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Monotonic mod one transformations
by

FRANZ HOFBAUER (Wien)

Abstract. The aim of the paper is the investigation of the topological structure of
monotonic mod one transformations on the interval. First, the nonwandering set of the shift
space obtained by f-expansion is determined by using an oriented graph which we call Markov
" diagram. It reflects the orbit structure of this shift space. Then we consider the intervals, with the
same f-expansion elements, and get a characterization of the nonwandering sets of monotonic
mod one transformations.

§ 0. Introduction. Let f: [0, 1) = R be continuous and increasing such
that f(0)e[0, 1). We call then T: [0, 1) - [0, 1) defined by T(x)=f(x)
(mod 1) a monotonic mod 1 transformation. Our goal is to investigate the
nonwandering set of these transformations. To this end we use the methods
developed in [2] und used in [6] to prove some results about the nonwander-
ing set of a more general class of interval transformations. Here we give a
complete classification of sets which can occur as nonwandering sets for
monotonic mod 1 transformations.

In-§ 1 we define a one-sided shift space X7 we get from ([0, 1), T) by f-
expansion, and an oriented graph which we shall call the Markov diagram of
T, the one-sided paths of which represent the elements of Xf. In § 2 and
§ 3 we classify the oriented graphs which can occur as Markov diagrams of
T. As the Markov diagram determines the nonwandering set Q of Zf, we
obtain from this a classification of all possible Q in § 4. This is used in § 5 to
find all possible subsets of [0, 1) which can occur as nonwandering sets L of
T. Let 3 be the set of all open intervals I =[0, 1) such that T¥|I is
‘monotone for all k> 0. Then we have for some n < =

L= {J LiuYuP

0sisn

where the L; are w-limit sets, pairwise disjoint up to finite sets, P is the set of
periodic points contained in |J I, and Y is an empty, finite or countable set,

&3 .
contained in ) bd I and wandering in (L, T|L).,
1e3
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Such a classification of the nonwandering set was given in [8] for
continuous transformations on [0, 1] with a unique turning point. In this
paper the points contained in an Ie3J are not distinguished. It is shown in
[3] how the transformations of [8] can be identified with those monotonic
mod 1 transformations which satisfy f (34— x)+ f(3+x) = 2. Hence the results
of [8] can be viewed as a special case of this paper (cf. also [7]). I do not
believe that the methods of [8] can be applied to monotonic mod |
transformations in general.

§ 1. The Markoy diagram. Let T be a monotonic mod 1 transformation
on [0, 1), and Jy, J;,..., Jy the subintervals of [0, 1) with | J, = [0, 1),
such that T|J; is monotone. To avoid trivial cases, we assume that N > 2,

ie, limf(f) > 1. Instead of T, in §§ 2, 3 and 4 we investigate a shift space
1
which we now define.

We set ¥ ={1,2,..., N}V. Let ¢ denote the shift transformation on
Zy and < the lexicographic ordering on Zf. Let 0 =¢o <¢; <... < ey =1
be the points where T is discontinuous such that J; =[c;_,, ¢c) for
1<i<N. We define the f-expansion ¢: [0, 1) —» Z% by

(1.1) @(x) =x=XxuXx;, X;...

where x; is such that T"er,i. One easily checks that 9 0 T =00 ¢ and that
x <y implies ¢(x) < 0(y), ie, ¢ is order preserving (cf. Lemma 1 of [2]).
Set a=¢(0) =lim ¢(t), b=lim () and

110 111

(1.2) 2f ={xeXj: a< o x=x%....<b for k3>0}.

We introduce in X§ the product topology generated by the cylinder sets
[XoXi...%-1] = {yeXf: y;=x for 0<i<k—1}). The following demma
is a special case of the results in [2]. '

Lemma L. (i) ¢([0, 1)) = ZF.

(i) ZF \o([0, 1)) = {xeZ}: ¢*x=b for some k > 0},

The Markov diagram of Tis defined as an oriented graph in which every
arrow has one of the numbers 1,2, ..., N and whose vertices are closed
subintervals of X7 with respect to the lexicographic ordering €. We denote
the set of these intervals by D, If D is a closed subinterval of Zf, then we
call the nonempty sets among o ([i] N D) for 1 <i< N the successors of D.
Remark that the sets [i] = m are those on which ¢ is monotone. Hence
the successors of D are again closed subintervals of Zf. We let D contain
a([i]) for 1 i< N and if De®D, then all successors of D are also in D. To
get the oriented. graph, which we call the Markov diagram, we insert an
arrow from D to all its successors. Furthermore, the arrow D —o([i}n D)
obtains the number i.
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In [2] and [6], a slightly different definition is used. The elements of D
here are the images under o of the vertices of the Markov diagram in [2]
and [6]. This makes no essential difference.

To get a better picture of the Markov diagram, we compute it ex-
plicitly. To this end we define-integers ry, r,, ... and s,, s, ... with re=1,
sy = 1 in the following way. Choose r; such that

4, #b .
Ifr,..., r, are defined, set R, =r;+ ... +r, and define r,,, by

1<i<rge. -1,

g=b_, for 1<igr~1,

(13) ARy +i = bi_y for L S br,,.,_l—l-

Similarly, by writing §; for s;+ ... +s;, we define s, inductively by
(14)  bgsi=a., for

1<i<Sk+1~1a bsk+sk+1 #ask+1*1'

By Lemma 1 we have a, beX}, hence e b, which implies, by (1.3),
that

(15) ORytrsy = ORyyy <bryi-1-

Similarly from (1.4) we get

(1.6) .- bsrsgar = bsery > oy -1

The following lemma is proved in [4].
Lemma 2. Serting Ry =8, =0 and R, =8, = o, for every n>1 there
are a P(n) and a Q(n), 0< P(n), Q(n) < o0, such that

Py =1+S8py, 8, = 1+ Ry -

Now we can describe the Markov diagram. For m > 1, we define the

following closed subintervals of X7 :

A, =[o"a, ¢™ " 'b], . ksuch that R, <mXRy,,,

B,=[c""%""a, o"b],

17
k such that S, <m < S,4,.

Furthermore, let E,, for 2 < m < N—1 be different copies of £ = [a, b] and

set €= [E,: 2<m< N—1}for N>3 and €= for N =2. Now we can _ -

prove

THEOREM 1. D = €U {4, B,: m > 1} and the Markov diagram has the
Jollowing arrows: :

Ap = Am+1,  Bp—= Bpust ‘ for m>=1,
Ag, —B,, Ag, — E, (ag, <l<b, 1) for k=1,
Bs, — 4,,, Bs, —» E, (ag-1 <I<bs) for k=1,
E.—~E, 2<m<N-1), E,->A4,B Jfor 2<k<N-1.
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All arrows ending at* A,, have the number a,,_,, all arrows ending at B,, have
the number b,,_,, all arrows ending at E,, have the number m.

Proof. We have o[i]=E; for 2<i<N-1, o[1]=4, and ¢[N]
= B;. Hence D contains A,, B, and the elements of €. As E; = X}, the
successors of E; are E; = o [j] for 2<j< N—1 where the arrow has the
number j, A; =o[1] where the arrow has the number 1 =g, and B,
= ¢[N] where the arrow has the number N = b,. .

Now we determine the successors of an A,,. If we have R, <m < R,
for some k, it follows from (1.7) that A4, < [a,], because g, = b gy-1 by
(1.3). Hence A,, has only the successor ¢A4,, = 4,4, and the corresponding
arrow has the number 4,. Now suppose m = R,. The initial point of A,
begins with ag, and the endpoint with b, .,. Hence A4,N[i]# @ for
ag, i< br,,—1~ The successors of 4, are o (A, r\[aRk]) = A,n+1 With arrow
o(Amn[i])=E; for ag <i<b, ., with arrow i and
0 (A N[y, ~1]) = [a, a™*b] = B, by (1.7), because r, = 1+Spy, by Lemma 2,
with arrow b, . '

The proof will be done if one computes also the successors of B,,. We
omit this, because it is similar to the computation carried out for A,,.

~ The importance of the Markov. diagram consists in the possibility of
representing the elements of £7 as one-sided paths. We say that x = x,x; ...
is represented by the path — Do — Dy — D, —...(D;e D) which begins at D, if
the arrow ending at D, has the number x, and the arrow D;.; — D, has
the number x;. The following important property of a De® is proved in
Lemma 3 of [6]: .

ag, = dp,

(1.8) D= {ox: x can be represented as a path in the Markov diagram,
which begins at D}.

Furthermore, Lemma 4 of [6] shows that this representation is in some sense
unique.

The following result about P(n) and Q (n) defined in Lemma 2, which we
shall need later, is a special case of Lemma 2 of [5]. \

Lemma 3. If m 2 1 is such that P(m) = 1 and that there are no arrows
Ag, — E; and Bspy = Ejs then Foiq 2 Yopump+ 1 If m 2 1 is such that Q(m)
21 and that there are no arrows Bg, -+ E; and ARQ(m) —Ej, then §,.4
Z Spmn+1-

Remark that s, >7gum and foum > Spomy by Lemma 2 and hence.

Sm > Spigumy - Similarly one gets r,, > Roppmy. This implies
(1.9) PQm) <m—1, Q(Pm)<m—1.

§‘ 2. Closed subsets of D. A subset § of D is called closed if D e Hand D
= Cimply Ce $. Closed subsets are important, because they give rise to o-
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invariant subsets of X7 . We define a decreasing sequence of closed subsets
in D.

Suppose 5} = {4, B,: |>R,, m> S,} =D is a closed subset of D. By
Theorem 1, we then have r, > S;+1 for t > p+1 and 5,2 R,+1 for t = g+
+1. Otherwise the arrow Ag — B, or Bs — A, would imply $; not closed.
In order to define a closed set $;,; < $; we consider the following four cases:

(1) Fprs =S;+1,  Spuq =R,+1,
(2.2) For1 =Sg+1l,  speq >R,+1,
(23) Fpr1 > S;+1,  Sp4q =R, +1,
(24) Fprs >Sg+1,  Spuq >Ry +1.

In case (2.1) we have the following arrows in the Markov diagram,
which form a closed path (cf. Theorem 1):

(2.5) ARPH—»..A—-»AR ’*Bsqﬂ”m"Bqu“"Axpﬂ-

p+1
We say €={4,, B, R, <I<R,;;,S;<m<5S,,.,} is a cycle in the
Markov diagram. In case (2.1) we define no $;.;.

In case (2.4) we get also a cycle €, as the following lemma shows, and
again we define no ;..

LemMMA 4. In case (2.4) we have:

() 7pe1 =841 =, ie, g = b, ¢ b=a.

(i) A = {c'a} for t = R,+1, B, = {d"D} for t = S, +1.

(iii) ARp+sq+z = Bsq+1, BRP+Sq+2 = AR‘,+1 and

G = {4, By R, <I<R,+S,+1,8,<m<R,+5,+1}

Sgt+1

is a cycle in the Markov diagram.

Proof. (i): We show r,,; = oc. The proof for 5,,, is similar. Suppose
rpe1 <. By Lemma 2, there is a k = P(p+1) with r,,, =1+8,. By (24)
we have k >gq. Hence s,.; <rp.;. In particular, s,,; <2c. The same
argument gives that s,.; < oo implies r,.; <s,4;, a contradiction. Hence
rpey =00. Now (1.3) implies ¢*?" " a=b and (1.4) implies o™ ' b= a.

(ii): This follows immediately from (i) and (1.7).

(iii): This is a consequence of (i) and (ii).

In the remaining cases we set
(2.6) Bj+1={An By 1 >Ry, m>S8,}
2.7 Oiv1 =14, By I>R,,m>8 44}

LEMMA 5. 941 is a closed subset of D.

Proof. We suppose that $;.; is defined by (2.6). Assume that $;,, is

in case (2.2),

in case (2.3).

- not closed. As $; is closed, this can happen only if there is an arrow from
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some Bg, with k >q to A €941\ 9 = ,ARPH, cony Ag +1J By Lemma 2,
s, must be R,+1. By (2.2), 8,41 > R, 1, hence k > q+2 Choose k = g+2
such that”

(2.8) s =R,+1, s,>R,+1 for g+l<m<k-1.

By Lemma 2, this gives

(2.9) Qky=p, Qm=p+1 for g+l<m<k—1.

Because 9, is closed, we have r, > §, +1 for t z p+1, or by Lemma 2
(2.10) Pty = for =p+l.

It follows from (2.9) and (2.10) that P(Q (k— 1))+1 g+1 and from (1.9) that
P(Q(k—1))+1 < k—1. Hence it follows from (2.8) that spgu~1y4+1 > Rp+1.
Because 9; is closed, the requirements of Lemma 3 for m = k—1 are satisﬁed.

Hence s, > SPQUe- 1) +1> which implies s, > R,+1; a contradiction to (2.8)..

Hence $;., is closed.
We conclude § 2 with three lemmas we shall need later.
Lemma 6. If 9., is defined by (2.6), we have
AR, 1 =bsq—-1, bRp+1 =ag, and
for Ry <i< Ry +rpp1—1=Rp +5,.
If $,41 is defined by (2.7), we have bqu =ag,+ 1, dsgpq = bsq and a; = b; for
Sq+1 <ig Sq+1 +Sq+1'—1 = Sq+1 +Rp
Proof, We give the proof only if §;,; is defined by (2.6). Let X be the
block p..-ag,-1 and Y the block b,.. bs ~1- By (2.2) and (1.3) we have

AR+ - p+,+1 (cf. (2.2) and Lemma 2), we get
(2.11) =ao...aRp+1_1=XaRpY.

In particular, bR'7 +1 = O, (remark that S,+1=r,,; by (2.2)), one of the
three required results.

As 9,4, is closed, we have r,,, > S, + 1, hence ag pr1+1e AR
by (1.3) which implies, together with (2 11), that

ag

a; = bia

g,y -1 = Y. Since 5,44 >

by +1---bsq+R,,+,

=Y

pr1tSy
pr1tl Ry 48, =bnp+1+1--v-b
the third required result.
. By Theorem ;, we havej the arr(?ws ARp+1 - E, for ARpeq < I< br,,+1-1
in the Markov diagram. Since §, is closed, no such arrow exists; hence
b'p+1‘1_aRp+1 <1. By (1.5) this gives ARppy = b —1, which is
bsq—l, completing the proof.

LemMA 7. Suppose that, continuing the definition of the $,’s, we have got
an infinite sequence $; > 9;, > ... of closed sets, such that each $,(k > ) is

Rp4qt+8g

rp_,_x-l

icm
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defined by (2.6) (by (2.7)), i.e, rp4; = and s, =R,+1 for t =2 g-+1 (5,4,
=x and r,=S,+1 for t = p+1). Then
Bsq+1 = Bsq+1+1 (ARV-FI =Anp+1+1)~

Hence we have a cycle € = {B,: S, <m < 8,41} (€= {4; R, <I< R, })-

Proof. Because s, =R,+1 for t>qg+1, it follows from (1.4) that
bg,-1=4ao.. -Gg,-1 for all t>q+1. As §; is closed, there is no
arrow from Bg, to some E, and hence b =a,_;+1 = ag, +1 for t = q+1
by Theorem 1. This gives ¢ St p = "”Hb and BS 1 —Bs et follows
from (1.7).

Lemma 8. If rpey = 0,
[bo...bsq] = {b}.

Proof. We show only the first assertion. Suppose xelag...a5 ]
By (1.2) we have x> a and "' x < b which is PR by (1.3), since
rpey = % . Hence x < ao...apr= a. This gives x = a.

then [ag...ag,) = {a}. If 5,01 =, then

§ 3. Irreducible subsets of D. We say that there is a path from C to D'in
the Markov diagram if there are C = Cy, Cy, ..., C, =D, C;e D, with C;_,
—C; for 1 <i<k, and denote it by C ~—D. For subsets J, € of D we
write § ~— @ if there are CeJ and De€ with C ~—D.

A subset J of D is called irreducible if for all C, De J one has C ~— D
and D ~ C and if every subset of ® which contains J strictly does not
have this property. We want to find all irreducible subsets of ®. Because of
the arrows E,, — E; for 2 < I, m < N—1 (cf. Theorem 1), an irreducible subset
3 satisfies either € = § or §n € = Q. Because of the arrows A, — 4., and
B, —> By, (cf. Theorem 1), we have J\E={4,, B,: T<I<V, U <m< W}
where 0 < T< V< o0 and 0SS U< W< 0.

LEmMMA 9. Suppose S\€=1{A, B,: T<I<V,U<m<W}, J is ir-
reducible, and T<V<ox, U<W<oc. Then V=R, and W=3S,, for
some v and w.

Proof. Suppose R; < V< R;,, for some i. A,€J and as J is irreducible,
Ay, ~— 4y holds, ie., there are Cy = Ay, Cy, ..., C; = 4y with C;_y -~ C; and
all C; belong to T by our definition of irreducibility. By Theorem 1, the only
arrow which begins at Ay, ends at Ay.;, hence C; = Ay, . Therefore
Ay, €3, contradicting the definition of V. This shows V= R, for some v.

Set Ry=S8,=0 and R, =8, =ox. Set V,=max im: A4, ~E]
(=0 if this set is empty) and W, =max {m: B,~+€}. Then
Dy = €U 4, B,: 1<V, and m< W,} is irreducible and by Lemma 9, Vo
=R,, and W, =S, for some v,, wo. In case N =2 we have € = (3, hence
Vo=Wy=0 and D, = Q-

Because D, is irreducible and because of the arrows A — A4y
and B, — B,., in the Markov diagram, the set D\ D, =:5i0 is closed.
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Suppose we have already found an irreducible subset D, of D with
R, = max {m: A,eD] and §,, =max {m: B,e®;}. As above for D,, the
set By ={d,, B,: |>R,, m> S .} is closed. If R,, < co and S, < oo, we use
the results of § 2 to define a decreasmg sequence of closed sets. Set $o =

If (2.2) or (2.3) occurs for o, we define an H; by (2.6) or (2.7), respectlvely
If then for $, again (2.2) or (2.3) occurs, we define an $, by (2.6) or (2.7).
We continue this procedure. Either we get an infinite sequence $, > $,
> $, o... of closed sets, or we reach an §; = {4;, B,: I >R, , m>S, .}
(j = 0) where (2.1) or (24) occurs. In these cases

GCvy ={4, Bu: R <I<Rf.~+i+sui+1+1’5u;+1<m<s +R, ., +1}

ti41 Bt 1

is a cycle (cf. (2.5) and Lemma 4) which must be contained in an irreducible
subset of D. Set

Viey =max {m: 4,~ .} and

"Then

L =max ‘m:
Wiry =max im: By ~— € (]

Dy = {4, By R, <IS V41, S m < Wiy

fi-+1 ey <
is an irreducible subset of D. By Lemma 9, we get V., = R, , and W,
=Sy, The set B = {4, B,: >R, ,,m>S, |} is closed and we
can start the same procedure as above if R, | < o0 and § < o¢. In case
(24) we have D, = €, , and B;,; =@ by Lemma 4.

We consider six different cases. Either there are infinitely many D, (cf. (f)
below) or there is an irreducible subset, which we denote D,_;, after which
the last sequence $, =D,_; 2 $; 2 $, o... of closed sets occurring in the
above procedure begins. The behaviour of this sequence gives the other five
cases. In cases (a) and (b) it ends, because (2.1) occurs for some $;, which
gives rise to a D,, after which no sequence of closed sets is defined.

(a) The irreducible subsets are Dy, ..., D, and v, = w, = 0.

(b) The irreducible subsets are Dy, ..., D, and either v, = o, w, < x or
Uy < 0, W, =0c0. Then s, 4, =00 or r,, +1 = 00, respectively, by the defi-
nition of v, and w,.

(c) The sequence B, , = $, > $, > ... reaches an $; for which (2.4)
occurs. D, is then the cycle given by Lemma 4.

(d) The sequence B,_; = §¢ $; o... is infinite and for some §, the
situation of Lemma 7 occurs. D, is deﬁned as the cycle given by that
lemma.

(e) The sequence D,_, = §, = 551
hold for all m.

(f) There are infinitely many D;. We set n = x.

Wi 1

- is infinite and r,, < %, 5, < 0
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In cases (b) and (d) we have two subcases. We shall consider only the
case where

for all ¢.

In case (d) p is given by Lemma 7 and in case (b) p =v,.
other case where

(3.1) rps1 =2 and 5§ <o

The proofs in the

(3.2 " s41=00 and r, <o forallt

are similar and omitted (g =w, in case (b)).

The following lemma is needed for Proposition 2.

LemmMa 10. () For 0 <i < n—1, and in cases (2) and (b) also for i=n-1,
we have o*a <d*b for min {R, 51, Sy41} <K< R, +8, ,+

(i) In cases (d) and Fa=oc* b for k
>min {R,,_ +15 Sw,_q+1}-

(iii) In case (c) for min {R, _ 11, Sy, _,+1} <k <1l+max {R, S, } we
have ¢*a > o* b, but there is no xe X} with ¢*a > x > c*b.

Proof. For some fixed i <n we consider the sequcnce H=D>9,
> 9, o... as defined above. We apply Lemma 6 for j = p =y and g
=w;. If §, is defined by (26) we get a; = b; for R+ <j < Ry41+S,, and
R,;+; = min lR,, +1, Swe1) by 22). If Sjl is defined by (2.7), we get a = b;
for Sw1 <J <Sw +1+R and S, 4y =min {R, 41, Syr1) by (23)
Furthermore, if $, is defined by (2.6) one has

(3.3) ag, .y = bsq—l q=w;.

Now we apply Lemma 6 for j = 1. If §, is defined by (2.6), then p = v;+1, g
=w;. If §; is defined by (2.7), then p =1, and g = w;+1. We suppose that
9, is defined by (2.6) and omit the proof in the other case. We already know
that

(34 a;=b; for

If now ; is defined by (2.6), we have R, +,+S,,

i+l

(&) we have

where p=v, and

min {Ry, 41, Sy 41} <J < Rypy +8u,-

. =Ry+2—1 by (22) and

R,y —bs -1, by b1 =GR, by Lemma 6 (p—v +1 q -w), which implies
by (3.3) that

(35) © a=b for j=Ry.s

Again by Lemma 6, we get

(3.6) aj=b; for R,4;<j<Ry42+S,,

One gets from (3.4), (3.5) and (3.6) that

(3.7) a;=b; for min{R, 4y, Sy} <j< R,,i+2+Swi.<

If $, is defined by (2.7), one gets by a similar proof

(3.8) a;=b; for min{R, 1, Sy+1) <JSRys1+Su41-
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We can continue in this way. (3.5) and (3.6) together can be considered
as the induction step. For i = n—1 in cases (d) and (e) the sequence $, = §,
>... is infinite. Hence we get a; = b, for all j > min (R, 4, Sy;+1) proving
(i).

In all cases considered in (i), the sequence $, = H, = ... ends with an
9, for which (2.1) holds, i.e, $, = {4, B,: | > R, ,.m>38,,  }and (3.7) or
(3.8) extends to

(3.9) aj=1b; for min (R, 1, Sy41} <J< Ry, (8.,

By (2.1) we have r, Hence

R

Weset W=R,, +1=S5,, +1. As Ay and By are in Dy = Dy, which is
closed and disjoint from & we have Ay ~~ € and By ~- €. As in the proof
of Lemma 6, it follows from Theorem 1, (1.5) and (1.6) that ay =b,—1
where m=r,_,,,—1 and by = g,+1 where l=s, ,+1—1. Now we apply
Lemma 6 for j+1 = k. No matter whether $, is defined by (2.6) or by (2.7),

gegrr =148, and s, =1+R, .

et P Suy = Ry =128 v — L

we always get a,=b,~—1, as I=R,, , and m=S, . by (21). Hence we
have :
(3.10 ay <by, W=R,  +8,, +1.
Now (i) follows from (3.9) and.(3.10). If k = 0, then

Rysr =Swrr =Ry, _};S"H-l +1

and there is nothing to show.
For i =n—1 in case (c) the sequence $H, >, =..

S =1{A, By: I >R,,m>S,)

for which (2.4) occurs. Here we have written p for t, and ¢ for u,. As above
(3.7) or (3.8) extends to '

(3.11)

By Lemma 4 we have o™*

. ends with an

;= in ! i
a;=b; for min (R, 41,8, +1] </ <R, +5,.

Ta=pand ™" p=4q. In pérticular, aR, 45,41
= bsq and bR,,+sq+1 =ag,. We apply Lemma 6 for j+1 =k and get in both
cases, (2.6) and (2.7), that ag, = bsq——l. Hence

(3.12) AR +s,+1 = bryrs v T L
Together with (3.11) this gives the first assertion of (iii).

Now suppose cta>x>¢*b for min Ry, 41> 8w, +1) <k <K
t=max {R,, R} +1. By (3.11), y =X *xeX} satisfies

(3.13) fa>y>okp.

icm®
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It follows from (3.11) and (3.12) that
ye[ax~--anp+sq+1] or Ye[bx---bnp+sq+1]-
Suppose K = R,+1. We omit the proof for K = R,+1. It follows from
Lemma 4 that ¢®a=5. If the first statement of (3.14) is true, then
yelbo...bs,] (cf. (13)), which is {b} by Lemma 8. Hence y =b =0%aq, a
contradiction to (3.13). If the second statement of (3.14) is true, then
Y S bg...bgis, b, because yeZj implies ™'y < b by (1.2). By Lemma 4,
5" p = b, hence bg...bgis b=0%b and we get y<oXb, again a
contradiction to (3.13). Hence (3.13) cannot hold, proving the second asser-
tion of (iii).
Next we define subsets of Zf. Set
D=Dud = {4, B, I>R,m>5,}
and F;={){D: DeB},

ProrositioN 1. (i) F; o G, 2 Fiyq.

(ii) o(F) = F,.

Proof. (i) follows, because B; o D, = D;4,. (i) follows, because B, is
a closed set and, if De D, then a(D) = ) {CeD: C — D} by the definition of
a successor. .

ProposiTION 2. (i) For 0<i<n, and in cases (d), () for i <n—1, we
have G, =F,.,;. If N=2, then Dy =D and F, =Go=Z7. If N 2 3, then
€ < D,, which gives Fo = Z7.

(ii) In cases (d), (€) we consider the infinite "sequence $Ho=D,_, > H,
>... of closed sets and set H, =) {D: De$,}. Then H,=H, for k>0.

Proof We consider the sequence $,= D, > $; ... which ends
with $, = D, in-the cases considered in (i) and is infinite in (ii). Both (i)
and (ii) will be proved if we show H;=H;,; where H;={J{D: De§;}.
Because $; > $,.;, we have H; o H;,,. We shall show H; =« H;,,. If k =0,

we have D, = B,,, and there is nothing to -show.
Suppose H; = {4;, By: | >R,, m>S,} and ;. is defined by (2.6).
We omit the proof for (2.7). We have $,\9;+; = {4 R, <!<R,.,} and

Ay=o' "Rt R, <1< Ryi;.
As ;4 is a closed subset of D, we have 6H;,; < H;4, (cf. the proof-of (i)
of Proposition 1) and it suffices to show AR‘,+1 < Hj,y.
We have AR,+1 = [aR"H a, b] by (1.7). Furthermore,
1
AR,,+1+1=[U'R“1+ a, bjeH;r, and BRPH+1E$51'+1
Rpti  Rpyq+

since Rp.y > 8, by (2.2). By (17), Bg,,,+: =[oc? a0

G, =U{D: De®}}.

A Rp+1 for

1b] since


GUEST


28 F. Hofbauer

S,+1 <RP+1+1 <8;+1+1by(22) and rp.y = §,+1. In any case it follows
from Lemma 10 that there is no xeXj with

Rypq+1 +1

P < x <ot g

since p>v; and p+1<t;,,. This implies Ag JrchRPHHuARp+1+1
= H;,, and the lemma is proved.

Remark. If T(x)=/(x) (mod 1) satisfies f(ng—x)+f(%+x)=2 (cf. §0)
the above results are much easier because one can show that D,,, = %, for
all i. Also the cases (b), (d) and (e), which are the difficult ones, cannot occur.

We now show that the sets F; are finite unions of intervals. Recall the
cycle G = {4, By: R, <I< R +S,+1, S, <m<R+8,+1} =D de-
fined above. If i < n or if i = n in case (a) or (b), then (C, is also {4, B,: R,
<IS Rysy, 8y <m<Syeq} by (21). ‘

ProposiTioN 3. (i) For i >0 we have F,=|){D: De@}.

(ii) In case (¢) we set F, =G,y =) {A}, By: I >R,, m>S5,} where p
=v,‘“1 and g =w,_1. If rppq =148, and 5.4 > 1+R, (cf. (2.2)), then set
p'=0(q+1), ie, Ry+1 —-sq“, and ¢ -—q+1 If oy > 148, and s,y
=14R, (cf. (2.3)), rhen set p'=p+1 and ¢'=P(p+1), ie, S, +1 =Tpiy.
ThenwehaveF = {4, Bu: R<l<R Sy <m< Sy}

(iii) In case (d) the set B,_, finite and hence F,=G,.
={{D: De®,. 1} is trivially a finite union of intervals.

. +1Proof In case (d), D, is finite, because Tpey = 00, L&, AR, 41 = {b},

. +1

0 b =c"*1" " p and Bg,+1=Bg, 41 (cf. Lemma 7) provmg (idi). If &
=n1in case (c) then D, = B, = €, and there is nothmg to prove. In all other
cases of (i) we set p=1t,, g =u;, p =t;+1 and ¢' = w;-+1. For i = n in case
©), p, 4, p’ and ¢’ are defined in (ii). Now we can show

Ry +1 Rl-l Sr+1‘
2 b.

(3.15) c? Tazdo a, Sqtt

<o
We show only the ﬁrst inequality. Since the set {4, B,: | > R,, m>S,}
is a closed subset of D, we get r; 27,4 for j = p+1. Choose k < o0 such
that )= Ty for p+1<j < k and r, > r,.. By the definition of p', we have

kzp+1. It follows from (1.3) that

ORjoy+1++URj-1 =bo---br,,, (=2

and since {4, B,: I>R,, m >8§,} is closed, that ag, = b
proof of Lemma 6) for p)<j<k.If k<o, then /
=by...h This implies )

-1 (cf. the

SRy hrpag

rpr1 1T
Ry g+t
Tpr1T 1t

Ry+1 Rp+1

g ¥ a=0 +1

aif k=c0 and o"* a>c"  aif k< oo,

proving (3.15).
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From (1.7) and (3.15) one gets
(3.16)
Set K U {4, Bu: R <I<R,+j, 8, <m< S8, +j}. We have to show
that F; = K,. Since U K; = F,, it suffices to show K; = Kj+1 For j=

this follows from (3. 16) We proceed by induction. For De®D, oD =) {C
D - C}, hence 6K; = K, (cf. Theorem 1). The induction step is as follows:
K;+; =0K;=0K;; = K;,,. This completes the proof.

AR,,/-H CAR,,Ha Bs +1 CBs +1¢

§ 4. The nonwandering set Q of Z}. The following subsets 2; of ZF are

proved in Theorem 2 to be topologically transitive. For i <n, and in cases
(a), (b) and (c) also for i=n, we set
(4.1) Qx=k00 o (F\Gy), W =(F\G)\ Q.
If ¥ =@ and hence G; =, then @, =F;, because oF; = F; by Proposi-
tion 1. In case (d) the situation of Lemma 7 occurs, which says that we have
a cycle € = {B,: S, <m< Sy} =B,y and r,y; = x if (3.1) occurs. We
set

4.2) Q,={d'bh: §,<i< S,,H}
‘which is a periodic orbit. If (3.2) occurs, we set
={c'a: R,<i<R,41}
where p is as in Lemma 7 (statement in brackets). Furthermore,
4.3) Q,=F,=G,_; incase(e),
(44) Q, = ﬁl F,  incase(®).

We need the following lemma for Theorem 2.
Lemma 11. Suppose r; < o0, s; < oo for all i and that

) = {4y, Bu: 1> Ry m> 5,
is a closed subset of ®. Set X;={) {D: De ﬁj} Then {c'a, c'b: i >0}

o ﬂ X,. If p; o0, g; — co for j— o0, then ﬂ X is the set of limit points

1
ofj{a a: i3> 0} and also of {o'b: i = 0}.

Proof. That ¢'ae () X; follows, because a€ B, = X; where m =S, -+-1
and oX; < X; since §; is closed (cf. the proof of Proposition 1).

Now let x=xgX,...€() X;. For every k we shall find an i with
g aelxy...x-1]. To thxs end choose] so large that R >k and S > k. As
§; is closed, it follows that
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(435 rnz8+1=k for ZR,+12k for t>g;.

As [xo...%11NX; # @, we find a De §; with [x,...%,, ] D # Q. Sup-
pose D = A, where R;_; <I< R; and i > p;+1. We have the following paths
in the Markov diagram:.

t>pj,

A ¢ Arri = = Aryy <

—>ARi B —

—'BSQ(.')M <

Since §; is closed, we have Ag, ~~ €. By (1.8), Xg ... X~ can be represented

as a path of length k in the Markov dlagram Wthh begins at A;..,. As &, is

closed, B, BsQa)HE & and ryq 2k, Sgp41 = k by (4.5). This gives that
.. Xy 18 either

Qo ARy~ 1 Ogoo si-1 O Gp...Ogybyy...

bkmxi 12
(Theorem 1 states what numbers the arrows have). In the first case, we have

aae[xo .%-1]. In the second case, we get by ag,_{ +1-

slr—y
=bg...by,~ (cf. (1.3)) that

Xo.o Xpmy =bjp,_;-1- cbeog rima

It follows from (4.5) and ¢; — co that there is an m with r,, > k—R,_ | +1—2.
By (1.3), this implies that

by.g, cbeegy -2 = ORpy ey I~ Ryq *o

and hence 6P ac[x,...x.-,] for p=R,,_, +1-

THEOREM 2. For i <
points of {o*y: k > O} for some yeQ,.

Proof_. If @, is defined by (4.1), this is shown in Lemma 7 of [6]. If @, is
only a periodic orbit, the result is trivial. If €, is defined by (4.3), then it
follows from (ii) of Proposition 2 that Q, = Hjfor j 20, ie., Q, = H; (for
the definition of H; see Proposition 2). As X; = H ; satisfies the requlremcnts
of Lemma 11, the assertion of Theorem 2 holds for y =a or b If €, is
defined by (4.4), ie, 2, =) F, we can also apply Lemma 11, because
X, = F, satisfies the reqmrements of that lemma,

In order to show that W, is wandermg, we need

Lemma 12. (i) bd F; < {c'a, 6'b: l; 0}.

(i) For i <n, bd F; = bd F,,.

Proof. (i): By definition, we have F,=
Hence the result follows from (1.7).

(ii): Let xgpd F,. By (i), x = ¢'a for some [ 0 or x = ¢"b for some m

= 0. By definition, Fi.y =) {4,, B,: | > Ry, ,m>Sul+1} Hence it fol-
lows from (1.7) that xeF,,. . If xemt Fiyy, then xeint F;, because F,
> F;4y by Proposition 1. Hence xebd F,, .

iy -1- ARy y k+1~Ry =1

R;_ . This proves the lemma,

U {4, B

m >Ry, m>8,},

n, a|2; is topologically transitive. 2, is the set of limit
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TueoreM 3. For i <n, W; is a wandering set.

Proof. Let xeW,;, ie, xeF;\G; and x¢Q,. Hence there is a k with
x¢o *¥(F;\G;). By Proposition 2, we have G; = F;;, and hence it follows
from Lemma 12 that bd (F;\G)) = bd G;, which is in G;, because G; = F; .., is
closed by Proposition 3. Hence F,\G; is open. As xeF;\G; and
x¢o " (F;\G;), x has a neighbourhood V < F;\G; with VAo *(F;\G) =@
As o(F;) = F; by Proposition 1, this gives o*V = G;. Since ¢(G;) = G; (G;
=F,,,), we have ¢’V V= for j > k. By making V smaller, if necessary,
we get also ¢/ VA V=0 for 1 <j<k. Hence x is wandering.

The next result deals with the disjointness of the ;.

PRrOPOSITION 4. For i < j, @; N F; # Q) implies that we have case (a), (b), (c)
or (d) and thatj— i+1=n. ’Ihen Q, N F; is finite and is either {o'a: 1=k}
for some k or {c'b: 1= m} for some m or the union of these two sets.

Proof. As @, = F;\G; and G; > F; by Proposition 1, an xe®; 0 F; has
to be on bd G;, which equals bd F,,, by Proposition 2. As @, and F; are o-
invariant, ; N F; is also g-invariant, hence o xe2; N F; < bd Fi4, for all p

> 1.By (i) of Lcmma 12 we have x = ¢'a or x—a’b Supposex—a a and

R,., <I< Ry. As in the proof or Proposition 3, one can show that
Apger =0 a, B} < Ag oy =[0"7" "0, b]  where  p =14y

Rp+1 Rp+1 . Rp+1-1 Ry+1 .
Hence ¢ ¥ "a=d P  a, because otherwise ¢ * x=0"% "aeint F,q.

By (1.3) this implies r,,; =r,; for alli =1 or r,,; = co. This says that we
have case (a), (b), (c) or (d and that i+1 = n. Because i <j < n, this implies
j=n.

Furthermore, if er NF;, then x=c'a or x=a'b and ¢ 'a
=o"""q or a similar equation for b holds. This implies the second
assertion.

The next theorem is the main result about the nonwandering set Q
of X7 . Before stating it, we need some results about F, in cases (b) and (d).
We suppose that (3.1) occurs. Then we have in case. (b) that D,
={A};, Bn: R, <I<R,,m>S,}, D, = (A I>R,} and r, .y =c0. In
case (d), we set u, =q and t, =v, =p where ¢ and p are as in Lemma 7.
Then we set D,= {B,,,: m>S8,}={By: S, <m<S, .}, D,
={A;: >R, } and we have r, ,; =o0. If (3.2) occurs, one has similar
definitions. :

LeMMA 13. Suppose we have case (b) or (d) and (3.1) occurs.

@) By (1.8) an xe £§ can be represented as a path in the Markou. diagram
which begins at A; =a[1], E;=0o[j] or B, = ¢[N). If this path enters 3.
then ¢*x = a for some k > 0.

(i) If yeZ§F is represented by a path in the Markov dlagram which enters

or is contained in B, then ye U ¢ {a}.

k=t
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Proof. (i): By Theorem 1 two cases can occur. The first one is that the
path representing x ends with

(4.6)

where we set p'=1v,. As the path (4.6) corresponds to ae X, this gives o*x
= a for some k = 0. The second case is that the path representing x ends
with
4.7

— A, —>A2—>..A—>ARP——>ARPH ...

—»Bsq“-»r...—»Bqu —’Aqu -—n..—»AR_p-—»AR"H-—»...

where p=v,, ¢=>0 and s,.;<R,+1. The path (47) represents
bqu ~--bsq+1—1ﬂsq+1~1 Ggppges which is a by (1.4). Hence there is again a
k>0 with ¢*x = a.

(ii): The path representing y either ends with (4.6) or (4.7) or is contained
in (4.6) or (4.7). This gives the desired result.

Lemma 14. Suppose we have case (b) or (d) and that (3.1) occurs. Then

m

there is an m with ¢"*'acQ, and F,\Q, < | o*{a}.

k= -

Proof. Suppose xeF,\2,. As xeF,, there is a De D, with xeD. By
(1.8), x can be represented as a path — Dy — Dy — ... in the Markov diagram
where D, is a successor of D, We first show

4.8)

In case (b) this follows from Lemma 5 of [6]. In case (d) we have D,
={By: S, <m<S$, 41} ={By: m> S,,} which is a cycle. Hence x =d'b
for some i > Sy, Which is in Q, (cf. (4.2)).
As x¢Q,, it follows from (4.8) that D, ¢ D, for some i. Since D, is closed,
we have D; e B, and hence D;e®,. It now follows from (ii) of Lemma 13 that
0

Die®, forall i>0=>xeQ,.

Tt remains to show that ¢™*'ae@, for some m. In case (d) we have
o'beQ, for i =S8, (cf. (4.2)), which is ¢™*1a for m = S,,+R, by (13), as
Ty+1 =00. In case (b) the path

->ARP+1 ~+.'.—>ARP+1 -—>B,p->B,nH ST
with p =t, is contained in D, and represents b. Hence it follows from (4.8)
that b =0¢"*'aeQ, where m = R,,.
'LEMMA 15. Suppose we have case (b) or (d) and that (3.1) occurs. Then the
set () o*{a} is wandering.

=Ze

Proof. As To,+1 = 0C, it follows from Lemma 8 that {a} is an open set
and hence {x} is an open set where x is an inverse image of a under g It
suffices to show that a is not periodic.
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Suppose ¢’ a = a for some t. As o/ a= b for j = R, +1, we get 6™b = a,
where m = kt—j > 0. It follows from (1.4) and Lemma 4 of [2] (cf. (1.8) of
[2]) that s; = oo for some i, a contradiction to s, < oo for all k (cf. (3.1)).
Hence a is not periodic.

It follows from Lemma 15 that the m defined by Lemma 14 satisfies m
>0, as Q,<Q by Theorem 2. We choose this m minimal and set Z
={cfa: 1<i<m} if (3.1) occurs. In the case of (3.2, we set Z
={o'b: 1 <i< m} where m is defined in an analogous way. ‘

LemMa 16. Suppose we have case (b) or (d) and that (3.1) occurs. Then
Z Q.

Proof. As ¢(Q) = €, it suffices to show caeQ. We apply (i) of Lemma
13 to x =c¢a. Let - Dy —D; —... be a path in the Markov diagram with
Dy = Ay, By or Ej;, which represents x. We have D;¢ D, for all i, because
otherwise o*x = ¢**1a equals a for some k > 0 by Lemma 13, a contradic-
tion to Lemma 15. As D;¢®, for i > 0 and- as D, is irreducible, we find for
every man I >m and C,44, ..., C;eD such that

—+Dy—...=»D,—C,q —>...—>C,—>ARP+1 —>ARP+2->...

is a path in the Markov diagram where p =v,. The ye I{ corresponding to
this path by (1.8) then satisfies ye[x,...x,] and ¢*y = a for some k by (i) of
Lemma 13. Hence ¢**![xq...X,] N [Xo-..Xn] # @, which says that x
=cgaeQ. ) )

Now we can prove

THEOREM 4. In cases (a), (c), (¢) and (f) we have
Q= | & @m<ow).
0<ign

In cases (b) and (d) we have

Q= | Quz

0<isn

(n < o0)

where Z is wandering in (2, o|Q).

. © . )
Proof. In case (f) we have Zf = |) (Fi\F;;,) U, in all other cases
' i=0

n—1 )
we have 27 = |J (F)\F;4+,) UF, (cf. Proposition 2). If xe F;\F,,, for some
i=0

i < n; then xeQ if and only if xe; by Proposition 2 and Theorems 2 and 3.
In cases (a), (c) and (¢) we have F, = Q,. If xe F, in case (b) or (d) then xeQ
if and only if xeZu®, by Lemmas 14, 15, 16 and Theorem 2.

In cases (b) and (d) the set |J£; is closed and Z is finite. Hence Z is
isolated in Q. As Z contains no periodic point (they are contained in |J€; by
Lemma 7 of [6]), Z is wandering in (2, ¢[€).

Remark. Further results about Q are proved in [6] and [4]. Lemma 4

3 ~ Studia Mathematica Tom LXXX
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of [6] says that &, is either a periodic orbit, a Cantor set or a finite union of
intervals. Theorem 2 of [6] says that 0|, has the same period as has
the oriented graph one gets if one restricts the Markov diagram to D, It
follows from the results of [4] that h, () > hy(€;+,) if Q is not only a
periodic orbit. .

§ 5. The nonwandering set L of ([O 1), T). We denote the nonwandering
set of ([0, 1), T) by L. We set C = U 7710}, € = {xe[0, 1): x is a limit

point of C} and C =CuC, the closure of C. As C is closed, [0, 1)\C is a
disjoint union of open subintervals I of [0, 1). We denote the set of these
intervals I by 3J.

. Lemma 17. IeJ3=>TIc3J unless I has 0 or 1 as an endpoint; then
TI = J for some J 3. If IeJ satisfies T*I < I and x is an endpoint of I, then
T¢x =x or xeC.

Proof. If IeJ we have I " C = @, hence TI ~C = (. This implies that
TI < J for some Je3. Let x be an endpoint of I If xeC, then clearly
TxeC. If xeC, then TxeC or Tx = 0. This gives that TI=J if the
endpoints of I are not 0 and 1. If T*J <, then T*x =x or T!x =0 or
lim TVy =1 for some j <k, which implies xeC.

yix
‘ Lemma 18. For xe ([0, 1)),
I = {int. @~ ({x}):

Proof. Suppose that x, ye[0, 1) satisfy x <y and o(x) = o(y). If
x<z<y, then ¢(x)< ¢(2) < ¢(y) because ¢ is order-preserving (cf. § 1),
hence ¢(z) = @(x), proving the first assertion. The elements of J are
maximal subintervals' I of [0, 1) with T*I contained in some J; (cf. § 1) for
k > 0. This implies the second assertion.

¢~ ({x}) is an interval or a single point.
@~ *({x}) is an interval}.

Lemma 19. If x¢C, then ¢ is continuous at x.

Proof. Suppose y, converges to x in [0, 1). Ag x¢C, T™x is in the
interior of some J; (cf. § 1) for m > 0. In particular, T is continuous at T™x
Hence T'(y,) converges to T‘x for all i > 0. By (1.1), we get that (p(yk)
converges to ¢(x).

Now we consider the sets F; =X} defined in § 3. We set
K= 07 (F) = [0, 1). As ¢ satisfies po T =g o, Proposition 1 Jmphes that
K; :Ki+1 and T(K) < K.

Lemma 20. (i) rpq; =00 (0F $pyy =
and ¢! {b} are nontrivial intervals.

(i) For all K, there isane>0 such that [0, ) U (1—¢, 1) = K.

Proof. (i): By (1.3) we have a#” a=», that is o(T " HO) hm o).

As ¢ is order-preserving, all xe[TR”

o) for some p implies that ¢~ * {a}

0, 1) have the same image under o,
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ie., (p([TR’H ) {b}. Now one has also an & > 0 with T*?*! monotone
on [0, ) and T"7** ([0, &) =[T**" 0, 1). This gives, ([0, &) = {a}.
(ii): By the definition of F; we have Ap+1= [a a, b] = F; and By
= [a Su +1b] < F; where t =1t; and u = u;. It follows that qJ"‘(AR +1) and
(BS +1) are nontrivial intervals. If r,,, = ¢ or t,.; = 00, this follows

vfrom (i) since then Ag . = {a} or Bg,+1= {b}, respectively.

We now begin the investigation whether an x€[0, 1) is wandering or
not. First we consider xeC.

ProrosiTioN 5. Suppose M < [0, 1) satisfies TM < M and contains
[0, &) u(l—e, 1) for some &>0. If xeC\M, then xéL In particular, an xeC
is either not in Lor in K; for all i.

Proof. As xeC, we have T"x =0 for some m>1. We find a 6 >0
with (x—38, x+8)"M = @, such that T"(x~5, x) and T™[x, x+8) are
monotone, and such that T"(x—90,x)c(l—e, 1) M, Tm[x, x+9)
< [0, &) = M. Since TM = M, we get T*(x—38, x+8) N(x—8, x+5) = @ for
k = m. Upon making & smaller if necessary, this holds for all k > 1. Hence
x¢ L. The second assertion follows, because one can take every K; for M by
(ii) of Lemma 20.

ProrosiTioN 6. If x¢C is an inverse image under ¢ of a wandermg
xeZf, then x¢L.

Proof. As x is wandering, there is a neighbourhood U of x in Zf with
FUNU=0 for k=1. As x¢C, it follows from Lemma 19 that V
= @~ 1(U) is a neighbourhood of x in [0, 1). Because ¢o T = o0 ¢, we get
TVAV =0 for k>1, ie, x¢L.

Now we consider an ;. We define

L= ﬂ o @\

ProrosiTION 7. L; is T-lm;anant and is the set of limit points of {T*y:

> 0} for some y, which gives L, = L.

Proof. By Theorem 2 we find an ye£; such that every xe; is a limit
point of {¢*y: k> 0}. If y is an inverse image of b, we take ob for y. Then =
we find a-yep~* {y}. It follows from (5.1) and Lemma 18 that every xeL;
is a limit point of {T*y: k >0} since ¢ is order-preserving. L; is T-
invariant, because it is the set of limit points of an orbit.

Lemmas 21, 22 and 25 investigate an xe] where I€3.

LemMma 21. If xel for some 1€, then xeL if and only if x is periodic.

Proof. By Lemma 17, we have T*I < J for some JeJ. If T*Inl =@
for k > 1, then x¢ L since I is open. If T*I = I for some k, then xe L if and
only if T¥x = x since T* is increasing on I.

LemMa 22. Suppose I, JeJ and x is the endpoint of J and the initial
point of I. Then xeL if and only if T*x =x or‘]sgl T*y =x for some k.

(5.1)
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Proof. Suppose first that T*I = 1. If T*x = x, then xeL. If T*x = x,
then y = Téx >x, as yel and T*I = I n(y, 1). This gives T"[x, y) " [x, y)
=@ for all m > 1. Now suppose that T'I = J. Then we find an ¢ > 0 with
T/[x, x+8) n(x—e, x) = @, because TV is increasing. Hence T™[x, x+¢)
A(x—e x) =@ for m>1, unless T'J =J and hm T'y =x. One easily

finishes the proof considering the different cases: T"I < I for some k or not,
T*I < J for some k or not, T*J < I for some k or not, T*J = J for some k
or not. )

We collect the nonwandering points found in Lemmas 21 and 22 and
set P={xel: IES, T*x = x or hm T“y = x for some k}. The next two

lemmas are needed for Lemma 25 where we shall find the nonwandering set
Y= lxe U bd K;: xebd I for some Ie with ¢(I) = ﬂ F;and xeC}. If

3=0Q, 1e C =[0, 1), then P =Y = (b, If we have case (f), then Y may be
countable. In all other cases, Y is at most finite.

Lemma 23. Suppose we have case (b) or (d) and that (3.1) occurs. Let x,
yeZXi, x <y, with o*x = a, o'y = a for some k, | and such that there is no
zeXf with x <z<y, Then k<.

Proof. Choose m such that x; =y, for 0<i<m~1 and x, <y,,. By
(1.1) we get that T"¢~![x, y] is continuous. Hence 6™x must be the
endpoint of [x,] and ¢™y must be the initial point of [y,], because
otherwise T" (¢~ (x, y)) # @ and there is a zep™ ! (x, y) by the mean value
theorem giving rise to a z = ¢ (z)&(x, y), a contradiction. Therefore ¢™*!x
=band ¢™ 'y = a. As a is not periodic (cf. Lemma 15), we have m+1 =1,
If k>m+1, then a=g'b for i =k—m—1 3> 0 and it follows from "4
= b (cf. (3.1)) that o' Rty = a, a contradiction to the nonperiodicity of a
(cf. Lemma 15). Hence k <m+1 =1.

Lemma 24. (i) Suppose we have case (b) and (3.1) occurs. Then o* a for k

0
=1 is a limit point from below of ZF\ U ¢"{a}.

k==
(u) Suppose we have case (d) and (3.1) occurs. If x is a limit point from
below of F,n U d“{a}, then xeQ,.
k== o
Proof. (i): As in the proof of Lemma 16, we use Lemma 13 .and the fact
that a is not periodic (Lemma 15) to represent ca as a path in the Markov
diagram which does not enter %,. Changing this path aﬂer the mth

ay], with nt U o*{a}.

Remark that ®, is irreducible and not only a cycle. Because of P la b
(cf. (3.1)), oa is an inverse image of b and cannot be a limit from above.
Hence y, Toa, and ¢*~*y, 1o*a proving (i).

coordinate, we get for every m an y,e[a...
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(ii): By (1.8) and Proposition 2, F, is the set of all x which can be
represented in the following part of the Markov diagram

-—)Bsq+1 ——»_,‘—-—>Bsq+1 ""qu'—)Asq+1 ->...

. 0
Hence we have for an xeF, m U o*{a} that x=by...bs,, -1 bs, ...

bs,,H 1- bsq .bg gr1-1@ where Sq<k<SqH—1 and the block
sq bsq +p-1 18 repeated I times (I > 0). The only limit point of such x is
*beQ, (cf. (4.2).
LemMA 25. Ler x be an endpoint of some I1eS with x:
xeC. Suppose xeL and x¢ U LjuP. Then xe¥.

0€jsn
Proof. As xeC, we find a sequence (c;), ¢;e C, which converges to x
monotonically from the side that does not belong to I. Let V; be the open
interval with endpoints ¢; and x. Then U; = @(V;)is an open 1nterva1 inXf.
We show

(5.2) U cw,

=p()eQ and

¥
for some t and some k <

In cases (b) and (d) we set W, = U o*{a}, in all other cases we have W,
= Q. We first show

(53) U,c F\F,,; forsomet and k.

In case (f), we have U bd F; = {a'd, ¢'b: i > 0} which is a subset of Q_

(cf. Lemma 11). Hence U, n U bd F; = @ for some ¢ implying (5.3), because
otherw1se xeL, by (5.1) contradlctmg the assumption. In all other cases
U bd F; is finite (cf. Proposition 3) and hence U, U bd F; = @ for

some .

We show U, nQ, = @. Then (5.3) implies (5.2). In cases (b) and (d) we
can also choose ¢ so that U, NZ = @ since Z is finite. If U, N 2, # @ for all
t, then xeL, by (5.1), a contradiction to our assumptions. This shows (5.2).

Next we prove

(54) VjiZzt3Im=>1 with 6"U;nU;# @ =xeP,

Let k be as in (5.2). As U;c W, for j>1, it follows from (4.1) that U,
U X; where X; are intervals with one endpoint ¢(x), X, =1U,,

X,;llc X; such that ¢'|X; is monotone, the interval ¢'(X;) is a subset of

Fi\Fyy; and 6/ (U;\ X)) < Fy4,. If we have case (b) or (d) and k = n, then X,
is empty or a single point in ¢7'*!{a} (cf. Lemma 23) and we set F,,,


GUEST


38 F. Hofbauer

={d'a:l>1}. As U;cF\F, by (52), (Uj\X,,,) < Fp4y and
0F, 1 ©Fyyy, we get that 6" U;nU; 5 @ implies 6™ (X,,) N U; # @. Since
xeQ, we have x¢o™(X,,) = W,. As 6™ X,, is monotone, we then find an [ > j
with U; =X, and o"(U)<c U, If o"(U)c< U,\Xi for some i, then
c™i(U) = Fyyy and o?(UpnU; =@ for p>1 since oFy.; < Fpyy and
U, c F,\Fy.. Hence ¢™(U)) and U, have the same endpoint ¢(x), which
implies xe P proving (5.4).

It follows from (5.2), x = @()eR and ¢(2) = Q that

(5.5 e"x¢U, for m=0.

We need another such assertion:
(5.6) Viztdm>1 with xeo"U;=xeP LY.

Using the X; defined above, we have ¢™(X,) < W, and ¢"(U;\ X,) < Fy,,.
As xeQ, xeo™U; implies xeFy,,. If k <n, this gives
n
x=¢l)ebd Fiyuy = | F; and xebd Ky,
i=1
ie, xeYsince x is an endpoint of U; € Fy\Fy., (cf. (5.2)). If we have k =n
and case (b) or (d), then x is the endpoint of the intervals U; by (5.2) and

Lemma 23. In case (b) it follows that x¢o™U, = |J o'{a} for all m,

l"""*[

1, as xeQ, and U, & U ¢* {a} by (i) of
l= o0

Lemma 24, contradicting (5.2). In case (d) it follows from (ii) of Lemma 24

that xeQ,, ie., x is periodic by (4.2). As x¢C, because it is the initial point

of p~'{x} =@ ' {s'a} and a is pot periodic, we get from Lemma 17 that

xeP. This completes the proof of (5.6).

Now we can show Lemma 25. As x¢ P, we find by (5.4) a j with
T"V;nV;=0 for m=1. By (5.5), T"I nV; =@ for m > 0. Furthermore,
we find a subinterval I’ of I with endpoint x such that T"I' " I' = @ for m
= 1. If x is not periodic, we can take I for I'. If ¢ x = x, then T” x 5 X since
x¢P and I is the interval with endpoints x and T?x (cf. the proof of Lemma
22 Therefore, as x€L, for every j there must be an m with T" ¥, ~ 1 s Q.
Then (5.6) implies xeY, as x¢P. This proves the lemma.

Remark. By Lemma 24, the monwandering points of ¢™* (Z) are
contained in Y.

Lemma 26. Y < L,

Proof. Let xeY, ie, x is the endpoint of an I=int ¢~ ! {x} and
xebd K; for some i. Then x = ¢*a or x = ¢* b for some k siice xebd F, for

because otherwise x = o’ a for i >

n .
some i. As xeC, there are cje,tiol K;, ¢;e C, with ¢; converging to x from
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the side not belonging to I. As in the proof of Lemma 25, let ¥, be the open
intervals with endpoints x and c¢; and set U; = @(V)). As U; is an open
interval in 27, we find a cylinder set [y,...y,] < U;. We represent yg ... ¥y,
as a finite path in the Markov diagram. In all six cases we can continue this
path so that it ends with

Bs,_, —'"'—’Bsq"’Asq”Aqu —... for some g.

This path represents a ze[yg...y,,] with ¢’z = a for some L In cases (b)

and (d) we then have o "*2* 7 = b. In all other cases we can also continue
the path so that it ends with )

Ag _ — .:»»AR - B, —+B, F1 .-

q—1
representing a ze[y,.. -Ym] with o'z =b. Hence in any case we have a
z€[Yo...ym] = U; with o'z =x for some i. Hence xed'U; or 1< T'V,
which shows that xe L.

Now we can show the main result.

THEOREM 5. We have L= () L;UPUY.

0<i<n

Pro of It follows from Proposition 7 and Lemmas 21, 22 and 26 that
UL UPUY cL. For xe[0,1), we shall show that either x¢L or
xeJLUuPUY.

Suppose first that there is an i with x¢K;. If xeC, then x¢L by
Proposition 5. If xe¢ *W,\C, j<n, then x¢L by Proposition 6. If
xe@~(2),j <n, then xeL; or xe P or x¢ L by Proposition 7 and Lemmas
21, 22 and 25. :

Now suppose that xe (| K;. In cases (a), (c), (¢) and (f) it follows from

i=1
Proposition 7 and Lemmas 21, 22 and 25 that xeL,, xe Pu Y or x¢L since
ﬂ F;. In cases (b) and (d) an xeC is between an Ie Jand an J€ J, as

-1 {a} and ¢~ {b} are intervals (Lemma 20), so that Lemma 22 implies
xéL or xeP. If

0
xep (U

o {a})\C

then x¢L by Proposition 6 and Lemma 15. If xep™*(R,), then xeL,,
xePuY or x¢L by Proposition 7 and Lemmas 21, 22 and 25.

Remark. For i <n, one easily shows that ¢~ *(Q2)nC =@ (cf. (i) of
Lemma 20). Hence ¢ is continuous on ¢~ *(Q) by Lemma 19. If
¢ 1(®) = C, then L, = ¢ () is topologically isomorphic via ¢ to
which is a finite type subshift. Furthermore, the L’s are periodic orbits,
Cantor sets, or finite unions of intervals.
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This follows from results of [6] (cf. the remark at the end of § 4) and
because ¢ is order-preserving.

It follows from the definitions of L;, P and Y, that L can be determined
if one knows the £;, which are determined by the Markov diagram, and if
one knows C or . In [1] J is determined for certain transformations. One
can find examples for all possible cases described in the paper. For example,
T defined by .

bx+3#  for  xe[0, &5,

¥x—ip for xe[fh, 11
, Tk = 2x+4 for xe[}, 9,

x—% for xe[$, 1)

belongs to case (a), but ¥ = {4, 7}.
By the methods of [3] one can transmit x — ax(1—x), where 2 < a <4,

into a piecewise monotonic transformation. If one blows up each of the
points in U T/ {T'(0), i > 0} to an interval, one gets again a nonempty Y

which has mﬁmtely many elements for certain values of a.
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On the Wiener-Eberlein theorem
by
W. F. EBERLEIN (Rochester)

B

Abstract, A counterexeimple is presented to the main theorem of a papér by J.-M. Belley
and P. Morales that appeared in Studia Mathematica 72 (1982), pp. 27-36.

Given a locally compact Abelian group G, let 4 be a bounded complex-
valued countably additive measure defined on the Borel sets of the character
group G*. Then the Fourier transform j,

A(x) =GI (x,—y) dp(y) - (x€G)

4 -
is a weakly almost periodic (w.a.p.) function on G [3]. The following result is
due to Norbert Wiener ([6], Vol. 2, pp. 259-261, and Vol. 1, p. 108; [5]) in
the special cases G = R and G = Z and to the author in the general case [4].

Tueorem. M[|@%] = Y [u{y}2.
yeG*®

Here the mean value M(f) of a w.a.p. function f may be defined as
the (necessarily unique) constant that is the uniform limit of convex
combinations of translates of /. When G = R, the additive group of .the’
reals, M has the representation

L
M(f)=lim QL)™' | flx)dx.
L-w -L
In a recent paper in this journal, Belley and Morales [1] purport to
generalize this theorem to the case of finitely additive p. Here is a counter-
example to the extended theorem when G* is noncompact (= G non-discrete)
— say G = R = G*: Pick any point y, in fG*— G*, where $G* is the Cech—
Stone compactification of G*, and let v be a unit measure concentrated at y,.
If f is any bounded continuous function on G*, denote its extension to fG*
by F. Then v induces a finitely additive bounded regular measure u on the
Borel subsets of G* such that | fdu= [ Fdv([2], p. 262). Clearly, u{y} =0
B G* G*

B
for any y in G*. But when f(y) = (x, —y), |f| =1 on G* and |F| = 1 on fG*,
whence |A(x)) = |F(yo)l = 1. Hence M@ =M (1) =1#0=} |u{y}P

yeG*
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