .on—1
1S O )= Qo) P+ X 1S (er ) =S (el”
k=m+1
<1 Gem) =1 (%) + L (Xt 1) = (Kl 1S (Xn) =F (X1 )P

Since |f (1) =/ (xn)| does not exceed |f ()= (n| OF |f (tms 1) —/ (€l
we have

5 1S e 1) = G50 < 1 Gin) =7 (@17 +1 1 (el +
1 O )= P+ (B) = o 1)
<1 ©~F @P+1f B)~f @
Consequently,

., Volfsa, D) < {If ()= (@P+If (B)=S ()P},
and the desired assertion is. established.
For r > 2 the proof runs analogously.
TreoREM 3. Suppose that f is a real-valued function of class BV, (1< p

<.0). Then, for every neN, there are trigonometric polynomials t,e H; (f),
T,eH; (f) such that :

(-2 1= tallp HN T =1 N, < Cyyn™ 1PV, (),
(3.3) Vo(f=t)+ Vo (T=f) < Cu V().
Proof. Starting with the points x =kn/n, y, = x,~n/(2n)

. (k=0,%1, £2;..), we construct, as in [1], the polygonal lines
inf  f(v) for

VE(X g — 11%g)
min(J, ), Ju(ess)  for  x = x,
linear for xe (v, x> and xe(x,, Vi1

X = Yk
In(x) =

icm
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sup  f(v) for x=y,,
velxg— 1,%%>
$ul) = max(S,(0), Sa(rsr))  for  x =2,

linear for xe (y,, ;> and xe{x, Vir1p-
Obviously, J,, S,e AC and -
Ju(0) < f(¥) < S,(x) for all real x.

In the open intervals (y, x,) and (x,, y;.+,) the ordinary derivatives
Ju(x), Su(x) are equal to some real constants. Assuming that

Jaa) =3 {7, (0t 0+ Tu(xe= 0, J3(0) =4 {5 0i+0)+J, (3~ 0)}

(k,1=0, £1, +2,..) and that §,(x,), S, (y) are defined similarly, we get a
pair of 2m-periodic step functions J/, Sh-
By the Lebesgue dominated convergence theorem,

) Tu(%) = T (0)+ (T % ¥,) (),

Sa(x) = S,(0)+(Sy % ) (%)
for all real x. Putting

T+ ) =3 {10+ 7, (0)},
we obtain

T~ () = {7, ) ~ 7, @)},

Ta() = T O+ Tn4 % P10 — (- * ¥1) ()
for all x. Analogously,
Sa(x) = S, (0)+(Soy+ + ¥1) (39— (Spy— % ¥1) ().
Consider the trigonometric polynomials
ton€Hy (¥1), To.eHS (V)

of the best one-sided approximation of ¥, in the L-metric. Introduce the
trigonometric polynomials

ta(%) = T (0)+(Jy *Lo,n) (X) ~ (T - % Ty ) (),
To(x) = 5,(0) +(Siy 4 % T, ) (X)— (S - * 10, (x).
It can easily be verified that t,e H, (J,), T,e H7 (S,) and

Clﬁ
”Jn""[n”p <- :u”n

c
T Wil IT= 83, <=2

(see (2.16)). Hence
L =tll, <N TG=1)l, < T = Sl +1Su~Jallp+ 1w =t »

< LISy W)+,
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But

4n /4 2n .
1Sl + 14, s—”r(——”;f) T 4 P r<-;1> :
] n p n P

8C 2
(f~tl, < ( n“ + 1)1(~§;f)p,

and we have the same inequality for ||T,—f], (see [1], pp. 801-802, 794).
Aplying Lemma 1, we get (3.2).
Clearly,

(3.4)

Consequently,

Vo(f=t) S (/) + V(T + Vo Uu—1).

Moreover, in view of Lemma 2,
r—1

V;)(Jn) = { Z IJn(“v+ 1)""Jn(uv)|p}1/p’
v=0

where <u,, u,, > denotes the yth interval of monotonicity of J, (0 = uy < u,
< ... <ty <u, =2m). Evidently, we may suppose that every point
u,€(0, 2m) coincides with some y; (1 << 2n).
Easy calculation shows that
(3.5) V,(Ja) < 4V,(f).
For example, let r =3 and let
Ug = Xg, Up =Yg, Uy =Yn4s, U3=2Xy [N2=5).

Then

VV(Jn) = {l']n(yB)“"Jn(xO)lp'f' IJn(yn+4) ”Jn(y8)|p+|Jn(x2n)""]n(yn+ 4)",}1”"
Assuming that J, is non-decreasing in {xo, ¥g>, We have
Vo) < {F 00) =Ja 5o +(f 08) =L@ )+ (f (%20 = T G )17

<{( sup f- inf [S@F+( supr fW—- inf  fE)P+

uedxy,xg> ve(X ... 1,X0) ue(X7,%g> VX ope 31 %y o 4D
+( sup S~ inf  fE)ypPe
ve{X 2~ 1»¥2n) V& Xy 3%+ 4.)
<{ sup |f@-f@I'+ sup
>

)!.f W)=/ @I+
Lf @) =1 )7} 1.

. Wve(x. q.%g woelX7,Xpy 4 4,

+ sup
e 3,52y
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Applying now the inequalities

(3.6 (A+B)? < 2°(AP+B?) (4, B> 0),
3.7 (A+B)r < AMP+ BYP (4, B> 0),
we obtain

VU)<2{ sup

woedx— 1,x0)

If (@) =f ()" + sup >lf (W) -f (I"+
u,ve{xq,xg

f@—=f@IP+ sup  If@)—fEI"+
uU,Le{Xg, Xy 4 4>

+ sup |fW—S@IP+  sup , 1f () —f ()i} /7

14,06{Xp 4 3:Xp 4 4) U0eE(Xy 4 42 %2y

<2{ sup )If(u)—f(v)l"+ sup  |f(w)~fO)I"+

u,ve(xq,xg u0e{Xg, Xy 4 4>
If () =1 ()P +

>If(u)—f(v)l”}l“’+2{ sup
, If () =f @)} 2.

+ sup

#ve(x7,%8>

+ sup

U,0e{Xp + 40Xy u,ve{xy,%g>

If@—=f@PF+  sup

hVe(Xy— 12Xy

+ sup

106Xy 4 3, Xy 4 4)
This immediately implies (3.5).
To evaluate the pth variation of the function
F(x) = J,()~1,(x),
we observe that, for all real x,
2n

F(x) =% f T (o) { P, (0) = £, ()} dus+

[

2
1f
+EJ T - o= { T, (W) — ¥, ()} du.
1]

Therefore, for any partition {0 =ay <oy < ... <oy <o =27},

-1
{3 I~ F @)}

2n ’ 1-1
< ﬂq’l () —to,n(u) { Z [T+ @4y —w)—Jy+ (ij“")lp}l/p du+
0 =0

2 -1
+ 6[ 1 Ton @)=L { X 11 @ ~ )= T3y (o= [P} 7 du;
i=0

hence
Vo(F) < Vo (3~ 2m, 2m) {[|¥y —to,lly + 1| To e~ Pl 3.

Consequently (see Lemma 1 in [4]),
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4n ,
(3.8) VoJw—t) < - V().

In view of Lemma 2,
m—1
V,,(J:,) = { Z IJ:I(ﬂv-H)'_J;t(ﬁv)‘p}l/ps
y=0

where (@, #,4,> (v =0, 1,..., m—1) denote the subintervals of <0, 2r> in
which the step function J;, is alternately non-decreasing [non-increasing] and
non-increasing [non-decreasing]. We may suppose that every &,&(0, 2n) is of
the form 3 (x, +ye,+1) or 3, +x) (0 <k, <2n—1,1 <1, < 2n).

By Minkowskr’s inequality and (3.6),

2n (Mot TP [P e
N =< Y (i) — ' (27)
L <25 g+ e I
P8 (N O I R
+2 J”(O)'z"ﬁj + 3, hg |

2n-1

2 2n .
<Y ol =Ta )P+ 3 (= Tyl +
‘ T k=0 k=1
'l'l"n(')‘:Zn)—Jn(y?m)lp"'I'}'n(yZn-f-l)m‘}n(')‘:Zrl)lp}lm+

+%‘? {17(e0) = Ju Go)?+ 1w (p1) = (x0)l +

2n-1 2n

+ 2 e ) =Ta P+ 3 1o ()= T, )P}
k=0 k=1
Next, inequality '(3.7) leads to
8n
(3.9 V,(J1) < - Vo ()

Applying (3.4), (3.5), (3.8), (3.9) and the parallel estimates involving T,
ar‘;d Sn, We obtain the desired assertion (3.3).

Remark 3. For p= oo, Theorem 3 remains valid (1/p is treated as
zero). The proof runs on the same lines.

Under the assumption feLy ~ BV, (p > 1), estimate (1.3) implies only
(3.2) by Lemma 1.

TrEOREM 4. Let f be a function of class W* BV,(1 <, p < ). Then
the derivatives f are in AC [CnBV,] if 0<a< f—1 [resp. p—l<a
< B—141/p]. Moreover, in the case of a realvalued f, to any neN
there exist trigonometric polynomials teH, (f), T,eH(f) such that, for
every ae{0, f—1+1/p),
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1 (3 3 a; C (O(, ﬁ)
(3.10) L€ =12, HIT2 —f Ul < 2575 Vol f ),
C 2
GBI KO-y, < S Dy o),

n?

Proof. (1) From (24) it follows that the Fourier coefficients ¢, = f (k)
are of the order O (|k|~#~ /%) as k — + oo (see [5], p. 38). Consequently, in the
case 0< o< f—1+1/p,

f(a:)(x) = f: Ck(l'k)m ex‘kx

k=—-o0

uniformly in xe(— 20, co); hence f®eC. If 0 < o« < f—1, identities (2.5) and
(2.6) imply f®eAC.
Denote by ¢{’ the kth Fourier coefficient of f®. Then

2rn
1 : s
= ff‘/”(u)e“"“‘du=ck(ik)” k=0, +1, 32, ...
T
0

Consequently, for every ae(0, f—"1+1/p) and all real x,

f(“’(x) = Z’ C;{ﬂ)(l‘k)u‘lieikx

k=—w
2n
1 V’ .
= 3x im j JO) ¥ (i e gy
“"mo =~y
2n
1
=£j O Vyoe=u)du = (S5 ) (),
[

by the Lebesgue dominated convergence theorem (see [9], p. 191). This
implies

I/p(.f(u)) < 2I/p(fw))” Yydlly < 0.
Thus, . ’
fPeCnBY, if 0<u<f—1+1/p.

(2) Let f be a real-valued function of class W* BY,. In view of Theorem 3,

there are real-valued trigonometric polynomials

0. =Y ne™ (n=1,2..)

1kl <n

satisfying the inequalities

WP =Qull, < Coun™ PV, (fP), - Vo (fP—0,) < Cra W (fP).

2 ~ Studia Mathematica 80,3
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Considering the modified polynomials
Q% (u) = (1) =70,
we have
ILfO—Qx, < 1fP—
Further,

Qullp+voll, < Cyyn” PV, (D) +[pol.

2n
[yl = U {Qn(w)—/P W)} du| < N1Qy =S,
0
Consequently,
Ire-gxl, <

2 V(P (n=1,2,..).

Moreover,
CVUW—-gn =V, (f(ﬁ) —0,) < Ci, Y, (f .
Write
9(x) = f(x)—1,[2a](x)
Then, g W? BV, and

gP ()= fP(x) - Q¥ (%)

(—o0 < x < 00).

(—00 < x < 0).

Retain the symbols £, A® and 1, ,, T,,, used in the proof of Theorem 1.

Introduce trigonometric polynomials Y,eH, (9) (n =1, 2,...) such that

(12 Y(-gx)= %J. 9 () {To,n (x—1) — ¥y (x~u)} du +

2r

1
+—2;jgf@ () {2 (x =)= o (x — )} du

V)
for all real x. Then (see (216))
' [¥a~gll, < Ca(B)n~PllgPll, = Co(Byn~2 || P ~Q3,
< 2C,(B)Cyy n™ AP, (fB),

.Taking the polynomials T, = Y,+1,;[Q,], we observe that T, —~f Y,—g.
Hence T,e H (f) and

(3.13) IT=Sll, < 2C4(B) Cyy n™ = 1P W, (fP).

icm
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Moreover (see the proofé of estimates (3.8) and (2.16)),

(Ti=f) = Vo (Y,=9) < 2V, (@) I To,n— Zylls + 1P —to,ll1},
ie., -
(3.14) VAT, =f) < Cis (B~ PV, (f 7).
Analogously, we can construct polynomials t,& H, (f) such that inequalities

(3.13), (3.14) in which T, is replaced by t, remain valid. Thus, for a = 0, the
desired estimates (3.10), (3.11) are proved.

(3) Considering f as in (2), we observe that the Fourier coefficients
g7k) = [ ()—1,[Q,] (k) are of the order O(|k|™#~'/7). Hence, under the
assumption 0 <o < f—1+1/p,

2

(15) 1’:“>(x>—g‘“>(x>=51—,;f o2 0 (T3 ) — ) () i+

[
' 2n ‘
+21—1t j 912 () { ¥ (c—10)— £, (x —w)} du
o

for all real x (see (3.12), (25) and (2.6)).
- By Theorem 2 and Remark 2 (see also [2], p. 360, [4], and [3], Th. 6),
%50 — 82l < Co (o, @) Eq (PP, = Co @, @) Ex(¥-a)s
T~ P51 < Co (o, ) E (P51 = Color, 0) Ep(¥p-0)s3
hence

T8 — PN+ — 16l < Cyi7 (@, By’

Consequently,
%2 — g1, < gl I TS — Nl +igf21l, 1125 — el

< Cir (e, Bt lig®ll, = Cuq (o, By P1IF P — QO3
@

But T® —f® = Y@ —g®. Therefore,

2Cy; Cy7{a, B)
ﬁ at+1/p

(3.16) I —f N, < Vo (f9).
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Denote by G(x) the right-hand side of (3.15). Then, for an arbitrary

e N, [7]1 R. Taberski, Differences, moduli and derivatives of fractional orders, Comment. Math.’
partition {0=vo <0y <vz < ... < Up-y < Up =27, 19 (1977), 389-400.

[8] —, Approximation of functions possessing derivatives of positive orders, Ann. Polon. Math.
mt 1 34 (1977), 13-23

o — AP A .
{JZI IG(UJ“) G(UJ)l } [91 A. Zygmund, Trigonometric series, 1, Cambridge 1959.
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1 2 m—1 INSTYTUT MATEMATYKI
(B Y= P (1, — )P | T (p) — PO (p)|PLUP UNIWERSYTET ADAMA MICKIEWICZA
< ”2—7;[ { ‘Z 9% 051 o) gi+ ©; O 1T () = ¥ ) } dv+ INSTITUTE OF MATHEMATICS
i=1 ADAM MICKIEWICZ UNIVERSITY
Matejki 48/49, 60-769 Poznai

2n -1 Poland
+-211; J {:Zl 1g{2 (074 1 = 0) = g{2 (0, — V)P | P (0) = 10 (v)] P} /P o Received May 24, 1953 (1894
< Vg~ 2m, 2 || O~ Y1 + V, (92— 2m, 20 || W5 1§11
C;)nsequently, ) !

¥,(G) < 2Cy4 (2, Py~ PV, (7).
Thus

(3.17) Vo(TO =) < 2C1, Cya (o, yn* "V, (f ).

Observing that in (3.16) and (3.17) the Weyl derivatives T can be
replaced by ¢, we get (3.10) and (3.11) for all numbers a&(0, f~1+1/p).

Remark 4. Theorems 1, 2 ensure that Theorem 4, in which p = 0, is
also true.
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