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Multivariate interpolation II of
Lagrange and Hermite type

. by
HAKOP A, HAKOPIAN (Yerevan)

Abstract. We present the investigation of second pointwise nature multivariate interpol-
ation (MI-II) introduced in [5]. The Lagrange case of this interpolation in algebraic form was
found independently by the authors of [2].

Introduction. In this paper we give the remainder formula, the Lagrange
and Newton forms and a recurrence relation for the interpolant polynomial.
Further we bring an example of application: “Star” numerical integration
and a formula for the main determinant (Vandermonde) of this interpolation.

For the similar aspects of (“dual”) Multivariate Interpolation I (MI-I) of
Lagrange and Hermite type we refer to [5]-[8], see also [1] and [3], [4],
[10].

Let tg, ..., t,eR and let m(t)), n=0, ..., r, be the multiplicity of t,, that
is m(t,) is the cardinality of the set {m| t,=t,, m=0,...,r}. Then the
familiar univariate Lagrange-Hermite interpolant to f at knots tq, ..., t, is
the unique polynomial P, of degree not exceeding r, with

PP =f"(t), n=0,..,r, m=0,..,m{t)-1.

For distinct knots, i.e, when m(t,)=1, n=0, ..., r, this polynomial
can be written in the Lagrange from:

(1 P =3 fit) IT ==
n=0 m=0 'n m
m#n

In the general case P, can be written in the Newton form (which uses
divided differences),

(2) Pi(t) = ZO (t=to) .. (t=tum ) [tos -os talS-

Hence the remainder of interpolation has the following representation:
3 SO =Pp(t) = (t=to)...(t =)L, to, ..., 1,1 .

We will use this formula for the knots x,, ..., X, which lic on some line / in

.
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R*, Let ueR* be a unit direction-vector of I, Then formula (3) is modified as
follows:

(4) j(x)_'Pf(x) = Q(xa Xoj...Q(X, xr)[xa X0s crey r]/!

where xe&l, g(x, x,) is the signed distance (with respect to u) of x and x,. A
convenient way of introducing divided difference here is its well-known
Hermite-Genocchi representation,

[x, X0, ooy %) f= [ (DS (x4 voxg ...+ Ve Xy dvg . cdv,,
. ! Qr+1

where
¥
O = {0, ) X VS L vy 20,m=0,...,r}
n= Q)

and

D, denoting the directional derivative.

Finally, let us mention the following recurrence relation for interpolant
polynomials, ‘

t—t to—t
©®) P./'(t) = ‘_“‘“""’Q‘ P? (1) e (1),
L—1to I,—1to

where 1, # ¢, and P} interpolates f at {1, ..., LN, n=0, £

2. Multivariate interpolation Il and the Lagrange form. We start with
some notation. N
. .I,';, i= collection of subsets of {0, ..., n} of cardinality m. For geI? and
P=(ys s b€l (4, D i=(g, iy, ...y ig)eIT, provided ¢¢i. For x, yeR¥,
x = (x,, %, ¥ =01, ..., y) and the multiindex « = (00,0000, O) WE USE
the following standard notation:

k

5P =3 Xy p

ne=

M= o x), X =,

k
‘Ial=,2 Xp, 06!=061!...ock!,

n=

D = (0/0x,)" .. (90, ).
We denote by T = 1,,(RY) the set of k-variate polynomials of total
degree not exceeding m.

I...et Lo, ...; L, be (k—1)-dimensional hyperplanes in RF and let the
equation

ALX o+ X+ Ay =0

icm®
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determine L,, n=0, ..., r. We briefly write for i = (i, ..., im el

L= N Ly,

Let us call Ly, ..., L, admissible if x,:= {L'} Viel, is a point in R*. The
admissibility of Ly, ..., L, is clearly equivalent to

@) dy{i} 1= det |Allhamy # 0 Vi =iy, ..

In what follows it is assumed that the hyperplanes L, ..., L, are
admissible. Let the knot x;, iel; belong to m(x) hyperplanes from
Lo, ..., L,, ie, m(x) is the multiplicity of x, and m(x;) > k. We say that-
Ly, ..., L, are in general position if -

EAYCT

m(x)=k Viel.

Denote also by ¢(x, L,), n=0, ..., r, the signed distance of x from L,
TXy A e A AL
SO+ a2
Now we are in a position to present the basic

THEOREM 1. Let Ly, ..., L, be admissible (k— 1)-dimensional hyperplanes
and {x|| ieJ} (J = I}) be the set of all distinct points from {x| il,}; then we
have: :

(i) For an arbitrary set of real numbers

I={f] ieJ, |ul <m(x)—k}

o(x, Ly) =

there is a unique polynomial Pjem,_,,,, such that

DFP(x) =1y VielJ, |o) <m(x)—k.

@) If 'Ly, ..., L, are in general position, then we have the analog of
Lagrange form (1) for P;, namely

r 2 Ln
(7) Py (x) = ZI:’ Pr(x) 1;[0 g%:“f:.))
n¢l

(ek

Prool. (ii) can be readily checked from formula (7). To prove (i), we
consider the polynomials ’
(x=x)" I o(x, L,

ﬁ! n=0 Q(xj’ Ln)’
Xj#Ly

where jel}, |l < m(x;)~k. They have the following properties:

Pjy(x) =

Prpemte gy
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and
1 if i =j, o = ﬂp ’
D*Piy(x).=40 if i=j |ol<|fl, xp,

0 if  iely i), o < m(x)—k.

This clearly gives us a way of construction of P;. On the other hand,
dim m;_ 4y = 4 I, and that completes the proof. m

This theorem was presented by the author in [51, [7]. Part (ii) was
found independently.by W. Dahmen and C. A. Micchelli in [2].

We denote by P, the above unique polynomial for which

D Pr(x) =Df (%) VieJ, ol < mlx)~k,
This we shall briefly write
Pf =//(LO) sy Lr)'

Let us call Ly, ..., L, interpolatory hyperplanes.

If L is an n-dimensional hyperplane in R¥, then Sy, denotes the restric-
tion of f to-L and is considered as n-variate function.

Remark 1. Let iel, n <Kk, )
' Pr=flL,, m=0,..,r).
Then we have on the (k— n)-dimensional hyperplane {L'},
¢ PT/'|L|' =f'Ll/({Lm'i}1 me(O! Yivy r)\i)'

Of course, interpolatory hyperplanes here are (k~n~1)-dimensional and are
contained in {L'},

3. The Newton form, remainder formula and a recurrence relation. Let us

first choose the directional vector of the line [:={L'}, i
= (i1, ey o) €I |, as follows
€y ... [
i {
Mo Al
U = )
o .
;“k 1 zik 1
where ey, ..., ¢, R, (em=0n, nym=1,..., k. Denote for ielf.,,
M=, ..., ADeRY,

L N Y
w, A dy {(n, iy}

Now we present the Newton form of P, (cf. (2).

¢(n, i):

icm
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THEOREM 2. Let the (k—1)-dimensional hyp'erplanes Lg, ..
general position and let

- ‘ Pf =f/(Lo, raay Lr)

- L, be in

Then
r n=1 .
(8) Pf(x): Z Z H c(m; I)Q(x’ Lm)'[x(q,i)a QE(O,..., n)\l]f'
n=k-1 ;en~1 m=0
: k=1 ‘mei
Proof. Let P, be the interpolating polynomial satisfying

varl =f/(L07 (ERE) Ln):

We use the Lagrange form, and taking into account the above relation we
obtain

9)  Pra(x)=Pru-1(x)

n=k—=1,..,5, Ps,=0.

o o(x, L)
= .Z" [Pf.n(xi)“Pj.n— 1 ()] m];[O mb L)
xslk R
n—1
2(x; L)
= —Prp-1 (X v =k—1,...,r
[EI"Z"} [f(x“"“) o 1( o )) mI=;[.() Q()_c(n.i)f Lm)
k= méi

Applying Remark 1 to the line |, = L), ieI}Z{, we obtain (interpolatory
hyperplanes in this case are zero-dimensional, i.e., they are knots) ‘

Rf."‘l‘li =f|l,~/(x(m,1)1 mE(Os ey n—l)\l)'

Hence according to (4)

n—1
(10) f(x(n.i))_Pf,n—l (x(n,i)) = Z Q(x(n,i)a x(m,i)) [x(!,i)z 1e(0, ..., m\ilf.
K
Finally we notice ithat
ey Xmp) _ 1 A

(11)

00 L) 08, 37 (uy, 4y = <0
Now it remains to sum up (9) using (10) and (11). w

Let A" = (4], ..., A) be a nonzero vector in R* and L,=1L,, the
(k- 1)-dimensional hyperplane with normal A" and passing through x e R* for
n=r+1, ..., r+k. For the convenient presenting of the remainder formula
we denote for | = (iy, ..., i)el,, n<k-1,

Pi=—ntk—1, ..., r+1,i, ..., i)elLtkL

6 ~ Studin Mathematica Tom LXXX
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We mean here that @el}y and @° = (r+k—1,...,r+1) and for k =1, §°
= (. The following theorem gives the remainder formula (cf. (3)).

TueoreM 3. Let Lo, ..., Ly Leyrys oon Ligyr be in general position,

Then
(12)  f(x)=Pp(x)

k~1 r .
=Y 3 IT clm %elx, La) [x, 0, 4 =r+k=n, g0, ..., M\il/.

n=0 fEI; mmn#()
Proof. Let

ﬁf = ff(Los oevs Ly Ligpars v Ly i)

where x has been fixed for a moment. We have F,(x) = f(x) since x is the
common point of Ly i1, ..., Jugpips 1€
rhk
(13) X = Xpatrri) = (1 Lygme
m=pt]
Using the Newton forms of P, and P, we readily obtain
r+k

- n-1
Pf(y) = Pf()’)'i‘ Z Z n c(m, l)Q(yi Lm) [-x(q,l)1 (]6(0, reey n)\’]f

n=p 1 ial,’":} mm?l()

Now we put y=x in the above relation. Since ¢(x, Lyw) =0, m=r4
+1,...,r+k, we have

F0) =Pr(x)=Pr(x)+
r+k

n—-1
2 X I elm et Ly lxg 0, =1 qe(0, .., \1f. »

n=r+1 ie’l';-i-r—n mm;i
Let us note that the participation of the hyperplane Ly, +x in Theorem 3 is
symbolic, in fact it is only used to indicate (13).

Remark.2. The above method of deriving the remainder formula from
the Newton form works in every Lagrange-Hermite interpolation setting, In
particular, it can be used for MI-L. .

C().ROLLARY L. Theorem 2 and Theorem 3 remain valid if we replace the
expression “be in general position™ by “be admissible” in their hypotheses.

_Pr.oof. We denote by “P,” the formal Newton form (8) for the
admissible hyperplanes. Of course for “P,” and admissible hyperplanes the

remainder formula holds, that is, f—*P,” equals to the right-hand side of
(12). This gives

DLf(x)=“P(x)1=0 Viel, |o) < m(x)~k

Multivariate interpolation 11 83
since for jelf, n<k—~1,

D*[I] e(x L] =0 Vied, ol < m(x)—k.
m=0
mi]

Thus
“Pr =P, u

Now we present a useful recurrence relation which is the analogue of (5).
TueoREM 4. Let Ly, ..., L, be admissible and
P./' u//(LOv ey Lr)'
Let also Ly, ..., Ly i =gy ooy i€ Tk q, be in geweral position. Then
k (xa Liﬂ)

= Y e PR(x),
(14) Py(x) ”ZJOQ(XW L) " (x)

where
P}" =/7(Lmy me(oﬁ rery r)\in)’
and of course

Xty == Xliguernlye o o)

Proof. Applying a continuily argument (with the help of Corollary 1)
we need to prove (14) for Lo, ..., L, being in general position. In this case it
is not hard to obtain it from the relation

k
obe L) _y .
n=o €%, La,)
Remark 3. A similar recurrence relation seems not accessible for MI-1.

4. An application: “Star” numerical integration. In this section we give
an interesting application of MIJI to the numerical integration on the disk

D= {(ty, )] ti+13 <1}
in the plane. Let the poinis X, ..., X5, be equidistantly spaced on the
circumference

S = {(ty, ta)l 3415 =1}

For convenience we put Xaguq4n:=Xp 1 =0, ..., q- 1-, Letl,n=0,...,2q,
be the line passing through x, and x,., (with the directional vector X4, — Xy).
These lines form a g-star (see Fig. 1 fqr q=23).
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)
X3 X5
S(=S))
X2 Xg
Sy
X X0
Fig, 1

b
Let us observe that x,,:=/,nNl, Vn,m=0,..., 29, n#m, is a point
belonging to D. Moreover, they are equidistantly spaced on the circumfer-
ences S; =S, ..., §,, with common centre,

Xyt mE€Sqemets H=0,..,2q, m=1,.4.
Now let
P/ =f/(107'-~a qu)~
Then by (7)
Pj‘(x) Zl Z ] nn+m nn+m(x)a
m=1 n=0
where
29
el k)
Pn.n m(x) = B
¥ &]:[0 Q(xn,'ﬂ'mn Is)
s#Emntm

By the rotational symmetry,
same integral over D, that is,

.[ Pym(X) dx = .r Po () dx = c,,
D D

Prwim(®), n=0,..., 2q, (m fixed) have the

ne=0,.0, 2, me=1,..,4q.

Hence we obtain the following simple formula for numerical integration:
2q

If x) dx = .fpf(x)dx = Z Em Z S (X m)s

m= ]

Ev;hich1 is exact for all two-variate polynomials of total degree not exceeding
q—1).

(13)

icm®
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Let ry, ..., 1, be the radii of the concentric circumferences §,, ..., S,.
Then we easily obtain
s = sin [1/(4g+2sin [(20+1)1/(4g +2)],

ry=1.

i=1,...,9-1,

If we put in (15) the polynomial

4
Sx)y =ty ) =[] (t}+13-rd)
{m]

t#n

of total degree (2¢~2), the fbllowing interesting expression for ¢, is obtained:

€n = 211+l J’,I;Il (i<

O [#n
For more detailed consideration and a generalization of this numerical
integration see [9].

5. A formula for the main determinant (Vandermonde) of MI-IL First
we shall present a quick proof of the following lemma which is interesting
in itself (for origins cf. [11], [12].

Lemma 1. Let L be a (k—1)-dimensional hyperplane, Pem,(R¥), and

(16) (D"P(x)=0 VxeL m=0,...,s—1,
where A has the normal direction of L. Then
an P(x) =

with

P(x, Ly Py(x),

P,(x)em,.,(RY.

Proof. Since (17) is independent of the coordinate system, we assume
without loss of generality that L is the hyperplane x, = 0. Next, we can
represent P{x;, ..., ;) in the form

51
P(xpy oo X 5 3 XT Py (Xg, ooy X X] Pylxyy ooy X,
mw ()
where
Poaem,. u(RY, m=0,..5s.
Now (16) implies
P(Xg 0o X) =0, m=0,...,5~1. =
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To introduce the analogue of Vandermonde determinant of MI-IT we
first order the sets It and M = [o =(ay,.... %) Jal Sr—k+1}, ie, we

assume that
i {1, (’:1>}~+1;,

a: %1, . ("'Itl)}w»M
are one-to-one.

In what follows we assume that the (k—1)-dimensional hyperplanes
Ly, ..., L, are in general position and that they are given by the following
equations

and

(18) ) Mxg+.oo4+Ax =1, n=0..r
respectively. Let also ‘
: 1.1
AP Ak
dy1 11} o
.Ak o Ak
for i =(ig, ..., i)€l;4q, and d, {i}, for ielf, be given as in (6). Then we
define
(r Fl)
VLo, ..., L) :=det (Da(m)( l(")) nm=17
where

’ 0y (x) 1= X%,
THEOREM 5. We have
[ TT duili)]t
‘“Z—H
V(Lo, ey L'.) R

[[I d) l]r kll

lel’y
k
where ¢ is independent of L, ..., L,. .
Proof. Using Cramer’s rule for determining x;:sL, Moy by, i

=(iy, ..., ) eI}, as the unique solution of the linear system of cquauom of
L. ... L it is not hard to show that

L)[n d;_' ):]r k1

iel’

ik

Pyi=V(L,, ..

icm®
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is a polynomial of A" = (4%, ..., A) for each n = , r. Computing the
total degree of Py, then cons1dermg it as a polynomlal of Amsm=0, .., r,

=1,..., k we obtain the sum
r—k+1
S lr—k+1-nk+n@e-1("*7) =2 (1)
n=0

Now if for i =(iy, ..., i) el and ne(0, ..., N\i,
k
)'n Z vm ml Z vm'— }:
m- m=1

then x,eL,. Therefore

X, m=1,..., k.

el Dyt Leenifem) = Xis ‘
It means that in. this case V(L,, ..., L) will have (k+1) columns equal.

Hence
D" Py(x)=0, VxeL, m=0,.., k-1

Since Lis a (k—1)-dimensional hyperplane, and

0", L) = codyy {(n, i)},
repeated application of Lemma 1 gives
(19) Py =c H [‘11.1 {i}‘]ks

ielh 4y

where ¢ is"a polynomial in A%, n=0,...,r, m=1,..., k,

The total degree of the product on the rlght hand side of (19), con-
sidered as a polynomial of A%, n=0,...,r, m=1, .., k, obviously equals

k? (’ tl) f.e, it is the same as for P,. Hence ¢ is a constant. Of course, Theorem 1
(ii) implies ¢ # 0. m
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thesis [5] supervised by Professor Z. Ciesielski. The author is also grateful
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