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On ordinary differentiability of Bessel potentials

by Torb S;6piN (Umed, Sweden)

Abstract. We study different types of pointwise differentiability of functions and potentials
in R". We first prove general theorems on the connection between the ordinary, the
approximative and [?-differentiability. We prove that the ordinary differentiability of order ! is
equivalent to the approximative one or I’-differentiability together with certain conditions
defined in terms ol Taylor polynomials called A4, and B,.

Then we apply these results to Bessel potentials f= G, *g where G, is the Bessel kernel and
g is in some I’class. The conditions imposed on g are Lhe existence of the Calder6n-Zygmund
I?-derivative and an integral condition involving maximal functions. We consider diflerentiability
of arbitrary order [/ > 0. We also show that condition B, is of Lipschitz type and give some
examples.

0. Introduction.

Several authors have studied smoothness properties of functions using
derivatives, differences and maximal functions. It is the purpose of this paper
to study the connection between approximative diflerentiability and ordinary
differentiability for general functions with applications to Bessel potentials of
I’-functions. Such potentials are known to have I¢-differentials of certain
orders quasi-everywhere in R". We find necessary conditions under which
these potentials are differentiable in the ordinary way at certain points. (See
Section 1 for definitions.)

By differentiability of different types we always mean that there exists a
Taylor polynomial such that the remainder tends to zero in the appropriate
way. It is well known that ordinary differentiability of a function f implies
its approximative differentiability and I? differentiability of the same order.
To get a reverse implication we must make some additional assumptions on
f. For this purpose we define two different properties of a function f, called
A, and B,.

The property 4,, 0 << 1, says roughly that for all 4 > 0 the set

1z I @~f (I < A-ix—al'} " B(x, t-|x—a)

has the outer measure > c(l,f)-|B(x, t-|x—al)|, for all x in a neigh-
bourhood of ac R" and certain t — 0. (See Section 2 for the exact definitions.)
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We prove in Section 2 that if f has an approximative differential at
aeR" of order I, 0 << 1, with the constant term f(a) and has property A,
at a, then f is ordinary differentiable at a of order [. This generalizes a
lemma of H. Federer [11], Lemma 3.1.5.

The condition B,, which is stronger than A, is of supremum type, but
has equivalent forms adopted to [f-estimates (Sections 2.1 and 2.3). Since
both the conditions 4, and B,, 0 << 1, are defined by a first difference,
they cannot be used in that form for differentiability of order /> 1.

In Section 3 we show that there is a natural extension of the properties
A, and B, to the case | > 1 and prove the corresponding differentiability
theorems. In Section 4 we begin our study of differentiability properties of
Bessel potentials. Several authors have studied different kinds of smoothness
properties of functions in Bessel potential spaces, Sobolev spaces and Besov
spaces [4}-[10], [13]-[16].

The smoothness is expressed in terms of maximal functions or the
Calderén-Zygmund [¢-derivatives [9].

It is well known that Bessel potentials of I?’-functions have I-
differentials of certain orders (T. Bagby, W. P. Ziemer [5]) and that
convolution with the Bessel kernel G, increases this type of smoothness by
the amount of k, A. P. Calderon, A. Zygmund [9].

- Let gelI? and define

(L) f) =[G(x—y)-g(dy,

whenever the integral converges absolutely. The standard imbedding
theorems for Bessel potential spaces imply that f belongs to C' (f is ¢ times
continuously differentiable) if 1 < p < o0, k = n/p+t, and t > 0 ([19], p. 206).
See also [3], p. 221.

N. Aronszajn, F. Mulla and P. Szeptyckn [4] proved that f has a certain
type of pointwise partial derivatives of order /, .except for a set of B,_, -
capacity zero if 1 <p < oo, k > 1 and ! is a positive integer. Y. Mizuta [14]
studies fine differentiability properties of Riesz potentials of the type

Uz (x) = Uz (@) + L(x—a)+o(lx—al),

as x »a and x¢ E, where U%(x) is a Riesz potential, E is an exceptional set
and LeR". All those results are of global type.

We are going to find necessary conditions on g in a nelghbourhood of a
point ae R" such that f(x) defined by (1.1) is differentiable of a certain order
I >0 at x = a. We express the conditions on g in terms of maximal functions
and I’-differentials. For this purpose we define the maximal functions N} g(x)
(A. P. Calderon and R. Scott [8]), see Section 4. We impose the following
two types of conditions on g:

(a) g has an I’-differential of order 8 at g,
(b) N;g(x) has certain integrability properties near x = a.



Ordinary differentiability of Bessel potentials 327

Condition (a) is of the Calderon-Zygmund type [9], while (b) seems to
be new. The absolute convergence of (1.1) in a neighbourhood of x = a is not
explicitly assumed but is a consequence of the properties of g.

A similar problem is studied for I =1 in B.-M. Stocke [18], where it is
proved that under suitable assumptions on g, f is differentiable of order one,
B,_,,qe. in R" k>1.

This paper is organized in the following way. The notation and the basic
definitions are contained in Section 1. The properties A, and B, are defined in
Sections 2 and 3. Our results on the differentiability of order ! of general
functions are found in Sections 2 (0 </< 1) and 3 (/ > 1). In Section 4 we
apply these results to Bessel potentials in the case 0 </< 1. Section 5
contains some lemmas concerning property B, and the theorems from
Section 4 are proved in Section 6.

We study higher order differentiability of Bessel potentials in Section 7
and we give some examples in Section 8.

The author wants to thank Professor H. Wallin for suggesting the topic
of this paper and for his kind interest.

1. Notation and definitions.

We consider the n-dimensional Euclidean space R", where points are
denoted by x = (x,, x,, ..., x,). All sets are subsets of R" and [unctions f are
defined on subsets of R". Open, closed and compact sets are denoted by V, F
and K respectively. The measure and integration are considered with respect
to the Lebesgue measure and are denoted by |E| and [ f(x)dx respectively.

E

We also use the Lebesgue outer measure |A|* =inf}|E|; A< E and E
measurable].

For 1 < p< o and E a measurable set, I”(E) is the usual Lebesgue
space of measurable functions defined a.e. on E with norm ||f]|, . We drop
E from the notation when E = R". L{, is the space of measurable functions f
which belong to I#(K) for all compact sets K. The outer density of a set 4
at a point x is defined by

lim|A N B(x, r)|*/|B(x, r),
r—0
if this limit exists.

Unspecified constants depending on some quantities a, f,... are
denoted by c(a, 8, ...). Constants depending only on n are denoted by c.
Both c(a, B, ...) and ¢ can denote different constants at different occurrences.

A multiindex a =(a,, a,, ..., @,), where a; are non-negative integers,
has the length |af = a; + a5 + ... +a,. Differentiation is always denoted by D*
where « is a multiindex. '

The Bessel kernel G,(x) of order kK >0 in R" is the I!-function whose
Fourier transform equals (1 +&[*)~*2. Basic properties of G, (x) are found in
[4] and [17]. For the reader’s convenience we state some of them here. The
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function G,(x) is a positive, non-increasing and infinitely differentiable
function of radius r =|x| for r > 0. It is real analytic for x # 0 and
exponentially decreasing when |x} — co. Further we have for |x| <1

|D*G, (x)| < c(n, k, a)-|x]*lel=n, 0<k<n+laf,
|D* Gy (x)| < c(n, k, a) (1 +1n 1/]x]), k = n+|af,
[D* G (x)| < c(n, k, a), k>n+|a.

When |x| > 1 we have |D*G,(x)| < c(n, k, a)-|x|®~ " D/2. o Ix
A polynomial P of degree m =0, 1, ... is always of the form
P(x)= )Y a,"x%, xeR"

la| <m

Then, for instance, P(x—a) = ) a,'(x—a)*. Polynomials of negative

|x| <m

degree are by definition identically zero. We denote polynomials by P, Q
and R.

A function f defined in some neighbourhood of a point aeR" is
(ordinarily) differentiable at a of order I, I >0, if there is a polynomial
P(x—a) of degree <[ with the constant term f(a) such that

f(x)—P(x—a) = oflx—al),

as x — a. Differentiability always means ordinary differentiability. We also
consider two types of generalized differentiation, see [9], p. 172, and [11],
p- 212

DerFiNiTION 1.1. Let 1 < p< o0, [ real, ae R" and let f be a function
defined in a neighbourhood of a in R".

(a) f is [P-differentiable at a of order | if f is measurable and there is a
polynomial P(x—a) of degree <! such that

(IB(a, ™' | If(x)—P(x—a)|”dx)"? = o(r')
B(a,r)
as r - 0.

(b) f is approximately differentiable at a of order | if there is a
polynomial P(x—a) of degree < [ such that a is a point of outer density zero
for the set

E(f,a,¢) = x| |f (x)—P(x—a) >¢e|x-al'},

for every ¢ > 0. When [ <0, we take P(x—a) =0 in both cases.

We make the usual modifications in case (a) when p= oo. The
polynomial P(x—a), which is unique in all the cases, is called the differential
of f at a of order | of the respective type.

It is obvious that differentiability implies LP-differentiability if f is
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measurable, and it is easily proved that L?-differentiability implies
approximative differentiability of the same order. See T. Bagby, W. P. Ziemer
[5], Lemma 4.4, for the case | = 1. The general case is proved in the same
way.

Let L? be the space of Bessel potentials f = G, g of I?-functions g, with
norm ||fll,,, = llgll,, 1 < p < o, k> 0. I§ is a Banach space of equivalence
classes of functions ([3], p. 219, and [17], p. 130). Closely associated with I
are the Bessel capacities B, , defined for all subsets of R". A relation which
holds except for a set E with B, ,(E) =0 is said to hold B, ,-quasi-
everywhere (B, ,-q.e.). See N. G. Meyers [12] for details about capacities of

this type.
2. Differentiability theorems for general functions.

2.1. In this section we study how approximative differentiability and L°-
differentiability are related to ordinary differentiability at a point in R". Our
main result is a generalization of a lemma due to H. Federer [11], Lemma
315

We prove that if a function f has an approximative differential P(x—a)
at a and has a suitable additional property, then P(x—a) is also an ordinary
differential of f at a.

We start with the following definitions.

DeriniTION 2.1. Let t >0, A >0, I >0, aecR" and let f be defined in a
neighbourhood of a in R". Then

o |B(x, trx—al)\F(]*
D(f,a; 4, )= llin_.lanf IB(x, I‘Ix—a|)|

where ‘
F,(x)= 1z} f@=f(x) = i ]x—a|'}.

DerFiniTion 2.2. Let 0 <! < 1. A function f defined in 0 <|x—a| <3,
for some 6 > 0, has property A4, at a il
limsup®,(f, a; 4, 1) >0
t—0
for every A > 0.
2.2. The following theorem is our basic characterization of
differentiability of order I, 0 <! < 1, for general functions.

THEOREM 2.1. Let 0 << 1 and let f be defined in a neighbourhood of a
in R". Then f is ordinary differentiable at a of order | if and only if f satisfies
the following conditions:

(i) fis approximately differentiable at a of order | and the constant term in
the approximative differential equals f(a),

(ii) f has property A, ar a.
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Remark. Theorem 2.1 contains a result of H. Federer [11], Lemma
3.1.5, as a special case when [ = 1. In that case &,(f, a;4,t) =1, for 0 <t
< A/M and all 4 >0, where M is a fixed positive number. The idea of the
proof of Theorem 2.1 is the same as in [11].

We are going to use some of its technical details later (Lemmas 3.1 and
3.2) and therefore we give a complete proof of Theorem 2.1.
Remark. Let feLl.; then ae. xeR" is a Lebesgue point for f] ie,
Lim(B(x,nI™! [ If()—f(x)Ndy =0,

r—0 B(x,r)

holds for a.e. xeR" If f is approximately differentiable at x of order /> 0,
then the constant term in the approximative differential equals f(x) if x is a
Lebesgue point of f.

Proof of Theorem 2.1. Assume that f is differentiable at a of order /.
Then for every A > 0,

¢I(fs a, j\a t) = 1,

for t sufficiently small. Thus (i) holds. It is clear that (i) holds, too.

Now assume that both (i) and (ii) hold and let ¢ be an arbitrary positive
number. It follows from (ii) that there is ¢, 0 <t < min(1, ¢) and k > 0 such
that

d,(f, a; e, t) >k,

where k is independent of ¢. Further, we can find 6, > 0 such that

|B(x, t:]x—a)\ F(x)[*

0<|x—al <9, implies [B(x, ¢ x—al)

> k.

Let P(x—a) =f(a)+L-(x—a), Le R", be the approximative differential of f
at a. Then, if

E = {z| |f(z)-fl@—L-(z—a) =2 ¢-|z—al'},

there is §, > 0 such that 0 <r < §, implies

Ba,)nE* k[t Y
&b <z (m).

. . d
by (i). Now let 6 = min(d, 6,, 1), |x—q| <1_+l' Then we have

22 Ifx)—=f(a)-L-(x—a)
S )=f@N+If@)=f(@=L(z—a) +|L|-|z—x].
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We complete the proof by showing that z can be chosen to satisfy:
(2.3) lz—x| <t-lx—dal, [f@@)-f(X¥< e|x—ad',

and -¢E,.
If we for a moment assume that this has been done then (2.2) gives

If(x)—f(@)—L-(x—a)| <e'|x—al'+e|z—al'+|L|1-|x—a
< +2'+|L)-e-|x—al,

provided |x—a] < d/(1+1).

Since ¢ was arbitrary it follows that f is differentiable at a of order [
with differential P(x—a).

It remains to prove that there is a z such that (2.3) holds. We define as
above

F.(x)="z| |f@~f(x) = e |x—al')

and we shall prove that

(24) G(x) = (B(x, t|x—al)\E,(x))\E, # @,
d
for 0 <|x—aq| <1—-+-t' In fact we even prove that

(2.5) |G (x)]|* > %k-|B(x, t-lx—al)[.
From the inclusion of sets

B(I, I‘IX—GI)\FB(X) C(B(x’ r-Ix—aI)r\Ea)uG(x)

we get
K < |B(x, t*|x—a))\F,(x)* < |B(x, t-|x—al) nE]|* |G (x)*
|B(x, t'Ix—al)] ~  |B(x,t-|x—a)] " |B(x,t:|x—al)
1+t)" |B(a, (1+1)-|x—al) " E,* |G (x)|*

<(—)- +

t |B(a, (1+1)|x—ad)| |B(x, t-]x—a])
k |G (x)|*
<._7.+|B(x, t|x—al)|

by (2.1). This proves (2.5) and (24). The proof of Theorem 2.1 is now
complete.

It is immediate that approximative differentiability can be replaced by
I?-differentiability of the same order if f is measurable.

23. In view of our applications in Section 4 we shall replace the
condition A, by a condition which is better adopted to I[’-differentiability.
We make the following definitions.
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DerFiNiTioN 23. Let 1 < p< o0, >0, t >0 and let f be a measurable
function defined in a neighbourhood of ae R". Then we define

(26)  ¥,,(f,a:1)=limsup|x—a| " (|B(x, t-|x—al)| " x

x § If@=f(x)IPdz)""

B(x,1'|x—al)

with the usual modification when p = x.

A natural replacement for the property 4, would be the condition that

liminf¥, ,(f, a;t) = 0.
t—0

However, it turns out that all those conditions, for 1 < p < o0, are equivalent
to the apparently stronger property B, of the supremum type below. This is
proved in Lemma 2.1.

DerFmviTion 2.4. Let />0 and let f be defined in 0 <|x—a| <& for
some ¢ > 0. Then f has property B, at a if

(2.7) im¥,(f, a;1)=0,

t—0
where

Y,(f, a; 1) = limsupjx—al~"-( sup  |f(z2)—f (X))

x—a |z—x|<r1-]x—a

Remark. The possibly infinite number ¥,(f, a; t) is well defined for 0
<t <1, since then z =a i1s not allowed. Note that ¥,(f, a;t) is a non-
decreasing function of 1, whenever defined.

LEMMA 2.1. Let | > 0,1 < p< o and let f be defined and measurable in a
neighbourhood of a in R". Then f has property B, at a if and only if

(2.8) liminf ¥, ,(f, a; t) = 0.

1—0

Proof of Lemma 2.1. It suffices to prove that (2.8) implies that f has
property B, at a. Assume that (2.8) holds for some p, 1 < p < x. By Holder’s
inequality it is no loss of generality to assume p=1. Let « > Q be arbitrary,
then there is 4 > 0 and 0 < s < min(e, 1) such that 0 < |x—d| < J implies

[B(x,s"|x—a))| 'x | |f@—-f(x)dz<e|x—a]'

B(x,s|x—al)

Now let 0 <|x—a| <d/(1+s), O <|z—a| </l +5), |z—x| =t"|x—a|, 0 <t
< sf(s+1) and

B, = B(x,s"|x—a|), B, =B(z,s'|-—a).

Consider the inequality

(29) S ) =f @ <) —f @l +1f @) =1 ().
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We integrate (2.9) with respect to u over B, n B, and notice that (B, n B,|
2 ¢-max(|B,l|, |B,]). Then

f=f @I <c (B~ [1f ) —=f () du+|By|™ " | If (w)—f (2)] du)

By By

<ce(x—a'+lz—a')y<ce|x—al

Hence we have proved that ¥,(f, a;s) has lower limit zero as s — 0.
Since Y,(f, a:s) is non-decreasing we can conclude that (2.7) holds.
Hence f has property B, at a and Lemma 2.1 is proved.

Remark. The equivalent form (2.8) of property B, will be used
significantly in the study of differentiability properties of Bessel potentials in
Sections 4, 6 and 7.

24. The following theorem combines Theorem 2.1 with property B, and
its equivalent form (2.8). It is the most general result of this section.

THEOREM 2.2. Let 0<I<1, 1<p< x, and let f be a measurable
Sfunction defined in a neighbourhood of a in R". Then f is ordinarily
differentiable at a of order | if and only if f has an approximative differential
P(x—a) of order | at a with the constant term f(a) and f satisfies one of the
Sollowing conditions:

(i) f has property B, at .a,
(i) liminf ¥, ,(f, a:t) =0 for some 1 < p < 0,
-0

(i) f has property A, at a. A

Proof of Theorem 2.2. Lemma 2.1 gives (i) <>(ii) and it is easily seen
that (i) = (iii). Hence the sufficiency part follows from Theorem 2.1.

Since ordinary differentiability implies both approximate differentiability
of the same order and (i), the theorem is proved.

Remark. Theorem 2.2 remains true if we replace approximative
differentiability by I?-differentiability of the same order where p is as in (ii) of
Theorem 2.2. If we exclude condition (ii) then Theorem 2.2 is true without
assuming f being measurable.

Suppose f satisfies a Lipschitz condition |f(x)—f () < M-|x—y}", 0
< 1<1, in an open set V, then f has property B, in V. Conversely, if /' has
property B, at a point a, it can be proved that f satisfies a certain restricted
Lipschitz condition at a, see Section 5.

3. Higher order differentiability for general functions.
3.1. In this section we find the analogues of Theorems 2.1 and 2.2 for
differentiability of order / > 1. We first define property A, for all /> 0.

DeriniTION 3.1. Let m < /< m+1, where m is a non-negative integer,
and let f(x) be defined for 0 < [x—a| < &, where 6 > 0. We say that f has
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property A, at a if there is a polynomial Q(x—a) of degree < m, without
constant term, such that if f,(x) = f (x)— Q(x—a) then for every 4 > 0 holds

limsup &,(f,., a; 4, t) > 0.
t—0

When m = 0 we take Q(x—a) = 0 and our Definitions 2.2 and 3.1 agree.

Examples show that the polynomial Q (x—a) in Definition 3.1 need not
be unique when m > 1.

However, if f has an approximative differential P(x—a) of order / > 0
at a, then the natural choice for Q(x—a) is to take an appropriate part of
P(x—a). We prove that indeed this is the case and thus that Q is then
unique.

LEMMA 3.1. Let m <l < m+1, where m is a positive integer and let f be
defined in a neighbourhood of a in R". Assume that f has property A, at a with

polynomial Q(x—a) and that f has an approximative differential P(x—a) of
order | at a. Then if

P(x—a)= ) c,(x—a)
la] <1
then we have

Q(x—a)= ) c(x—a).

1<]al<m

Proof of Lemma 3.1. We begin with the case m </ <m+1. Let
R(x) = P(x)— P(0)—Q(x), then we have the identity

R(z—a)—R(x—a) = (P(z—a)—f (2))+ (fu(2) =S (X)) +(f (x) = P(x—a))
=A+B+C.
We are going to prove that R = 0. Assume the contrary and let the

minimal degree of the terms in R be r, 1<r<m, and R(x—a)=
Y d,(x—a)f. Let R=R,+R,;, where R;(x—a)= ) d,(x—a)*. R, is

r<lajsm je] =r

identically zero when r =m. Then for |z—x| <|x—a| <1 we have
IR;(z—a)—Ry(x—a)| < N-|x—a"*",

where N depends on R only.
Let £¢ > 0. Then there are 0 < <1 and 0 <r < min(e, 1) such that
0 < |x—d| < 6 implies that the set

G(x)=1{z] |A|<e-|x—a' and |B| <& |x—al'} nB(x,t-|x—a)

satisties |G(x)|* > k|B(x, t|x—al)| for some k depending on [ only,
0 < k < 1. This follows from the proof of Theorem 2.1. Then 0 < {x—a| < ¢
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and zeG(x) implies that
IR (z—a)— Ry (x—a)l < N-|x—a|"" ' + 2|x—al' +|f (x) = P(x—a)|
<betix—a +|f (x)—- P(x—a),

if 6 is chosen small enough. Fix such a § > 0. The polynomial R, will not be
considered any further. We denote R; by R
Next we define the set

H(x)=1z| |IR(z—a)—R(x—a) <e-t|x—a|"! nB(x, t|x—al).

Let us for a moment assume that

(3.1) If(x)=—P(x—a) <}-et|x—a
Then G(x) < H(x) and
(3.2) |H(x)| 2 |G(x)|* > k|B(x, -|x—ad),

provided 0 < |x—a| < and § as above.
We are going to prove that for most points x (in a sense to be described
below) |H (x)| - |B(x tex— al)l is close to zero and hence contradicting (3.2).
Let w =(x—a)'|x—a|™", x # a; then

|iz; IRz—a)—R(x—a) € A|x—a|"} " B(x, t*|x—al)
=(t*Ix—a))"|lu; |IR(w+tu)— R(w)| < 4} " B(0, 1)

Let M, = max|VR(z) >0 and 0 <s < M,; then the set
lzl=1t

V=z; |zl =1, |[FVR(2)| > s]
is a relatively open subset of ||zl =1]. For any weV we have
(33) |iu; IR(@+tu)—R(w) € A} nB(0, 1) < c*(1/s)- max(1, M,)-(4/t+1),
where M, = max max|D* R(z)|.

To provg'(Sz.Ilz)l <v:e have by Taylor’s formula

|VR(w) u| € Aft+c-M;-t,

and it is easily proved that for u >0
u; |[PR(@)-uf < pj 0 B(O, V)| < c-ulVR(w) .

This proves (3.3). Now for 0 <|x—a| <4 and weV we get by (3.3)
(3.4) |H(x)I/|B(x, t-[x—al)| < c-(1/s)-max(1, M,)-e,
provided that (3.1) holds.

7 — Annaks Polonici Mathematici XLIV. 3.
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It is easy to see that the set
(x| 0<|x—a]l <8, o =(x—a)fjx—a|eV}

contains points satisfying (3.1) for every 6 > 0. Thus (3.4) contradicts (3.2) if ¢
is small enough and thereby Lemma 3.1 is proved in the case m <! <m+1.
When [ = m+1 we define

R(X)=P(0—- Y ¢x*—P(0)-Q(x),

laj]=m+1

where P(x) = ) ¢, x* Now we get

la| €m+1
R(z—a)—R(x—a) = (P(z—a)—f (2)) +{f (2) = fm (X)) +
+(f(x)—P(x—a))+ )Y c((x—af—(z—af)=A4+B+C+D.
laj=m+1

The extra term D, compared to the case m <[ <m+1, satisfies
Dl <c(P):lz—x|"[x—a" < c(P)t-|x—a™ ' <et-|x—a"

if |z—x| <t-|x—a| and |x—a| is small enough. Now the proof in the case m
< | <m+1 applies and the proof of Lemma 3.1 is complete.

3.2. We now define property B, for [ > 1 analogously to the definition of
property A4; in Section 3.1.

DerFiNITION 3.2, Let m <l < m+1, where m is a non-negative integer
and let f be defined for 0 < |x—a| <&, where 6 > 0. Then f has property B,
at a if there is a polynomial Q (x—a) of degree < m, without a constant term,
such that if [, (x) =f(x)—Q(x—a) then

imY,(f,, a; t) =0,
t—0
where ¥, is as in Definition 2.4. When m =0, we take Q = 0.

Remark. The polynomial Q(x—a) in Definition 3.2 is unique. This is
proved in the same way as Lemma 3.1 was proved. In this case we need not
assume that f is approximatively differentiable to get a unique polynomial Q.
We omit the details.

Remark. Examples show that property 4, does not imply B,.

Lemma 2.1 has the following form in the general case !/ > 0.

LEMMA 3.2. Let m be a non-negative integer, | < p< oo, m<I<m+1
and let f be defined in a neighbourhood of a in R". Then f has property B, at a

if and only if there is a polynomial Q (x—a) of degree < m, without a constant
term, such that if

(3.5 Jn(%) =f(x)—Q(x—a),
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then
(3.6) iminf ¥, ,(fn, a; 1) =0,
1=0 .
where ¥, , is as in Definition 2.3.
Proof of Lemma 3.2. Assume f has property B,, then we may take Q
as in Definition 3.2 and (3.6) holds. To prove the necessity, suppose that Q
exists such that f, defined by (3.5) satisfies (3.6).
The proof is completed in the same way as the proof of Lemma 2.1. We
leave the details to the reader.
33. We now have the following characterization of differentiability of
order [ > 0. '
THeOREM 3.1. Let f be a function which is defined in a neighbourhood of a.
in R" and let | > 0. Then f is ordinary differentiable at a of order | if and only
if f has property A, at a and f has an approximative differential at a of order |
with constant term f(a).
Remark. Property A4, can be replaced by B,. For measurable functions
we can replace approximative differentiability by I’-differentiability and A,
can be replaced by property (3.6) in Lemma 3.2 with the same p.
Proof of Theorem 3.1. The necessity is obvious, as in the proof of
Theorem 2.1. Assume that f has an approximative differential

P(x—a) =f(a)+ Z ca.(x—a)a’

1<]al <t
m<Il<m+1, where m is a positive integer. Then by Lemma 3.1 we have

fa)=f¥)- Y c(x—af

1<|a|]€m

in the definition of property A4,. Consider the identity
J(x)—P(x—a)
=(fu)—fu@)+([@-P(z=a)+ Y c.(z—af—(x—a))

lal=m+1

where the suming is dropped when | < m+1. The rest of the proof follows
that proof of Theorem 2.1. We omit the details.

4. Differentiability theorems for Bessel potentials.

4.1. In this section we study ordinary differentiability of Bessel potentials
f= G, »g of functions g defined in R". We recall that the function f= G, *g
is well defined at xe R" if and only if the integral

(4.1) f(x) = [Gi(x—y)-g(y)dy,



338 T. Sj&din

converges absolutely. It is well known that if gel? then f= G, *g is well
defined ae. in R” in fact even B, ,-q.c, when 1 <p < o0 [12].

Assume that g is a function such that the integral in (4.1) converges
absolutely a.e. in R". Then we have

(4.2) lim|B(a,r))™" | If(x)—f(a)ldx =0

r—0 Bla.r)

for all ue R", for which f(a) is well defined by (4.1), [4], p. 293.

Now we give a short description of our theorems. Let geI”. Then the
differentiability properties of f= G, g at ae R" depend merely on the local
behaviour of g(y) near y = a. This follows from the fact that the integral

| Gi(x—y)-g(»dy

|y—a| >3

can be differentiated under the integral sign infinitely many times when
|x—al <9, since G,(x) =0 exponentially as |x| — co.

It is easily seen that the same holds for a much larger class of functions
g, for instance if g is a polynomial. The following class M, (a) will be
sufficient for our purposes.

DeriniTION 4.1, Let 1 < p < o0 and ae R". We say that ge M, (a) if g is
locally integrable in R, ge I?(V) for some neighbourhood V of a and

{ lgWl-eP2dy < 0.

ly—al21

The linear space M ,(a) has the following properties for 1 < p < oc and all
aeR":
(@ £ < MP(a),
{, Mi(a@) c MP(a), 1 £ p<g< 0,
(¢) all polynomials belong to M?(a),
(d) if ge M ,(a), then for all 6 > 0 the integral
[ Gulx—y)-g(ydy

ly-al>$
converges absolutely and is infinitely differentiable under the integral sign for
|x—al <39,
(e) if ge M, (a), then ge M, (b) for all points b in a neighbourhood of a.

4.2. Now we state our first result concerning the differentiability of
Bessel potentials f= G, g, ge M,(a).

THEOREM 4.1. Let 1 <p<ow, 1<q<ow, 6=-nfp, k>0,
k+0>0, k+6+#1 and 1 >0. Let geM_,(a) and f= G, *g. Assume that
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(a) For every ¢ >0 there is 6 >0 and 0 <t <min(e, 1) such that
0 <|x—a| <& implies that
(4.3) [ Gr(x—y) x

y—al €3 |x—al

(B, t-|x=al)|™"- [ lgw)—g)|?du)'*dy <e-|x—al'.
B(y,r~|x—a|)
In (4.3) we replace G, (x—y) by |Ko(x—y)l, where Kqo(w) = G, (w)—G,(0),
when n <k < n+1.

(b)
44 (1B(a,ni™' [ lg)—Py—a)’dy)'”” =o("), r—0,

B(a,r)

for some polynomial P of degree < 0. _

Then f(x) = G, *g(x) is well defined in a neighbourhood of x = a in R"

and f is differentiable at a of order | in the following cases:
1)) 0<k<n, 0O<I<min(k+86, 1),

(i) k=n, 0<l<n+60 and 0 <l 1,

(i) n<k<n+1l, 0<I<min(k+0,1).

Remark. The proof breaks down when k+6 =1, partly because we
cannot conclude that f has an I’-derivative of order 1 at a (cf. [9], p. 175)
and partly because an extra logarithm enters in our calculations.

However, it follows from the proof of Theorem 4.1 that when k+60 =1,
f 1s differentiable at a of order / in the following case:

(iv 0O<k<n+land O<lI<1.

An essential part of the proof of Theorem 4.1 is to show that the
assumptions on g imply that the Bessel potential f(x) is well defined in a
neighbourhood of a in R". This differs from the situation considered in
Sections 2 and 3 where we just assumed that f(x) was well defined. The
rest of the proof is done by means of Theorem 2.2. Assumption (a) in
Theorem 4.1 comes from the quantity ¥, (f, a; t) in Section 2 where now f
= G, +g. The proof is given in Section 6.

43. Following A. P. Calder6n and R. Scott [8] we define the maximal
function Nif (compare also T(f, x) in [9]).
DEerFINITION 4.1. Let 1 < g < o0, 0 real, fe L{.. Then
Nif(x) = Sugr"”'(lB(x, =t [ If)—Ply—x)*dy)'

B(x,r)

if there is a polynomial P(y—x) of degree <6 such that Nif(x) < oc.
Otherwise we let N2f(x) = oc. As usual, we take P(y—x)=0if 6 <0 The
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polynomial P(y—x) is unique whenever it exists, and 8 =0, g = 1 gives the
usual Hardy-Littlewood maximal function [17], p. 4.

The maximal function Nif is lower semicontinuous for s <0 and a
Borel function for s > 0.

We now formulate our main result on the ordinary differentiability of
order [, 0 << 1, of Bessel potentials.

THEOREM 4.2. Let 1 <p<ow, 1€q<w, k>0, [>0, 0<ax,
geM,(a), f=G,%g. Assume that

(a)
(4.5) | Il 'Gk(x-y)'NZg(y)dy =o(x—a'"%, as x-—a,
|y—al€3|x-a
(b)
(4.6) (B@, ™" [ lg»—Py—a)l°dy)'’s =o(9,

B(a,r)
as t -0, for 6 =1—k and some polynomial P of degree < 6.

In (4.5) we replace G, (x—y) by |Kq(x—y)| as in (4.3) whenn <k < n+1.
Then f (x) is well defined in a neighbourhood of a in R" and f is differentiable at
a of order | where | is defined as in Theorem 4.1.

Theorem 4.2 follows easily from Theorem 4.1 and the definition of
N3 g(x). The proof is given in Section 6.

In Section 7 we use the methods of Section 3 to prove higher order
differentiability theorems for Bessel potentials.
5. Some lemmas on the property B,.

5.1. We prove some lemmas which show that functions having property
B, at a point satisfy a certain restricted Lipschitz condition there.

LemMma 5.1. Let € >0, 6 >0, >0 and 0 <t <1 be fixed numbers and
let f be a function such that

[x—a] <9

z=x| <t-|x—adl implies  |f(2)—f () <& |x—al'.

Then
I/ (2)—f ()] < k-&-max(lx—al, |z—al')

Jor all 0 <|x—d| <d, 0 <|z—al <& where k depends on t, | and n.
Proof of Lemma 5.1. The proof is in three steps.

Step 1. The points x and z lie on the same half ray through a. Assume
|z—a|l <|x—al =rq <. Let L be the line segment between x and a. Define
ri=ro(1=t),i=0,1,2,... and a sequence of points {w;}® such that

W"GL, le'—a|=rl-, W0=X, ‘=0, 1, 2,
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Then |W,-—W,-+1|=r,-—ri+1=t'|w,-—a|, i=0, 1, 2,..., and llmw,=a-
i~

Suppose that z lies between w, and w,,, on L, then

m-—1
If(X)=f(2) < ‘ZO Lf W) —f Wi )l +1f (W) =1 (2]

m-1
<e Y w—a'+ewp—a' <e-(1-(1-0))""|x—g
i=0

=¢-k,-|x—al’.

Step 2. |x—a| =|z—a|=r, 0 <r <d. Let B be the boundary of the
unit ball with the centre in a and let |4} be points on B such that

M) |lui—uq| <t, ISiSN-—1,
(11) for every £eB there is u;, 1 <i< N, such that |y, —¢&| <¢.

The integer N depends on n and ¢ only. Define u; =a+r-(4;,—a),
1 <i< N. Then we have

lu;—al =r, 1 <i<N,
s —wl =r-|lupy—w| <r-t=tju—a, 1<i<N-1,
and hence
If (Uis))=f W)l <& Jui—a, 1<i<N-L.

Given x, z such that |x—a| =|z—a| =r, 0 <r <, we can find u, and u),
such that |u,—x| <r-t and |u,—z| <r-t. Thus we get

I () =1 @ < 1f () =S (uml + _i |f () —f (i )l + 1S () =1 (2)]

<er'+(N=1)ert+er=(N+1)e|x—a' =k, ¢ |x—ad|

Step 3. Let 0 <|z—a| <|x—a| < be arbitrary. Define y such that
ly—al =|z—a| and y lies on the line segment between a and x. Then the
triangle inequality, together with Steps 1 and 2, gives

lf () =f (2)| < &-(ky +k;)-max(x—al', |z—al’).

This proves Lemma 5.1.
LEMMA 5.2. Under the assumption of Lemma 5.1, the limit

(5.1) lim f(x) =b
7
exists, and
(5.2) . If()=bl <e-(1-(1-0))""|x—adl,

Jor 0 <|x—a| <.
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Proof of Lemma 52 If f is complex valued and satisfies the
assumptions of Lemma 5.1, then so do its real and imaginary parts.
Assuming f being real valued we see that

limsupf(x) and liminff(x)
x+a P

exist since f is bounded in 0 < |x—a| < J. But these limits must be equal by
Lemma 5.1 which proves (5.1).

Let 0 <|x—a| <d and define the sequence {w;]{ as in the proof of
Lemma 5.1. Then we get

If ) —f (waht <&-(1=(1 =)' |x—af’.

Since f(w,) — b, as m — o0, this proves (5.2) and completes the proof of
Lemma 5.2.

§.2. A function f having property B, at aq, 0 <[< 1, satisfies the
assumptions of Lemma 5.2. In the general case we have the following lemma.

LEMMA 5.3. Let f have property B, at a, | > 0. Then there are numbers
6>0, k>0 and b such that for 0 <|x—a| <4,

If(x)—b—Q(x—a) < k-|x—ad,

where Q (x—a) is as in Definition 3.2. In particular, lim f (x) = b exists and f is

bounded in 0 < |x—a| <3d. x#a

Lemma 5.3 is proved by applying Lemma 5.2 to the function f,(x) in
the definition of the property B, (Section 3.2). We omit the details.

6. Proof of Theorems 4.1 and 4.2
We start with the proof of Theorem 4.1.
6.1. Recall that 1 <p < o0, 8 2 —n/p, k > 0 and ge M?(a). Define f(x)

= G, *g(x), whenever the integral defining the convolution converges
absolutely.

We show that it is sufficient to consider the following special case:
(i) g(y) has support in |y—a| <1 and gel?,

(i) P =0 in (4.4) and (iii) g = 0.

Let P(x—a) be the polynomial in (4.4) and define

gx)—P(x—a), |x—al <39,
0, Ix—a| >4,

g1(x) = %

where 6 < 1 is chosen such that g,eI?. Then g,, Reg,, Img, and the
positive and negative parts of Reg, and Img, satisfy the assumptions of
Theorem 4.1 with P = 0. It follows from the discussion in Section 4.1 and
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the fact that Bessel potentials of polynomials are C®-functions (in fact
polynomials) that it is no loss of generality to assume that (i}{iii) hold. We
are going to prove that f satisfies the assumptions of Theorem 2.2. The first
step is to show that f is well defined and that f has an I?-differential of the
right type. In the second step we prove that f has property B, at a.

6.2. Here we prove that the integral

(6.1) S (x) =[G, (x—y) g (y)dy

converges absolutely in a neighbourhood of x = a. First let x # a be fixed.
Then it suffices to consider the integral in (6.1) over the set !y; |y—a
< 3'|x—ada|}. Let ¢ > 0 be arbitrary and choose 4 > 0 and 0 < n < min(e, 1)
such that (4.3) holds.

Let 0 <|x—a| <&, ze R", and consider the inequality

(6.2) gy <lgy)—glz—x+y)|+g(z—x+y).
We define

H(z) = ] Gi(x—y) g —g(z—x+y)dy.

ly—a|<€3|x—al

By Minkowski’s inequality and (4.3) we get

( [ H(z)%dz)"" <e-|x—al"|B(x, n-[x—a])|'* < co,

|z~ x{<n|x—al

which proves that H(z) < o0 a.e. in B(x, n-|x—al). We also have

(6.3) | Gi(x—y) g(z—x+y)dy < [G, () g(z—y)dy < 0,

ly—al<3-|x—al
for a.e. ze R".

Multiplying (6.2) by G,(x—y) and integrating over |y—a| < 3-|x—a| we get
that

f Gx=y)-g(ydy
ly—a| <3 |x—~a|
converges for 0 < |[x—a| < é, since we can choose z such that H(z) < oc and
(6.3) hold. This proves that f(x) is well defined, by (6.1) for 0 <|x—a| < 4.
Now (4.4) and basic properties of the Bessel kernel (see Section 1) give that
the integral (6.1) converges for x = a.

It follows from (4.4) and [9], Theorem 4, that f has an [?-differential of
order [ at a. Since the integral (6.1) converges absolutely for x = a we can
conclude from (4.2) that the constant term in the [’-differential of f at a
equals f(a).

We have proved that f(x) is well defined by (6.1) in a neighbourhood of
x = a and that f has an I?-differential of order / at a with the constant term

S (a).
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6.3. Our next step is to prove that f has property B, at a. In view of
Lemma 2.1 it suffices to prove that (2.8) holds. We have

FX)—=f(2) = [G(x=p)(g(»)—gz—x+)dy
= f + ] =I+11.

ly—al<3-|x—a| [y—a|>3]|x—4

Let ¢ > 0 be arbitrary and choose & and r such that (4.3) holds. Then
taking [-norm we get for 0 <[x—a|] <

(B(x, tix—=a)|"* | |If@—f(x)dz)""<elx—a'+ sup ||
B(x,t|x—aj) |z—x|<tlx.—a|
We divide Il into two terms in the following way:
= | (Gx=»=-Gz—y) g dy+

ly~a|l>3-|x—adl

+1 | G(z—y)gdy—

ly—al>3-|x—a|

- | G (z—y)-g(y)dy}

ly—z+x—a)>3-|x—al
= A+B,
where all the integrals converge absolutely. The term B is majorized by
Gi(z—y)-g(y)dy for |z—x| <t:|x—dl.
Ix—aj<jz—y| <5 |x—a|
Holder’s inequality and (4.4) give
sup  |B| <clk, n):|x—al*:(B(a, 6lx—al)|"} | g(ydy)'”
|z— x| <t|x—al B(a,6|x —al)
=o(x—ada), as x-—a,

when 0 <k < n. The case k = n is treated analogously and gives the same
result.

We estimate 4 as in [17], p. 244, using Taylor’s formula

1
(6.4) Al < f dygW [|VG(x—y+u(z~x))||1z— x| du.
0 .

ly—al>3|x-al
Now from (6.4) we get ,
(6.5) Al <clk,mlz—x [ ly—d* ""'g(y)dy,
. ly—al >3|x-al
when 0 < k < n+1. The integral in (6.5) is estimated as in [17], p. 245, and
we find that

sup  |Al < c(k, n)-e-(1+llgll,) |x—al,

|z— x| <t-|x—a
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provided 6 > 0 is small enough. When k > n we write
S()=f (@) =[Ko(x=y)(g(0)—g(z—x+y)dy
= + { =[+1I,

ly—a|<3-|x—a| |y-a|>3-jx—a|
and Il = A+ B as above. We estimate 4 and B as in the case 0 < kK < n. We
leave the details to the reader.
Collecting our estimates, we have proved that

(B(x, tix=a)|™" | If@—f(0)"dz)"" <&|x—af
B(x,t]x—al)
if 0 <|x—a] <& and & is small enough. This proves that f has property B,
at a by Lemma 2.1. Now Theorem 2.2 applies and we can conclude that f is
differentiable at a of order I. This completes the proof of Theorem 4.1.

64. Proof of Theorem 4.2. We only have to prove.that (4.5) implies
(4.3). Assume that (4.5) holds and 0 <a < 1. Then Njg(y) < oo for ae. y in
some neighbourhood V of a. It follows from the Lebesgue Differentiation
Theorem that P(u—y) =g(y) in the definition of Njg(y) for a.e. yeV. The
expression in the left-hand member of (4.3) is for 0 < k < n majorized by

(tlx—al)* f Ge(x—y)-Nig(y)dy = o(lx—dl’),

l[y—al<3|x~a

as x »a. This proves (4.3) when 0 <a < 1.
Next let « =0, then the left-hand member of (4.3) is majorized by

(6.6) | [ Gilx=y)-(Ng(»)+9(y)dy.

ly—al|<3|x—d|

It is easily seen that g(y) < N,‘,’g(y) for a.e. ye R". Inserting this estimate into
(6.6) proves (4.3). Thereby Theorem 4.2 is proved for k < n. The case k > n is
similar.

7. Higher order differentiability of Bessel poténtiab.

7.1. In this section we study differentiability of arbitrary order / > 0 of
Bessel potentials using the results from Section 3. Recall that, for measurable
functions, differentiability of order ! is equivalent to I’-differentiability of
order [ together with property B, or its equivalent form given in Lemma 3.2.
We first sketch what we are going to do. Let 1 <p< o0, k>0,08>= —n/p
and let g be an L°-function with compact support satisfying

(1B, nl~* | lgIPdy)? =0(r), r—0.

B(a,r)

Let m be a non-negative integer and assume that m < k+6 <m+1. Then the
“function f(x) = G, xg(x) has an I?-derivative Q(x—a) of order (k+8) at x
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= a given by

1
7D Qx—a@)= ¥ clx-af, &=_—|D*Gla=y)g()dy,
IGISm °RP
where the integrals defining c,, |2} < m, converge absolutely. These facts
follow from the proof of [9], Theorem 4.
We prove that, under suitable assumptions on g, the function f(x)
= G, *g(x) is well defined in a neighbourhood of x = a. Further, in the case

0 <k < n, if we define

(7.2) fa(x) =f(0)—(Q(x~a)—Q(0))

we can prove that f has property B, | = k+0, at a (Definition 3.2). Then by
Theorem 3.1 it follows that f is differentiable at a of order / = k+8. The

following theorem treats a slightly more general situation.

THEOREM 7.1. Let m be a non-negative integer, k >0, 1 <p < o0,
l<g<oo, —nfp<O0<1,k+0>m k+0#m+1,1>0. Let ge M ,(a) and
f= G, *g. Assume that

(@) For every £¢>0Q there is 6 >0 and 0 <t <min(e, 1) such that
0 <|x—a| <& implies
(7.3) | Gi(x—y)-(|B(y, tix—al)]™" x

y~al <3|x—al

x [ lg—g)*du)idy <elx—al'.

B()M|x - ﬂi)

In (7.3) we replace G, (x—y) by |K;(x—y)| where

1
Ki(w) = G, (W)~ ¥ — DG, (0)-w",
la] <i¥e
in the case n+i <k <n+i+1, 0<i<<m
(b)
(7.4) (1Ba, ™" | lgy)—P(y—a)dy)?=0(*, asr-0,
B(a,r)
Jor some polynomial P of degree < 0.
Then f(x) = G, *g(x) is well defined in a neighbourhood of x =a in R"
and f is differentiable at a of order | in the following cases:
(i) 0<k<n 0<l<min(k+0, m+1),
(i) n<ks<n+m+1, 0<i<k+6, 0<l<m+l1.
7.2. Proof of Theorem 7.1. It is no loss of generality to assume that
g(x) has support in [x—a|] <1, that P =0 in (7.4) and that g > 0. As in the
proof of Theorem 4.1, (7.3) implies that f(x) is well defined by

(7.5) S (x) =[G (x—y)g(y)dy
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in 0 <|x—a} <4, for some é > 0. It follows from (7.4) and (9], p. 195-198,
that f(x) has an I[’-differential at x =a of order !/ given by (7.1). In
particular, f(x) is well defined by (7.5) for x = a and the constant term in the
I*-differential of f at a equals f(a). We first consider the case 0 < k < n.

We define f,,(x) by (7.1) and (7.2) in accordance with Lemma 3.1. It is
our purpose to prove that f has property B; at a. Then we can conclude
from Theorem 3.1 that f is differentiable at a of order I According to
Lemma 3.2 it suffices to prove that (3.6) holds with 4-norm.

Let us define the remainder R, (u, v) of the Bessel kernel G, by

1
(7.6) R,(u, v) =G, (w)— ) — D* G, (v) (u—v)*.
lal Sm¥*
Taylor’s formula gives

(1—s)"
a!

1
(7.7) R, v)=m+1f Y D*G(v+s@u—v))(u—v):

Ola|=m+1

ds,

if the line segment between u and v does not contain the origin.
Now let |z—x| < 3-|x—a|. Then by (7.1), (7.2) and (7.6)
Ja(X)=fm(@) = [(Ru(x—y, a=y) =R, (z~y, a—y))-g(»)dy
= [(Rn(x—=y, a=y):g())—Rp(x—~y, a=z+x~y) g(z—x+y))dy
= f - Y =I+1I,

ly—al<3jx—al |y—alZ3|x-a]

where all integrals converge absolutely when |x—a| is small enough, since
Jm(x) is well defined in a neighbourhood of x = a. We split Il into two terms

M= | (Ralx—y,a=y)=Rp(z~y,a-y)-g(y)dy+

ly—al23|x—al

+H | Ru(z—y,a=y)g)dy—

ly—a]23|x—al|

- [ Rn(z—y, a=y)-g(y)dy)

|y—a+z—:t|?3|x—a|
= A+ B.
We estimate II for all 0 <k <m+n+1. From (7.7) we get

(7.8) Bl < | IRn(z—y, a—yl-g(y)dy

2lx-al<|y—a|l <4|x—a|
<c(k,m, n)-|x—a"*?!- J dy g(y) x

2|x—a|<|y—a| <4|x—a|

1
x Y [|D*Ga—y+1-(z—a))dt.

lal=m+10
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When 0 <k <m+n+1, (7.8) and properties of the Bessel kernel give
|B| < c(k, m, n):|x—al*""- f gdy =o(x—af*9,

ly—al <4|x-a
as x >a. When k =m+n+1 we get analogously |B| = o(lx—al**®-In1/|x—
—al) as x —a.
By using (7.7) we have the identity

(79)  Rn(x—y,a=y)=R,(z~y,a—y)

1
= Y (m+1)-[de(D*Gla=y+t-(x—a)-
(1]

lel=m+1

(1-1)"'-+
o !

—-D*G(a—y+t-(z—a))(x—a)*:

(=0
al

. ‘
+ Y (m+l)[dtD*Gla—y+t-(z—a) (x—a)f—(z—a))
la|=m+1 0
Inserting (7.9) in A and using the Mean Value Theorem on the first sum
in (7.9) gives, together with [4], p. 253, when 0 <k < m+n+1

|A] < c(k, m, n)lz—x|"|x—a|™ f ly—al*=""""1g(y)dy

{y—al>3|x-al
<c(k,m, n-e|x—a*, as x—a, where « = min(k+6, m+1).
Now by (7.6) and a change of variables, I equals to be

(7.10) [ Gx=» (g —gz—x+y)dy—

fy—al <3|x—a]

1

D*G,(a=y)(x—a)* g(y)dy—

laem®! y—al <31x-af

- § D*Gyla—y)-(z—a)*-g(y)dy).
ly—a+x-z|] <3|x—ad|
The sum in (7.10) is estimated as in [17], p. 245. It is o(]x—a|**%) and
o((x—al**®In1/|x—al) when 0 < k < n and k = n respectively. In case where
n+i<k<n+i+1, 0<i<m, we first define h = K; *g so that (f—h) is a
polynomial. Next we define :

. 1
(7.11) J...(x)=I(K.-(x—y)- )3 ;'D"Kf(a—y)'(x—a)“)'g(y)dy
la| <m™ - )
= [Rim(x—y, a=y)-g(y)dy.
We split f,,(x)—f.(2) into two terms I and II as in the case 0 < k < n.

This term II is identical with the term II considered above since R, (u, v)
= R, (u, v). The term I is of the form (7.10) with G, replaced by K;. As
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above, it is estimated by using properties of the Bessel kernel. We leave the

details to the reader. The first term in (7.10) will be estimated by (7.3).
Let 0 < e <4 be arbitrary and choose 0 <t < min(eg, 1) and 0 <6 <4

such that (7.3) holds. Then for 0 < |x—a|] < é we have in the case 0 <k <n

(B(x,tlx—a)|™". | |fa(@—falx)?dz)'

B(x,t)x - a|)

[ Gix—y)(B(x, tix—al)| ' x

|y~a|€£3|x—al

x f  lg—g@—x+yldz)"""+c(k, m, n)-e|x—al',

B(x,t|x—al)

Al

and analogously for k > n.

Combining this estimate with our assumption (7.3) we can conclude that
(3.6) holds (with p replaced by q) and hence by Lemma 3.2; f(x) has property
B, at x = a. This completes the proof of Theorem 7.1.

73. Reeall the maximal function Njg(x) defined in Section 4.3. The
following theorem is in complete analogy with Theorem 4.2.

THeoreM 7.2. Let m, k, p, q, 6 and | be as in Theorem 7.1. Let geM,(a)
and f= G, *g. Assume that
(a)

(7.12) f Gy (x—y)-Nig(y)dy

ly—a| <3}x~aq

=o(x—a'"* as x—>a, where 0<a<1.

o
Here we replace G,(x—y) by |K;(x—y) when n+i<k<n+i+l,
0<i<m,asin (1.3).
(b) (Bla,nl™' | lg(—Py—a)Pdy)'’? = o(r®

B(a,r)

as r — 0, for some polynomial P of degree < 0. Then f(x) is well defined in a
neighbourhood of x = a in R" and f is differentiable at a of order |.

Proof of Theorem 7.2. The proof is only a repetition of the
argument in the proof of Theorem 4.2 and is omitted.
8. Some examples.

8.1. The famous Rademacher—Stepanoff Theorem [17], p. 250, states that
if f. V— R satisfies the Lipschitz condition

@.1) fx+hy=f(x)=O(h), |h—0

for every xe E where V is an open set in R” and E < V is a measurable set,
then f is ordinary differentiable of order 1 a.e. on E. We prove that a certain
generalization is false.

We are going to construct a Cantor set K with positive Bessel capacity
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and a Bessel potential f such that f has an L-differential and satisfies a
Lipschitz condition on K but f is nowhere differentiable on K.

To be more specific, we consider the following situation.

ExaMPLE. Let l <p<w,l<g<ow,1<r<w,0<a'p<n 0<fq
< n and m > | > 0 be given. We shall define a Cantor set K and fe % such
that
(82 (a) By,(K)>0,

(8.3) (b) f is infinitely differentiable outside K,

84) (¢ |f(x+h—=f(x)<|h'" for xeK and heR",

(8.5) (d) f has an LC-differential of order m everywhere on K,
8.6) (e) f is differentiable of order / at no point xeK.

We define K and f and prove (8.2){8.6) in Section 8.2.

This example shows that we cannot conclude ordinary differentiability
By -q.¢ in the Rademacher-Stepanoff Theorem when we know that f is a
Bessel potential of an IP-function and (8.1) holds.

82 Let I =ix; 0< x; <1, 1 i< n} be the unit cube in R". All cubes
have sides parallel to the axes. Let J = J(a, r) denote a cube with centre a
and side length r and define ¢-J =J(a, t'r), when r > 0.

[ o]

Let K = (K, be a generalized Cantor set contained in I as defined in
(11 p. 899. '

We define [j=¢, (=278 j=1,2 .., for some 0<e¢
< min(Bq, 1). Then H,(K)>0 for h(u)=u""P(In1/u)' "5, 0<u<u, <1
and s >gq, [1], p. 899. It now follows that By ,(K) >0, [1], p. 895, which
proves (8.2).

As usual K, =1 and K, j > 1, is the disjoint union of 2/ cubes, each
with side length /.

We define f to be a sum f=) f; in the following way. Let j > 1 be

1
fixed and let J be one of the 2U~"" cubes in K,;_;. In the process of
constructing K; we remove a cube J' from J, having the same centre as J-

and side length d; = [, —2I; = (1—21)-/='. There are 2Y™ """ such cubes J'.
For each cube J' we choose geCg such that

87 (a) 0<g(x) <d/4, (b) llglle =(d4)' and (c) suppg =4-J'.

Now we define f; as the sum of these 2U~Dn functions g, one for each
cube J'.
It is possible to choose the functions g such that

(8.8) Ifill,, and |[fil, are arbitrary small, j=>1.



Ordinary differentiability of Bessel potentials 351

It is well known that B, ,('x}) =0 for all xeR". [12]. Then (8.8) is a
consequence of the alternative definition of the Bessel capacity given in [2].

¥

We now choose f;. j = 1, such that ZHIJH, , converges and hence [« L.

1
bl

It is clear that the sum f(x) =) f;(x) has at most one non-zero lerm for

1
each xe R", that (8.3) holds and that f(x) =0, when xe K. Let xeK and
he R"; then for some j we have

0<f(x+h =fi(x+h <(d/4) <|n,

by (8.7) (a) and (c). This proves (8.4).
Next we show that (8.8) imphes (8.5). Let xeK and d,,,/4 <1 < d /4.
then

X

[ fordy="Y Al

B(x.r) j=s+1

It is now clear that (8.5) holds, with the I’-differential of order m at a
identically zero, provided [|fj]l,, j = 1, are chosen small enough.

It remains to prove (8.6). Assume that f(y) has an ordinary differential
P(y—x) of order I at x. Then P(y—x) is also an [-differential of f at x of
the same order. The uniqueness of the [-differential then gives that P(y—x)
= 0. Hence, it suffices to prove that

(8.9) limsup f(x+h)-|hj~'>0, xeK.
h—0
Let xe K then for every j > 1 there is h;e R" such that f;(x+h)) = (d;/4)

and |h| < [;_, -\*E. This follows from (8.7) (b) and the fact that x belongs to
one of the cubes J in the construction of f; above. Hence we get for j > 1,

S(x+h) > (x+h) = (d/4) > (1 - 20/4 n) |k,

which proves (8.9), since h; =0 as j — x. This completes the discussion of
the example.

83. Let 1 < p < oo, 0 <k <n/p. Then there is a function feIf which
is essentially unbounded in the neighbourhood of every point in R" and
hence f is non-differentiable of any order ! > 0 everywhere in R". We just
choose hel?, h =20, such that G, *h(0) = o0, [12], p. 260, and put g(y)

—22“ h(y—a;), f= G, xg, where {q;] is a dense set in R". See also [17], p.

159. It is, however, proved in [4], Theorem 13.5, that functions in [§ have

pointwise partial derivatives outside a certain exceptional set, when 1 < p
< and k> 1.

8 — Annales Polonici Mathematici XLIV. 3.
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