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ON SOME INTEGRAL INEQUALITIES OF WEYL TYPE

BY

B. FLORKIEWICZ (WROCLAW)

The paper is a continuation of [2]. We derive and study some integral
inequalities of Weyl type (see [6]), i.e., integral inequalities of the form

(1) fulhiPdt < p({ r|hlPde)'/?([ s|hPdt)'e,
I I I

where I =(a, f), —o0 <a < B < oo, h =dh/dt, and p> 1. The inequalities
of the form (1) were investigated by Redheffer [6], Benson [1], Florkiewicz
and Rybarski [3], and others. The multidimensional case was studied by
Redheffer (see [7]). In the second part of the paper some integral inequalities
of the form

Q) S oy (x) I G)? < p(] rIHP i) (] s P de)a+ [ ulhldt
I 1

i=1 I

are obtained. The inequalities of the form (2) were considered by Redheffer
(see [6] and [7]).

We denote by absC the class of real functions which are defined and
absolutely continuous on the open interval I =(a, f), —o0 <a <f < 0.
Let p be any real number such that p > 1 and let g = p/(p—1). Let reabsC
and weabsC be functions such that

r>0,w#0in I and r|w/? !sgnweabsC.
Let us put
s=riwP, u=(|wP 'sgnw), and ov=r|wP lsgnw.

We denote by W the class of functions heabs C satisfying the following
integral conditions:

3) [rifPdt <o, [s|hPdt < oco.
I

1

LEMMA '. For every function he W the function v(|h|P)" is summable in the
interval 1.
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Proof. By Holder’s inequality for he W we obtain
[ [vQniPy|det = [ riw|P=* |BP= 2 |R| dt < ([ r|RIP de)V/? ([ s|h|P dt)'.
I I I I

We denote by W the class of functions he W satisfying the following
integral and limit conditions:

4 [ulhPdt > —o0;
1
(5) limsup v|hfP > —oo, liminf v|hP < co.
t—a t—p

LEMMA 2. Let h belong to W. Then
(i) the function u|hfP is summable in I;
(ii) there exist finite limits lim v|h? and lLim v|hfP.
t—a t—p
Proof. (i) Let he W and let {a, b> = I be an arbitrary closed interval.
Then the function (v }hP)’ is summable in <{a, b), since v|hPcabs C and the
function v(|h|F)’ is summable in I by Lemma 1. Hence we get the equality

b b
(6) [ ulhiPdt = v|hP[o— [ v( APy dt

and, using (5), in a similar way as in the proof of Theorem 1 in [2] one can
show that the function u|hl? is summable in I.
(ii) By Lemmas 1 and 2 (i) it follows from (6) that for he W the finite

limits lim v |k and lim v |hlP exist.
t—a t—p
Remark 1. By Lemma 2 (ii), conditions (5) can be written as

(5) lim v|hP > —c0, Lim v|h]? < oo.
t—a t—p

Remark 2. From the pl;OOf of Lemma 2 it follows that conditions (4)
and (5) in the definition of W are equivalent to one of the following three
conditions:

[ ulhPdt < oo,
1

(a)

liminf v|h?P < 0, limsup v|h? > —o0;
t—a t—p

(b) the function u|hP is summable in I;

(c) there exist finite limits lim v|h? and lim v|hJP.
t—a t—p
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THeEOREM 1. For an arbitrary function he W the inequality

(7 | u|h|Pdt —lim v|h|P+lim v|h|P < p(j r|h|? de)"'® ([ s|h|? dr)'/a
1 t—p t—a I
is valid. If h # 0, then we have an equality in (7) if and only if
t
(%) h=cexp(4 | wdt),
t0

where tq is an arbitrary fixed point in I and ¢ = const # 0, A = const # 0, and
A satisfies the conditions

(A) jrlwl" exp(pA j wdt)dt < o0;

o

(B) there exist finite limits of the expression

t
r|wlP~ ! (sgnw)exp(pA | wdt)
to
as t—oa and t —> f.
Proof. Let ¢ eabsC be an arbitrary function such that ¢ > 0 in I and
rigP! sgn(peabsC Further, let heabs C and

®)  g=rlhr+(rioP "sgn @) @' PIhP—(r|glP” ! (sgn @) ' ~?|H|7).

Then, from Lemma 1 in [2] it follows that g >0 in I and g =0 in I if and
only if h = ce, where ¢ = const. Putting

4
@ =exp(d | wdt)
‘o

in (8), where t,el and A =const # 0, we obtain
) gx =r|AP+(p—1)|A1P s AP +|A1P~ ! sgn A [u AP —(v|HP)],

where g, > 0in I and g, =0 in I if and only if () holds and ¢ = const. By
Lemma 1, for he W the function g, is summable in I.

Let he W. Then, by Lemma 2, all the functions in (9) are summable in I,
and since g, > 0 in I, we obtain

(10) —-sgnl(j ulhlpdt—hm v|h|?+1lim v|h|?)

t—a

<|A'P [ rlAPdt+(p—1)|4] | s|hPdt
1 1

for an arbitrary 4# 0 and the equality in (10) appears if and only if
[g:dt =0, eg, g; =0 in I. If h#0, then
I
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[ slhPdt >0
I

because w # 0 in I. The right-hand side of (10) attains the minimal value
with respect to 4 for 4, such that

(11) Al = ([ rIRIPde)VP(f s|h|P de)™ e,
I 1

Hence we obtain immediately inequality (7).
If for some he W and h # 0 inequality (7) becomes an equality and if

(12 { ulhPdt—lim v|hP+1im v|hP > O,

I t—p t—a
then for 4, < 0, where A, satisfies (11), we obtain an equality in (10) when A
= 4,, and hence

t
(%%) h =cexp(4, | wdt).

0
At the same time we easily check that for h as in (**) condition (12) holds for
An < 0. Similarly, we consider the case where in (12) the inverse inequality
takes place (then A, > 0). Thus, if we have an equality in (7) for some h # 0,
then (**) holds for some 4, # 0, where ¢ # 0 is an arbitrary constant. The
function h in (*x) satisfies (11) as an identity, and therefore, finally, if we have
an equality in (7), then () holds for an arbitrary constant 4 # 0. The function
h defined in (*) must belong to the class W, and hence by Remark 2 (c) we
obtain immediately conditions (A) and (B). On the other hand, we easily
check that for the function h defined in (x), where 410, and he W
inequality (7) becomes an equality, which completes the proof.

In the sequel, we use the following lemmas for the description of the
class W.
LemMa 3. Let heabsC and | s|hfPdt < .

I
(i) If there exists lim v <O (resp. lim v > 0) and
t—a t—a
t t
fwdt=—0 (resp. [wdt=oc0) for some tel,

then
limsup v|h? =0 (resp. liminf v |hPP = 0).

t—a t—a

(i1) If there exists lim v > 0 (resp. lim v < 0) and
t—8 t—p

) B
fwdt =00 (resp. [wdt = —o0) for some tel,
t t
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then
liminf v|hP =0 (resp. limsup v |hP = 0).
t—p t—8
Proof. We prove Lemma 3 only in one case. The remaining cases can
be proved similarly. Assume that there exists lim v < 0 and

t—a
t

wdt = —c0.

Then there exists a neighbourhood U of the point a such that v <0 and w
< 0 in U, since sgnw = sgnv. For arbitrary points ae U and t e U such that

a<a<t<p we have
t t

t
| s|hPdt = | v|hPwdt = sup v|hlP | wdt.

a a (a,t)

Since
t t

[sihPdt <o and [wdt= —o0

a

by assumptions and, simultaneously, v[h|? <0 in U, we get

supv|hfP =0 for teU.

(a,1)

Hence
limsup v |hP = 0.

t—a

LemMma 4. Let heabsC and (r|hPdt < oo.
I
() If

t B
[r9dt < oo (resp. [r~¥"dt < o0)
t

a

for some tel, then there exists a finite limit value

h(@)=limh (resp. h(B) = lLimh).

t—=a t—p
(i) If
v([r~??PdtfP =0(1) ast—oa
8
(resp. v(J r™¥Pdt)P1 = 0(1) as t—>p)
t
and

liminf |h) =0 (resp. liminf |k = 0),

t—a t—p
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then
lim v|hfP = Ov (resp. lim v|h? = 0).

t—a t—p

Lemma 4 (i) is identical to Lemma 3 in [2], and Lemma 4 (ii) follows
from the proof of Theorem 3 in [2].

Example 1. Let I =(a, ), where 0 < a < f < 0, and let r = t* and w
= ¢@*b-Pa/®—1) jn | with arbitrary constants a and b. In that case we obtain
s=t® u=(a+b)t°**"!, and v=1**" in I.

Let 0 <a<p<oo. Then [r"%dt <o and from Lemma 4 (i) it

1

follows that for he W there exist finite values h(a) and h(B). Hence, for he W
there exist finite limits

lim v|hP = a®*®|h(2)? and Lim v|hKP = B**°|R(B)P.

t—a ‘—.p

Thus, by Remark 2 (c) W= W. Now, using Theorem 1 we deduce the
following:

If a function heabsC satisfies the conditions

; B
[|hPdt < o0, [t®|hPdt < o,
a

a

then there exist finite limit values h(a) and h(B) and the inequality

B
(13)  |(@+b) [e** >~ hPdt+a® P |h(@)P—B*** |k (B)F]

B B
< P(f t”“lﬁl"dt)”"(j t""lhl"dt)l"‘
is valid.
Inequality (13) becomes an equality if and only if
h = cexp {Afe~ DUI-a+bVe=1DY a5 (p—1)(1—a)+b#0

or
h=ct* as (p—1)(1—a)+b=0,

where ¢ = const and A = const # 0.
Let 0 =a < f <. In a similar way as above we show that for he W
there exist a finite value h(f) and a finite limit

lim v|hf = B***|h(B)P.
t~8
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If a+b > 0, then it can be easily seen that for heabsC condition (4) and
the first of conditions (5) are satisfied. Therefore W= W in that case. If
p(a—1)+1 <0, then

t

jr“'/"dt < oo for some tel,
0

and using Lemma 4 (i) we infer that for he W there exists a finite value h(0).
Hence, we deduce that if, in addition, a+b > 0, then

lim v|hP =0

t—0

for an arbitrary he W since v(0) =0. If a+b <0 and (p—1)(1—-a)+b <0,
t

then v(0) = oo, [ wdt = oo for tel, and from Lemma 3 (i) it follows that if
o

he W, then
liminf v|hfP = 0.

t—0
Thus the conditions of Remark 2 (a) are satisfied for he Wand W= W. Now,
applying Theorem 1 we get the following:

Assume that the conditions a+b > 0 and p(a—1)+1 <0 or a+b <0 and
(p—1)(1—a)+b < 0 are satisfied. Then if heabsC satisfies

B B
[tP|hPdt <0 and [ t®|HPdt < 0,
0 0

then there exists a finite limit value h(B) and the inequality
B ' B B

(14) I(a+b) j‘ b1 lhlpdt—ﬂ°+b|h(ﬂ)|pl sp(j t”lﬁlpdt)”” (I tqblhlpdt)llq
0 0 0

is valid.

If h # 0, then in the cases a+b > 0 and p(a—1)+1 <0or a+b <0 and
(p—1)(1—a)+b < 0 inequality (14) becomes an equality if and only if

h = cexp { — A~ D —a)+bl/= 1,},

where ¢ = const # 0, 4 = const and 4 # 0 provided a+b > 0 and p(a—1)+1
<0 or 4> 0 provided a+b <0 and (p—1)(1—a)+b < 0. In the case a+b
<0 and (p—1)(1 —a)+b = 0 inequality (14) becomes an equality if and only
if h = ct*, where ¢ = const # 0, A =const, and A > —[p(a—1)+1]/p > 0.

In a particular case where p=4, a=0, and b=3 we obtain the
inequality otherwise deduced in [1].

7 — Colloquium Mathematicum XLIX.1
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Example 2. Let w=r"% in I, where reabsC and r > 0 in I. Then s
=r 4P yu=0, alld v=1in I. It follows from Remark 2 (b) that in the
considered case W= W. Thus, for he W there is a finite limit

lim v | = lim |h]?

t—a t—a

(Lemma 2 (ii)) and the finite value h(x) exists because p>1 and h is a
continuous function on I. If

t
[r-%dt =c0 for some tel,
a

then it follows from Lemma 3 (i) that h(x) = 0. Similarly, for he W there is a
finite value h(f), and if

B
[r¥dt =00 for some tel,
t

then h(p) = 0.
Applying Theorem 1 we infer the following:

(i) If [ r~%dt < o0 and a function heabsC satisfies the conditions
1

(15) [r 9" |hPdt < o, [riaPdt < oo,
I 1
then there exist finite values h(x) and h(f) and the inequality
(16) R (BNP—|h(@)|?| < p(f r AP de)'/P(f r= % |h|? de)'/e
I 1
is valid.

t B

(ii) If {r~%dt =00 and [r ¥ dt < oo for some tel and a function
a t

heabs C satisfies (15), then there exists a finite value h(f) and the inequality

(17 IR(B)P < p(f r AP de)! /([ r=9/P|h|" de)s

I T
is valid.

t B
(iti) If [r~%dt < oo and [r~%dt = co for some tel and a function
a t
heabs C satisfies (15), then there exists a finite value h(x) and the inequality

(18) |h(@)I® < p(f r1APdt)/P(f r~9P|h|? dr)'/2
I I

is valid.
Inequalities (16), (17), and (18) become equalities only for the function

h=cexp(A [ r-9?dt),

o
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where toel, ¢ = const, A = const, and 4 # O in the case (i), 4 > 0 in (ii), and
A <0 in (iii). ‘

Assuming a =0, f=o and r=1, we infer from (ii)) that for an
arbitrary function h absolutely continuous on (0, o) and satisfying the
integral conditions

[ IhPdt < oo, [ |hPdt < o0
0 0

there is a finite value h(0) and the inequality
(19) |h(0)|” < p(| AP dt)'’?(f || dr)e
(o 0

holds. This inequality becomes an equality only for h = cexp(—Ar), where
=const and A =const >0 (for the case p=2 see [4], Theorem 263,
and [1]).

Now, we consider the case where in (7) no limit conditions appear. We
study the case where u > 0 in I. The case where ¥ < 0 in I can be reduced to
the previous case by assuming —w instead of w. These cases occur most
frequently. Further, we assume that u > 0 almost everywhere in I. In that
case the integral condition (4) in the definition of W is trivially satisfied.

We denote by W the class of functions he W satisfying the following
limit condition:

(20) limsup v|hl? = liminf v|hJF.

t—a t—p
By Remark 1, condition (20) can be written in the form

(20" lim v[h? > lim v|hlP.
t—a t—p
From Theorem 1 we easily obtain (see Theorem 2 in [2])

THEOREM 2. Let u > 0 almost everywhere in the interval 1. Then for an
arbitrary function he W the inequality

(1) [ ulhlpde < p(f rIhIPdt)"/? (] s|hl® de)s
) I

I

holds. If h # 0, then (21) becomes an equality if and only if
t
h=cexp(—4 | wdt),
to

where toel, ¢ = const # 0, A =const > 0, and, simultaneously, the following
conditions are satisfied:

(A) [riwPexp(—pA | wdt)dt < o0,

I to
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t
(B) —oo < lim r|w|P~!(sgnw)exp(—pA | wdt)
to

t—a

t
= lim r|w|?~ ! (sgnw)exp(—pA | wdt) < 0.
t—p to

Inequalities of the formﬁ(21) are usually said to be of Weyl type (see [6]).
We describe the class W. Denote by W, (resp. W°) the class of functions
he W satisfying the following limit condition:
(22) liminf |h| =0 (resp. liminf |h| = 0).
t—a t—p

In the cases considered in the sequel the condition (22) is equivalent to
(22) h(x) =0 (resp. h(B) = 0).

The function v is increasing in I because v =u > 0 in I. Thus, there are limits
imv=v(@ and lmov=v(p)
t—a ’ t—p

and v(x) < v(f).
We introduce the following terminology:
a boundary point a (resp. B) of the interval I is of the I type if v(a) = 0

(resp. v(B) < 0);
a boundary pomt a (resp. B) of the 1nterval I is of the II type if v(a) <O

(resp. v(p) > 0) and jwdt — oo (resp. j'wdt o) for some tel,
a boundary pomt a (resp. B) of the mterval I is of the III type if —
<v(x) <0 (resp. 0 <v(B) < o0) and jwdt > —oo (resp. j'wdt < o0) for

some tel;
a boundary pomt a (resp. B) of the interval I is of the IV type if

v(@= —o (resp. v(B)= o), (j'r “rdpPle =0(1) as t—oa (resp.

B t B
o(f r~¥Pdty" = O(1) as t - B), and | wdt > — oo (resp. [ wdt < o) for some
a t

t

tel.

We observe that the boundary points a and B cannot be both of the I
type simultaneously because v(a) < v(p).

THEOREM 3. Let u > 0 almost everywhere in the interval I.

(i) If the point a is of the I type and the point g is of the II type or a is
of the II type and B is of the I or II type, then W= W.

(1) If the point a is of the 111 type and the point B is of the II type or a
is of the IV type and B is of the I or II type, then W= W,.
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(iii) If the point a is of the I1I type and the point B is of the I type, then
Wo W,. ‘

(iv) If the point o is of the I type and the point B is of the IV type or a is
of the 11 type and B is of the III or IV type, then W= W,.

(v) If the point a is of the I type and the point B is of the I1I type, then
Wo we.

(vi) If both points « and B are of the III or IV type, then W= Wy~ W°

Proof If a is of the I type and heabsC, then v|hf > 0 in some
neighbourhood of a because v is increasing in I. Hence

limsup v|h? = 0.

t—a
If o is of the II type and he W, then it follows from Lemma 3 (i) that
limsup-v|hP = 0.

t—a
If a is of the III type and he W,, then v |h|’ < 0 in some neighbourhood of «,
and hence limsup v|h|P = 0 because — o0 < v(x) < 0 and liminf |h| =0. If «

t—a t~a N
is of the III type and B is of the II or III or IV type and he W, then
lim v|h?P < 0 and lim v|hf® > 0 and it follows from (20) that
t—a t—p

lim v |hPP = 0.

t—a
Since — o0 < v(a) < O, the finite value h(a) exists and h(x) =0, e.g., he W,. If
a is of the IV type and heW,, then it follows from Lemma 4 (i) that
limv|hP =0. If a is of the IV type and he W, then

t—a

t

fr¥dt <o for some tel
and by Lemma 4 (i) there exists a finite value h(x). From Lemma 2 (ii) we
infer that there exists a finite limit lim v|h|P for he W, and hence h(a) =0

t—a
because v(a) = —oo. Thus he W,. Similar symmetric conclusions are valid if
a(p) is replaced by B(x) and the class W, by W°. Based on these consider-

ations the theorem can be easily derived.

CoOROLLARY. (a) Under the assumptions of Theorem 3 (i), inequality (21)
becomes an equality for h # 0 if and only if

t
h=cexp(—4 | wdt),
to

where toel, ¢ =const # 0, A =const >0, and A satisfies condition (A) of
Theorem 2.
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(b) Under the assumptions of Theorem 3 (i) or 3 (iv) or 3 (vi), inequality
(21) is strict for h # 0.
Proof. From Theorem 2 it follows that (21) becomes an equality only

t
for the function h = cexp(—4 [ wdt), where 1 >0 and he W. If the assump-

t
tions of Theorem 3 (i) are sa?isﬁed, then W = W and, consequently, con-
dition (A) of Theorem 2 implies condition (B), which proves (a).
Now, let the assumptions of Theorem 3 (ii) or 3 (vi) be satisfied. Then
W < W, and, simultaneously,

[ 4
fwdt> —o0 for tel

x

t
since a is of the III or IV type. Hence lim exp(—4 | wdt) > 0, and therefore

[ Bind 4 to
exp(—4 [ wdt)¢ W for 1> 0.
o
Similarly we show that if the assumptions of Theorem 3 (iv) are satisfied,
then W = W° and
!
exp(—A4 [ wdt)¢ W° for A >0,

o

which completes the proof of (b).

From the proofs of Theorems 2 and 3 as well as from the Corollary we
easily obtain

THEOREM 4. Let u > 0 almost everywhere in the interval I.

(i) If v(B) < 0, then for an arbitrary function he W with the point o of the
Il type or for an arbitrary function he W, with the point a of the III or IV
type the inequality

(23) fulhPdt— lim v|h® < p(f r|AIPdt)"/?([ s|h|” dt)'/e
I I

1 t=p
holds. If x is of the 11 type and h # 0, then (23) becomes an equality if and only
t

if h=cexp(—4 | wdt), where tyel, c =const # 0, 4 =const >0, and the

Cio
condition

t
(24) [ riwlPexp(—pA [ wdt)dt <
1 to
is satisfied. If « is of the III or IV type and h # 0, then (23) is a strict
inequality.
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(i) If v(a) = O, then for an arbitrary function he W with the point B of the
II type or for an arbitrary function he W° with the point B of the 111 or IV
type the inequality

(25) [ ulh|Pde+1im v[h|P < p([ r|hIPde)"/? ([ s|hl? dt)'/e

1 t—a 1 I

holds. If B is of the II type and h # 0, then (25) becomes an equality if and
t

only if h=cexp(—A | wdt), where toel, c = const 0, A = const >0, and
to

condition (24) is satisfied. If B is of 111 or IV type and h # 0, then (25) is a

strict inequality.

Example 3. We take I = (0, o0) and r = t**. We put w = t@*+b-paie—1)
ifa+b>0,and w= —@*®7 P01 if g4+ b < 0, where a and b are arbitrary
constants such that a+b # 0. From Theorems 2 and 3 we obtain the
inequality

(26) la+b| [ t°**=V|hPdt < p([ tP*|h|Pde)"'P([ 15 |h|P dt)/e
0 0 0

which is valid for an arbitrary function he W; and W = Wif a+b > 0 and
(p—1)(1—a)+b=0or a+b<0 and (p—1)(1—a)+b<0;: W=W, if a+b
<0and (p—1)(1—a)+b>0;and W=W°if a+b>0and (p—1)(1—a)+b
< 0. From the Corollary we infer that if h# 0, then only in the cases
a+b>0 and (p—1)(1—a)+b >0 or a+b <0 and (p—1)(1—a)+b <0 in-
equality (26) becomes an equality only for the function

—_ -1)(1-a)+b)/(p-1
h = cexp | — A0~ DUI-a+bye-11

where ¢ = const # 0 and 4 = const > 0. In the case a+b > 0, (p—1)(1—a)+
+b >0, and p =2 we obtain the inequalities considered in [6]. If a =0,
b =1, and p = 2, we obtain the well-known Weyl inequality (cf. [8], p. 272,
[4], Theorem 226, and [5], p. 128).

Now, we enlarge the class of considered functions r and w and we derive
integral inequalities of the form (2). ,

Let a =xg<Xx; < ... <X;<Xj4y; < ... <X,<Xp,+y =p and let r and
w be some given real functions which are defined and absolutely continuous
in each of the open intervals (x;, x;+), i =0, 1, ..., n, and such that w # 0
in one of those intervals, r > 0 and v = r|w’” sgnw is absolutely continuous
in each of the intervals, and the limit conditions

(27) limsupv > —oo, Ilminfv<owo, i=1,...,n,

l—'xi—‘ f"x,""

are satisfied.
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Let v;(x) = limsup v — liminf v denote the jump of the function v at the

t—2x— t—=x+

point xel. It follows from (27) that v;(x;) > —oo for i =1, ..., n. If v;(x;)
= o0, then we assume in the sequel that
if h(x;) =0,
if h(x;) # 0.

Further, let W, W, W,, and W° denote classes of the functions heabsC
defined as previously.

THEOREM 5. For every function he W the inequality

0, () R (xl? = { >

(28) Y v;(x)|h(x)lP+ lim v|hP— lim v |hlP
t—p

i=1 t—a

< p(J rihlPde) P ( s|h|Pde) 2+ [ ulh|? dt
I ' I

holds. If h # 0, then (28) becomes an equality if and only if h = cp, where c
=const # 0 and ¢ # 0 in I is an absolutely continuous function in I such that
in each of the intervals (x;, x;4,), i=0,1, ..., n, we have

t

@ =c;exp(A [ wat),

t
where t;e(x;, X; ) is an arbitrary fixed point, c¢; = const, and A = const > 0,
provided the integral conditions

Xi+1 t
[ riwlPexp(pA | wdt)dt < oo,
x; g..
(29)
Xi+1 ¢
{ |r1wlP~ ' sgnwy|exp(pA | wdt)dt < oo
xi 1

are satisfied or ¢ =0 otherwise.
Proof. Let he W. By (27) and Remark 2 (a) we have

(30) liminf v|hfP < o0, limsup vhP > — o

tox;it Ut T B

fori=0,1,...,n. From Lemma 2 it follows that the limits in (30) exist as
proper and finite ones. From the proof of Theorem 1 we get

(31) lim v|hP— lim v|h?

1xi4 1~ eoxt
Xi4+1 ) Xi+1 Ti+1
SAVP | rlhPdt+(p—1)4i [ s|hPdt+ | ul|hPdt

for i=0,1,...,n, where A is an arbitrary positive constant. Take an
arbitrary i =1, ..., n. By the continuity of h at the point x; and from the
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existence of finite limits lim v|hP and lim v|hfP it follows_that if there

1—=x;— t—ox;+

exists he W such that h(x;) # 0, then there exist finite limits lim v and

t—=x;—
lim v, and v;(x;) < co. Hence, in that case we have
t—x; + ,
(32 lim v|h|P— Lim v|hP = v;(x;)|h(x;)|".
1ox;— t—x;+
If h(x;) = O for every he W, then in the case where lim v|h[f # 0 by (27) we
t-’x,-—
have lim v = oo, and therefore
l-’x,-—

lim v|hP > 0.

t—'xi—
Similarly we deduce that

lim v|h? <O.

t—x;+
Thus in the considered case v;(x;) = oo and
(33) lim vlhP— lim vlh|® = 0 = v;(x;)|h(x;)|?.
tox;— t-’xi+

Adding by sides inequalities (31) and using (32) and (33) we obtain

34 Y v;(x)h(x)P+ lim v|hP— lim v|hfP

i=1 t—p t—a

< A1-p I r|h|Pdt+(p—l)ﬂ Islh|pdt+ julhlpdt
1 I I

for A > 0. By (34), in an analogous way as in the proof of Theorem 1 we get
inequality (28).

Now, let (28) be an equality for some function he W and h # 0. In that
case also (34) becomes an equality with 4 = 4,, where A, > O satisfies (11).
Simultaneously, inequalities (31) hold with 4 = J,. Thus all the inequalities
(31) become equalities for that function h with A = A,. From Theorem 1 it
follows that

t
h = c;exp(4, | wdt)

4
in the interval (x;, x;4,), where t;e{x;, x;+,) and c; = const # 0, provided
conditions (29) are satisfied for A =4, or h =0 in (x;, x;,,) if for A = 4, at
least one of the conditions (29) does not hold. The function h of the above -
stated form satisfies (11) identically, and therefore A, >0 is an arbitrary
constant. Now, it is easy to complete the proof.

We denote by W the class of functions he W satisfying the following limit
condition:
(35) liminf v|hPP < limsup v |AlP.

t—a t—p

From Theorem 5 we easily obtain (see Theorem 2)
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THEOREM 6. For every function he W the inequality

(36) i v;(x) |h(x)IP < p(f r AP de)* P ([ s|h|Pdt)* 8+ [ u|h|?dt
1 I I

i=1
holds. Inequality (36) becomes an equality if and only if h=ce, where c
= const and ¢ is a function satisfying all the conditions of Theorem 5 and the
additional condition

lim v|p|’ = lim v|@?.
t—a t—f

In an interesting case where u > 0 almost everywhere in I the class w
can be described similarly as the class W (see Theorems 3 and 4) because by
changing w into —w the class W becomes W.

Example 4. Let I =(a, B), —o0o <a <pB < o, and let xel be an ar-
bitrary fixed point. Let r > O be an arbitrary absolutely continuous function
inl. We put w=r"% in (a, x) and w= —r~% in (x, ). In that case u = 0
in I and from Theorem 6 we obtain the inequality

(37) |h(x)|p < g(j rlﬁl”dt)l“’(j r—"“’lhl”dt)”"
I I

which is valid for he W. Using Theorem 3 we infer the following:

t B
if {r79?dt=c0 and [r~%?dt = oo for some tel, then W =W,
a t

t B
if jr‘Q/Pdt < o0 and jr‘qlpdt = oo for tel, then W = WO;
- a t

t 8
if [r~¥Pdt = and [r %Pdt < oo for tel, then W = W°;
t

a

if (r~9?dt <o, then W =W, W°.
I

If h# 0, then only in the case

t B
fr¥dt=0 and [r %dt=oc for tel

a t
inequality (37) becomes an equality if and only if
) t
h=cexp(—A|f r~¥7di),

where ¢ = const # 0 and A = const > 0 provided

t
fr'9exp(—pA|[ r-¥rdt|)dt < 0.

1
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Taking «a = —e0, f =00, and r =1 we obtain the inequality
(38) |h(x)|ﬂ<’-2’( [ |hPdeye( [ [hPd)Ys, oo < x < oo,

which is valid for an arbitrary function h absolutely continuous on (— o0, o0)
for which the right-hand side of the inequality is finite. Inequality (38)
becomes an equality only for the function h = ce™*'~* | where ¢ = const and
A = const > 0. :

Taking «a =0, f=o0, and r=1"" we obtain for 0 <x < oo the
inequality

(39) |h(x)|” < g(j l‘p/qll‘-llpdt)””(j' ¢! |h|”dt)”q
0 0

which is valid for an arbitrary function h absolutely continuous on (0, o) for
which the right-hand side of (39) is finite. Inequality (39) becomes an
equality only for the function h = c(t/x)* for te(0, x> and h = c(t/x)”* for
te(x, o0), where ¢ = const and A = const > 0.

Inequalities (38) and (39) were considered in [6] in the case p = 2.
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