1984

FASC. 1

ON SOME INTEGRAL INEQUALITIES OF WEYL TYPE

BY

B. FLORKIEWICZ (WROCŁAW)

The paper is a continuation of [2]. We derive and study some integral inequalities of Weyl type (see [6]), i.e., integral inequalities of the form

(1)
$$\int_I u |h|^p dt \leqslant p \left(\int_I r |\dot{h}|^p dt \right)^{1/p} \left(\int_I s |h|^p dt \right)^{1/q},$$

where $I = (\alpha, \beta)$, $-\infty \le \alpha < \beta \le \infty$, $h \equiv dh/dt$, and p > 1. The inequalities of the form (1) were investigated by Redheffer [6], Benson [1], Florkiewicz and Rybarski [3], and others. The multidimensional case was studied by Redheffer (see [7]). In the second part of the paper some integral inequalities of the form

(2)
$$\sum_{i=1}^{n} v_{j}(x_{i}) |h(x_{i})|^{p} \leq p \left(\int_{I} r |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{I} s |h|^{p} dt \right)^{1/q} + \int_{I} u |h|^{p} dt$$

are obtained. The inequalities of the form (2) were considered by Redheffer (see [6] and [7]).

We denote by $abs\ C$ the class of real functions which are defined and absolutely continuous on the open interval $I=(\alpha,\beta), -\infty \le \alpha < \beta \le \infty$. Let p be any real number such that p>1 and let q=p/(p-1). Let $r\in abs\ C$ and $w\in abs\ C$ be functions such that

$$r > 0$$
, $w \not\equiv 0$ in I and $r|w|^{p-1} \operatorname{sgn} w \in abs C$.

Let us put

$$s \equiv r|w|^p$$
, $u \equiv (r|w|^{p-1}\operatorname{sgn} w)$, and $v \equiv r|w|^{p-1}\operatorname{sgn} w$.

We denote by W the class of functions $h \in abs C$ satisfying the following integral conditions:

(3)
$$\int_{I} r |\dot{h}|^{p} dt < \infty, \quad \int_{I} s |h|^{p} dt < \infty.$$

LEMMA 1. For every function $h \in W$ the function $v(|h|^p)$ is summable in the interval I.

(b)

Proof. By Hölder's inequality for $h \in W$ we obtain

$$\int_{I} |v(|h|^{p}) \cdot |dt = \int_{I} r |w|^{p-1} |h|^{p-1} |\dot{h}| dt \leq (\int_{I} r |\dot{h}|^{p} dt)^{1/p} (\int_{I} s |h|^{p} dt)^{1/q}.$$

We denote by \tilde{W} the class of functions $h \in W$ satisfying the following integral and limit conditions:

$$\int_I u |h|^p dt > -\infty;$$

(5)
$$\limsup_{t\to a} v |h|^p > -\infty, \quad \liminf_{t\to \beta} v |h|^p < \infty.$$

LEMMA 2. Let h belong to \tilde{W} . Then

- (i) the function $u|h|^p$ is summable in I;
- (ii) there exist finite limits $\lim v|h|^p$ and $\lim v|h|^p$.

Proof. (i) Let $h \in \widetilde{W}$ and let $\langle a, b \rangle \subset I$ be an arbitrary closed interval. Then the function $(v|h|^p)$ is summable in $\langle a,b\rangle$, since $v|h|^p \in abs\ C$ and the function $v(|h|^p)$ is summable in I by Lemma 1. Hence we get the equality

(6)
$$\int_{a}^{b} u |h|^{p} dt = v |h|^{p} \Big|_{a}^{b} - \int_{a}^{b} v (|h|^{p})^{2} dt$$

and, using (5), in a similar way as in the proof of Theorem 1 in [2] one can show that the function $u|h|^p$ is summable in I.

(ii) By Lemmas 1 and 2 (i) it follows from (6) that for $h \in \widetilde{W}$ the finite limits $\lim v |h|^p$ and $\lim v |h|^p$ exist.

Remark 1. By Lemma 2 (ii), conditions (5) can be written as

(5')
$$\lim_{t\to a} v |h|^p > -\infty, \quad \lim_{t\to b} v |h|^p < \infty.$$

Remark 2. From the proof of Lemma 2 it follows that conditions (4) and (5) in the definition of \tilde{W} are equivalent to one of the following three conditions:

$$\int_{T}u\,|h|^{p}\,dt<\infty,$$

(a) $\liminf_{t\to\alpha}v|h|^p<\infty,\quad \limsup_{t\to\beta}v|h|^p>-\infty;$

- (c) there exist finite limits $\lim v |h|^p$ and $\lim v |h|^p$.

the function $u |h|^p$ is summable in I;

THEOREM 1. For an arbitrary function $h \in \widetilde{W}$ the inequality

(7)
$$\int_{I} u |h|^{p} dt - \lim_{t \to \beta} v |h|^{p} + \lim_{t \to \alpha} v |h|^{p} \leq p \left(\int_{I} r |h|^{p} dt \right)^{1/p} \left(\int_{I} s |h|^{p} dt \right)^{1/q}$$

is valid. If $h \not\equiv 0$, then we have an equality in (7) if and only if

$$(*) h = c \exp(\lambda \int_{t_0}^t w \, dt),$$

where t_0 is an arbitrary fixed point in I and $c = \text{const} \neq 0$, $\lambda = \text{const} \neq 0$, and λ satisfies the conditions

(A)
$$\int_{I} r|w|^{p} \exp(p\lambda \int_{t_{0}}^{t} w dt) dt < \infty$$
;

(B) there exist finite limits of the expression

$$r|w|^{p-1}(\operatorname{sgn} w)\exp(p\lambda\int_{t_0}^t w\,dt)$$

as $t \to \alpha$ and $t \to \beta$.

Proof. Let $\varphi \in abs C$ be an arbitrary function such that $\varphi > 0$ in I and $r|\dot{\varphi}|^{p-1}\operatorname{sgn}\dot{\varphi} \in abs C$. Further, let $h \in abs C$ and

(8)
$$g = r |\dot{h}|^p + (r |\dot{\phi}|^{p-1} \operatorname{sgn} \dot{\phi}) \cdot \varphi^{1-p} |\dot{h}|^p - (r |\dot{\phi}|^{p-1} (\operatorname{sgn} \dot{\phi}) \varphi^{1-p} |\dot{h}|^p) .$$

Then, from Lemma 1 in [2] it follows that $g \ge 0$ in I and g = 0 in I if and only if $h = c\varphi$, where c = const. Putting

$$\varphi = \exp\left(\lambda \int_{t_0}^t w \, dt\right)$$

in (8), where $t_0 \in I$ and $\lambda = \text{const} \neq 0$, we obtain

(9)
$$g_{\lambda} = r |\dot{h}|^{p} + (p-1)|\lambda|^{p} s |h|^{p} + |\lambda|^{p-1} \operatorname{sgn} \lambda [u |h|^{p} - (v |h|^{p})^{2}],$$

where $g_{\lambda} \ge 0$ in I and $g_{\lambda} = 0$ in I if and only if (*) holds and c = const. By Lemma 1, for $h \in W$ the function g_{λ} is summable in I.

Let $h \in \tilde{W}$. Then, by Lemma 2, all the functions in (9) are summable in I, and since $g_{\lambda} \ge 0$ in I, we obtain

$$(10) -\operatorname{sgn}\lambda\left(\int_{I}u|h|^{p}dt - \lim_{t \to \beta}v|h|^{p} + \lim_{t \to \alpha}v|h|^{p}\right)$$

$$\leq |\lambda|^{1-p}\int_{I}r|\dot{h}|^{p}dt + (p-1)|\lambda|\int_{I}s|h|^{p}dt$$

for an arbitrary $\lambda \neq 0$ and the equality in (10) appears if and only if $\int_{I} g_{\lambda} dt = 0$, e.g., $g_{\lambda} = 0$ in I. If $h \neq 0$, then

$$\int_{I} s |h|^{p} dt > 0$$

because $w \not\equiv 0$ in I. The right-hand side of (10) attains the minimal value with respect to λ for λ_h such that

(11)
$$|\lambda_h| = \left(\int_I r |\dot{h}|^p dt \right)^{1/p} \left(\int_I s |h|^p dt \right)^{-1/p}.$$

Hence we obtain immediately inequality (7).

If for some $h \in W$ and $h \not\equiv 0$ inequality (7) becomes an equality and if

(12)
$$\int_I u |h|^p dt - \lim_{t \to \beta} v |h|^p + \lim_{t \to \alpha} v |h|^p \geqslant 0,$$

then for $\lambda_h < 0$, where λ_h satisfies (11), we obtain an equality in (10) when λ $=\lambda_h$, and hence

$$(**) h = c \exp(\lambda_h \int_{t_0}^t w \, dt).$$

At the same time we easily check that for h as in (**) condition (12) holds for $\lambda_h < 0$. Similarly, we consider the case where in (12) the inverse inequality takes place (then $\lambda_h > 0$). Thus, if we have an equality in (7) for some $h \not\equiv 0$, then (**) holds for some $\lambda_h \neq 0$, where $c \neq 0$ is an arbitrary constant. The function h in (**) satisfies (11) as an identity, and therefore, finally, if we have an equality in (7), then (*) holds for an arbitrary constant $\lambda \neq 0$. The function h defined in (*) must belong to the class \tilde{W} , and hence by Remark 2 (c) we obtain immediately conditions (A) and (B). On the other hand, we easily check that for the function h defined in (*), where $\lambda \neq 0$, and $h \in \widetilde{W}$ inequality (7) becomes an equality, which completes the proof.

In the sequel, we use the following lemmas for the description of the class \widetilde{W} .

LEMMA 3. Let $h \in abs C$ and $\int s |h|^p dt < \infty$.

(i) If there exists
$$\lim_{t \to a} v < 0$$
 (resp. $\lim_{t \to a} v > 0$) and
$$\int_{a}^{t} w \, dt = -\infty \quad (resp. \int_{a}^{t} w \, dt = \infty) \quad \text{for some } t \in I,$$

then

$$\limsup_{t\to a} v |h|^p = 0 \quad (resp. \liminf_{t\to a} v |h|^p = 0).$$

(ii) If there exists $\lim v > 0$ (resp. $\lim v < 0$) and

$$\int_{t}^{\beta} w \, dt = \infty \quad (resp. \int_{t}^{\beta} w \, dt = -\infty) \quad \text{for some } t \in I,$$

then

$$\liminf_{t \to \beta} v |h|^p = 0 \quad (resp. \limsup_{t \to \beta} v |h|^p = 0).$$

Proof. We prove Lemma 3 only in one case. The remaining cases can be proved similarly. Assume that there exists $\lim v < 0$ and

$$\int_{a}^{t} w \, dt = -\infty.$$

Then there exists a neighbourhood U of the point α such that v < 0 and w < 0 in U, since $\operatorname{sgn} w = \operatorname{sgn} v$. For arbitrary points $a \in U$ and $t \in U$ such that $\alpha < a < t < \beta$ we have

$$\int_a^t s |h|^p dt = \int_a^t v |h|^p w dt \geqslant \sup_{(a,t)} v |h|^p \int_a^t w dt.$$

Since

$$\int_{a}^{t} s |h|^{p} dt < \infty \quad \text{and} \quad \int_{a}^{t} w dt = -\infty$$

by assumptions and, simultaneously, $v|h|^p \le 0$ in U, we get

$$\sup_{(a,t)} v |h|^p = 0 \quad \text{for } t \in U.$$

Hence

$$\limsup_{t\to\alpha}v\,|h|^p=0.$$

LEMMA 4. Let $h \in abs C$ and $\int_{I} r |\dot{h}|^{p} dt < \infty$.

(i) *If*

$$\int_{\alpha}^{t} r^{-q/p} dt < \infty \quad (resp. \int_{t}^{\beta} r^{-q/p} dt < \infty)$$

for some $t \in I$, then there exists a finite limit value

$$h(\alpha) = \lim_{t \to \alpha} h \quad (resp. \ h(\beta) = \lim_{t \to \beta} h).$$
(ii) If
$$v(\int_{\alpha}^{t} r^{-q/p} dt)^{p/q} = O(1) \quad as \ t \to \alpha$$

$$(resp. \ v(\int_{t}^{\beta} r^{-q/p} dt)^{p/q} = O(1) \quad as \ t \to \beta)$$

and

$$\liminf_{t\to a}|h|=0 \quad (resp. \liminf_{t\to \beta}|h|=0),$$

then

$$\lim_{t\to a} v |h|^p = 0 \quad (resp. \lim_{t\to \beta} v |h|^p = 0).$$

Lemma 4 (i) is identical to Lemma 3 in [2], and Lemma 4 (ii) follows from the proof of Theorem 3 in [2].

Example 1. Let $I = (\alpha, \beta)$, where $0 \le \alpha < \beta < \infty$, and let $r = t^{pa}$ and $w = t^{(a+b-pa)/(p-1)}$ in I with arbitrary constants a and b. In that case we obtain $s = t^{ab}$, $u = (a+b)t^{a+b-1}$, and $v = t^{a+b}$ in I.

Let $0 < \alpha < \beta < \infty$. Then $\int_I r^{-q/p} dt < \infty$ and from Lemma 4 (i) it follows that for $h \in W$ there exist finite values $h(\alpha)$ and $h(\beta)$. Hence, for $h \in W$ there exist finite limits

$$\lim_{t \to a} v |h|^p = \alpha^{a+b} |h(\alpha)|^p \quad \text{and} \quad \lim_{t \to \beta} v |h|^p = \beta^{a+b} |h(\beta)|^p.$$

Thus, by Remark 2 (c), $\tilde{W} = W$. Now, using Theorem 1 we deduce the following:

If a function $h \in abs C$ satisfies the conditions

$$\int_{\alpha}^{\beta} t^{pa} |\dot{h}|^{p} dt < \infty, \quad \int_{\alpha}^{\beta} t^{qb} |\dot{h}|^{p} dt < \infty,$$

then there exist finite limit values $h(\alpha)$ and $h(\beta)$ and the inequality

(13)
$$|(a+b) \int_{\alpha}^{\beta} t^{a+b-1} |h|^{p} dt + \alpha^{a+b} |h(\alpha)|^{p} - \beta^{a+b} |h(\beta)|^{p} |$$

$$\leq p \left(\int_{\alpha}^{\beta} t^{pa} |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{\alpha}^{\beta} t^{qb} |h|^{p} dt \right)^{1/q}$$

is valid.

Inequality (13) becomes an equality if and only if

$$h = c \exp \left\{ \lambda t^{[(p-1)(1-a)+b]/(p-1)} \right\}$$
 as $(p-1)(1-a)+b \neq 0$

or

$$h = ct^{\lambda}$$
 as $(p-1)(1-a)+b=0$,

where c = const and $\lambda = \text{const} \neq 0$.

Let $0 = \alpha < \beta < \infty$. In a similar way as above we show that for $h \in W$ there exist a finite value $h(\beta)$ and a finite limit

$$\lim_{t\to\beta}v|h|^p=\beta^{a+b}|h(\beta)|^p.$$

If $a+b \ge 0$, then it can be easily seen that for $h \in abs C$ condition (4) and the first of conditions (5) are satisfied. Therefore $\tilde{W} = W$ in that case. If p(a-1)+1 < 0, then

$$\int_{0}^{t} r^{-q/p} dt < \infty \quad \text{for some } t \in I,$$

and using Lemma 4 (i) we infer that for $h \in W$ there exists a finite value h(0). Hence, we deduce that if, in addition, a+b>0, then

$$\lim_{t\to 0} v |h|^p = 0$$

for an arbitrary $h \in W$ since v(0) = 0. If a + b < 0 and $(p-1)(1-a) + b \le 0$, then $v(0) = \infty$, $\int_{0}^{t} w \, dt = \infty$ for $t \in I$, and from Lemma 3 (i) it follows that if $h \in W$, then

$$\liminf_{t\to 0} v |h|^p = 0.$$

Thus the conditions of Remark 2 (a) are satisfied for $h \in W$ and $\tilde{W} = W$. Now, applying Theorem 1 we get the following:

Assume that the conditions a+b>0 and p(a-1)+1<0 or a+b<0 and $(p-1)(1-a)+b\leq 0$ are satisfied. Then if $h\in abs\ C$ satisfies

$$\int_{0}^{\beta} t^{pa} |\dot{h}|^{p} dt < \infty \quad and \quad \int_{0}^{\beta} t^{qb} |h|^{p} dt < \infty,$$

then there exists a finite limit value $h(\beta)$ and the inequality

(14)
$$|(a+b)\int_{0}^{\beta} t^{a+b-1} |h|^{p} dt - \beta^{a+b} |h(\beta)|^{p}| \le p \left(\int_{0}^{\beta} t^{pa} |\dot{h}|^{p} dt\right)^{1/p} \left(\int_{0}^{\beta} t^{qb} |h|^{p} dt\right)^{1/q}$$

is valid.

If $h \not\equiv 0$, then in the cases a+b>0 and p(a-1)+1<0 or a+b<0 and (p-1)(1-a)+b<0 inequality (14) becomes an equality if and only if

$$h = c \exp \left\{ -\lambda t^{[(p-1)(1-a)+b]/(p-1)} \right\},\,$$

where $c = \text{const} \neq 0$, $\lambda = \text{const}$ and $\lambda \neq 0$ provided a+b>0 and p(a-1)+1 < 0 or $\lambda > 0$ provided a+b<0 and (p-1)(1-a)+b<0. In the case a+b<0 and (p-1)(1-a)+b=0 inequality (14) becomes an equality if and only if $b=ct^{\lambda}$, where $c=\text{const} \neq 0$, $\lambda = \text{const}$, and $\lambda > -\lceil p(a-1)+1 \rceil/p > 0$.

In a particular case where p = 4, a = 0, and b = 3 we obtain the inequality otherwise deduced in [1].

Example 2. Let $w = r^{-q/p}$ in I, where $r \in abs C$ and r > 0 in I. Then $s = r^{-q/p}$, u = 0, and v = 1 in I. It follows from Remark 2 (b) that in the considered case $\tilde{W} = W$. Thus, for $h \in W$ there is a finite limit

$$\lim_{t\to\alpha}v\,|h|^p=\lim_{t\to\alpha}|h|^p$$

(Lemma 2 (ii)) and the finite value $h(\alpha)$ exists because p > 1 and h is a continuous function on I. If

$$\int_{a}^{t} r^{-q/p} dt = \infty \quad \text{for some } t \in I,$$

then it follows from Lemma 3 (i) that $h(\alpha) = 0$. Similarly, for $h \in W$ there is a finite value $h(\beta)$, and if

$$\int_{t}^{\beta} r^{-q/p} dt = \infty \quad \text{for some } t \in I,$$

then $h(\beta) = 0$.

Applying Theorem 1 we infer the following:

(i) If $\int_{I} r^{-q/p} dt < \infty$ and a function $h \in abs C$ satisfies the conditions

(15)
$$\int_{I} r^{-q/p} |h|^{p} dt < \infty, \quad \int_{I} r |\dot{h}|^{p} dt < \infty,$$

then there exist finite values $h(\alpha)$ and $h(\beta)$ and the inequality

(16)
$$||h(\beta)|^{p} - |h(\alpha)|^{p}| \leq p \left(\int_{I} r |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{I} r^{-q/p} |h|^{p} dt \right)^{1/q}$$

is valid.

(ii) If $\int_{\alpha}^{t} r^{-q/p} dt = \infty$ and $\int_{t}^{\beta} r^{-q/p} dt < \infty$ for some $t \in I$ and a function $h \in abs\ C$ satisfies (15), then there exists a finite value $h(\beta)$ and the inequality

(17)
$$|h(\beta)|^{p} \leq p \left(\int_{I} r |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{I} r^{-q/p} |h|^{p} dt \right)^{1/q}$$

is valid.

(iii) If $\int_{\alpha}^{t} r^{-q/p} dt < \infty$ and $\int_{t}^{\beta} r^{-q/p} dt = \infty$ for some $t \in I$ and a function $h \in abs\ C$ satisfies (15), then there exists a finite value $h(\alpha)$ and the inequality

(18)
$$|h(\alpha)|^{p} \leq p \left(\int_{I} r |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{I} r^{-q/p} |h|^{p} dt \right)^{1/q}$$

is valid.

Inequalities (16), (17), and (18) become equalities only for the function

$$h=c\exp(\lambda\int_{t_0}^t r^{-q/p}dt),$$

where $t_0 \in I$, c = const, $\lambda = \text{const}$, and $\lambda \neq 0$ in the case (i), $\lambda > 0$ in (ii), and $\lambda < 0$ in (iii).

Assuming $\alpha = 0$, $\beta = \infty$ and r = 1, we infer from (iii) that for an arbitrary function h absolutely continuous on $(0, \infty)$ and satisfying the integral conditions

$$\int_{0}^{\infty} |h|^{p} dt < \infty, \qquad \int_{0}^{\infty} |\dot{h}|^{p} dt < \infty$$

there is a finite value h(0) and the inequality

(19)
$$|h(0)|^{p} \leqslant p \left(\int_{0}^{\infty} |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{0}^{\infty} |h|^{p} dt \right)^{1/q}$$

holds. This inequality becomes an equality only for $h = c \exp(-\lambda t)$, where c = const and $\lambda = \text{const} > 0$ (for the case p = 2 see [4], Theorem 263, and [1]).

Now, we consider the case where in (7) no limit conditions appear. We study the case where u > 0 in I. The case where u < 0 in I can be reduced to the previous case by assuming -w instead of w. These cases occur most frequently. Further, we assume that u > 0 almost everywhere in I. In that case the integral condition (4) in the definition of \tilde{W} is trivially satisfied.

We denote by \hat{W} the class of functions $h \in \tilde{W}$ satisfying the following limit condition:

(20)
$$\limsup_{t \to a} v |h|^p \ge \liminf_{t \to \beta} v |h|^p.$$

By Remark 1, condition (20) can be written in the form

(20')
$$\lim_{t \to a} v |h|^p \geqslant \lim_{t \to b} v |h|^p.$$

From Theorem 1 we easily obtain (see Theorem 2 in [2])

THEOREM 2. Let u > 0 almost everywhere in the interval I. Then for an arbitrary function $h \in \hat{W}$ the inequality

(21)
$$\int_{I} u |h|^{p} dt \leq p \left(\int_{I} r |h|^{p} dt \right)^{1/p} \left(\int_{I} s |h|^{p} dt \right)^{1/q}$$

holds. If $h \not\equiv 0$, then (21) becomes an equality if and only if

$$h=c\exp(-\lambda\int_{t_0}^t w\,dt),$$

where $t_0 \in I$, $c = \text{const} \neq 0$, $\lambda = \text{const} > 0$, and, simultaneously, the following conditions are satisfied:

(A)
$$\int_{I} r |w|^{p} \exp(-p\lambda \int_{t_{0}}^{t} w dt) dt < \infty,$$

(B)
$$-\infty < \lim_{t \to \alpha} r |w|^{p-1} (\operatorname{sgn} w) \exp\left(-p\lambda \int_{t_0}^t w \, dt\right)$$
$$= \lim_{t \to \beta} r |w|^{p-1} (\operatorname{sgn} w) \exp\left(-p\lambda \int_{t_0}^t w \, dt\right) < \infty.$$

Inequalities of the form (21) are usually said to be of Weyl type (see [6]). We describe the class \hat{W} . Denote by W_0 (resp. W^0) the class of functions $h \in W$ satisfying the following limit condition:

(22)
$$\liminf_{t \to a} |h| = 0 \quad (\text{resp. } \liminf_{t \to b} |h| = 0).$$

In the cases considered in the sequel the condition (22) is equivalent to

(22')
$$h(\alpha) = 0 \quad (\text{resp. } h(\beta) = 0).$$

The function v is increasing in I because $\dot{v} = u > 0$ in I. Thus, there are limits

$$\lim_{t\to a} v = v(a) \quad \text{and} \quad \lim_{t\to \beta} v = v(\beta)$$

and $v(\alpha) < v(\beta)$.

We introduce the following terminology:

a boundary point α (resp. β) of the interval I is of the I type if $v(\alpha) \ge 0$ (resp. $v(\beta) \le 0$);

a boundary point α (resp. β) of the interval I is of the II type if $v(\alpha) < 0$ (resp. $v(\beta) > 0$) and $\int_{0}^{t} w \, dt = -\infty$ (resp. $\int_{0}^{\beta} w \, dt = \infty$) for some $t \in I$;

a boundary point α (resp. β) of the interval I is of the III type if $-\infty$ $< v(\alpha) < 0$ (resp. $0 < v(\beta) < \infty$) and $\int_{\alpha}^{t} w \, dt > -\infty$ (resp. $\int_{t}^{\beta} w \, dt < \infty$) for some $t \in I$;

a boundary point α (resp. β) of the interval I is of the IV type if $v(\alpha) = -\infty$ (resp. $v(\beta) = \infty$), $v(\int_{\alpha}^{t} r^{-q/p} dt)^{p/q} = O(1)$ as $t \to \alpha$ (resp. $v(\int_{\alpha}^{\beta} r^{-q/p} dt)^{p/q} = O(1)$ as $t \to \beta$), and $\int_{\alpha}^{t} w dt > -\infty$ (resp. $\int_{t}^{\beta} w dt < \infty$) for some $t \in I$.

We observe that the boundary points α and β cannot be both of the I type simultaneously because $v(\alpha) < v(\beta)$.

THEOREM 3. Let u > 0 almost everywhere in the interval I.

- (i) If the point α is of the I type and the point β is of the II type or α is of the II type and β is of the I or II type, then $\hat{W} = W$.
- (ii) If the point α is of the III type and the point β is of the II type or α is of the IV type and β is of the I or II type, then $\hat{W} = W_0$.

- (iii) If the point α is of the III type and the point β is of the I type, then $\hat{W} \supset W_0$.
- (iv) If the point α is of the I type and the point β is of the IV type or α is of the II type and β is of the III or IV type, then $\hat{W} = W_0$.
- (v) If the point α is of the I type and the point β is of the III type, then $\hat{W} \supset W^0$.
- (vi) If both points α and β are of the III or IV type, then $\hat{W} = W_0 \cap W^0$ Proof. If α is of the I type and $h \in abs C$, then $v |h|^p \ge 0$ in some neighbourhood of α because v is increasing in I. Hence

$$\limsup_{t\to a} v |h|^p \geqslant 0.$$

If α is of the II type and $h \in W$, then it follows from Lemma 3 (i) that

$$\limsup_{n\to\infty}v\,|h|^p=0.$$

If α is of the III type and $h \in W_0$, then $v |h|^p \le 0$ in some neighbourhood of α , and hence $\limsup_{t \to \alpha} v |h|^p = 0$ because $-\infty < v(\alpha) < 0$ and $\liminf_{t \to \alpha} |h| = 0$. If α is of the III type and β is of the II or III or IV type and $h \in \widehat{W}$, then $\lim_{t \to \alpha} v |h|^p \le 0$ and $\lim_{t \to \beta} v |h|^p \ge 0$ and it follows from (20') that

$$\lim_{n\to\infty}v\,|h|^p=0.$$

Since $-\infty < v(\alpha) < 0$, the finite value $h(\alpha)$ exists and $h(\alpha) = 0$, e.g., $h \in W_0$. If α is of the IV type and $h \in W_0$, then it follows from Lemma 4 (ii) that $\lim_{t \to a} v |h|^p = 0$. If α is of the IV type and $h \in \hat{W}$, then

$$\int_{\alpha}^{t} r^{-q/p} dt < \infty \quad \text{for some } t \in I$$

and by Lemma 4 (i) there exists a finite value $h(\alpha)$. From Lemma 2 (ii) we infer that there exists a finite limit $\lim_{t\to\alpha}v|h|^p$ for $h\in\hat{W}$, and hence $h(\alpha)=0$ because $v(\alpha)=-\infty$. Thus $h\in W_0$. Similar symmetric conclusions are valid if $\alpha(\beta)$ is replaced by $\beta(\alpha)$ and the class W_0 by W^0 . Based on these considerations the theorem can be easily derived.

COROLLARY. (a) Under the assumptions of Theorem 3 (i), inequality (21) becomes an equality for $h \not\equiv 0$ if and only if

$$h = c \exp(-\lambda \int_{t_0}^t w \, dt),$$

where $t_0 \in I$, $c = \text{const} \neq 0$, $\lambda = \text{const} > 0$, and λ satisfies condition (A) of Theorem 2.

(b) Under the assumptions of Theorem 3 (ii) or 3 (iv) or 3 (vi), inequality (21) is strict for $h \not\equiv 0$.

Proof. From Theorem 2 it follows that (21) becomes an equality only for the function $h = c \exp(-\lambda \int_{t_0}^{t} w \, dt)$, where $\lambda > 0$ and $h \in \hat{W}$. If the assumptions of Theorem 3 (i) are satisfied, then $\hat{W} = W$ and, consequently, condition (A) of Theorem 2 implies condition (B), which proves (a).

Now, let the assumptions of Theorem 3 (ii) or 3 (vi) be satisfied. Then $\hat{W} \subset W_0$ and, simultaneously,

$$\int_{a}^{t} w \, dt > -\infty \quad \text{for } t \in I$$

since α is of the III or IV type. Hence $\lim_{t\to \alpha} \exp\left(-\lambda \int_{t_0}^t w \, dt\right) > 0$, and therefore

$$\exp(-\lambda \int_{t_0}^t w \, dt) \notin \hat{W} \quad \text{for } \lambda > 0.$$

Similarly we show that if the assumptions of Theorem 3 (iv) are satisfied, then $\hat{W} = W^0$ and

$$\exp(-\lambda\int_{t_0}^t w\,dt)\notin W^0 \quad \text{for } \lambda>0,$$

which completes the proof of (b).

From the proofs of Theorems 2 and 3 as well as from the Corollary we easily obtain

THEOREM 4. Let u > 0 almost everywhere in the interval I.

(i) If $v(\beta) \leq 0$, then for an arbitrary function $h \in W$ with the point α of the II type or for an arbitrary function $h \in W_0$ with the point α of the III or IV type the inequality

(23)
$$\int_{I} u |h|^{p} dt - \lim_{t \to \beta} v |h|^{p} \leqslant p \left(\int_{I} r |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{I} s |h|^{p} dt \right)^{1/q}$$

holds. If α is of the II type and $h \not\equiv 0$, then (23) becomes an equality if and only if $h = c \exp(-\lambda \int_{t_0}^{t} w \, dt)$, where $t_0 \in I$, $c = \text{const} \neq 0$, $\lambda = \text{const} > 0$, and the condition

(24)
$$\int_{I} r|w|^{p} \exp(-p\lambda \int_{t_{0}}^{t} w dt) dt < \infty$$

is satisfied. If α is of the III or IV type and $h \not\equiv 0$, then (23) is a strict inequality.

(ii) If $v(\alpha) \ge 0$, then for an arbitrary function $h \in W$ with the point β of the II type or for an arbitrary function $h \in W^0$ with the point β of the III or IV type the inequality

(25)
$$\int_{I} u |h|^{p} dt + \lim_{t \to \infty} v |h|^{p} \leqslant p \left(\int_{I} r |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{I} s |h|^{p} dt \right)^{1/q}$$

holds. If β is of the II type and $h \not\equiv 0$, then (25) becomes an equality if and only if $h = c \exp(-\lambda \int_{t_0}^{t} w \, dt)$, where $t_0 \in I$, $c = \text{const} \neq 0$, $\lambda = \text{const} > 0$, and condition (24) is satisfied. If β is of III or IV type and $h \not\equiv 0$, then (25) is a strict inequality.

Example 3. We take $I = (0, \infty)$ and $r = t^{pa}$. We put $w = t^{(a+b-pa)/(p-1)}$ if a+b>0, and $w = -t^{(a+b-pa)/(p-1)}$ if a+b<0, where a and b are arbitrary constants such that $a+b \neq 0$. From Theorems 2 and 3 we obtain the inequality

(26)
$$|a+b| \int_{0}^{\infty} t^{a+b-1} |h|^{p} dt \leq p \left(\int_{0}^{\infty} t^{pa} |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{0}^{\infty} t^{qb} |h|^{p} dt \right)^{1/q}$$

which is valid for an arbitrary function $h \in \hat{W}$; and $\hat{W} = W$ if a+b>0 and $(p-1)(1-a)+b\geqslant 0$ or a+b<0 and $(p-1)(1-a)+b\leqslant 0$; $\hat{W} = W_0$ if a+b<0 and (p-1)(1-a)+b>0; and $\hat{W} = W^0$ if a+b>0 and (p-1)(1-a)+b<0. From the Corollary we infer that if $h \not\equiv 0$, then only in the cases a+b>0 and (p-1)(1-a)+b>0 or a+b<0 and (p-1)(1-a)+b<0 inequality (26) becomes an equality only for the function

$$h = c \exp \{-\lambda t^{[(p-1)(1-a)+b]/(p-1)}\},\,$$

where $c = \text{const} \neq 0$ and $\lambda = \text{const} > 0$. In the case a+b>0, (p-1)(1-a)+b>0, and p=2 we obtain the inequalities considered in [6]. If a=0, b=1, and p=2, we obtain the well-known Weyl inequality (cf. [8], p. 272, [4], Theorem 226, and [5], p. 128).

Now, we enlarge the class of considered functions r and w and we derive integral inequalities of the form (2).

Let $\alpha = x_0 < x_1 < \ldots < x_i < x_{i+1} < \ldots < x_n < x_{n+1} = \beta$ and let r and w be some given real functions which are defined and absolutely continuous in each of the open intervals (x_i, x_{i+1}) , $i = 0, 1, \ldots, n$, and such that $w \not\equiv 0$ in one of those intervals, r > 0 and $v \equiv r |w|^{p-1} \operatorname{sgn} w$ is absolutely continuous in each of the intervals, and the limit conditions

(27)
$$\limsup_{t \to x_i^-} v > -\infty, \quad \liminf_{t \to x_i^+} v < \infty, \quad i = 1, ..., n,$$

are satisfied.

Let $v_j(x) \equiv \limsup_{t \to x^-} v - \liminf_{t \to x^+} v$ denote the jump of the function v at the point $x \in I$. It follows from (27) that $v_j(x_i) > -\infty$ for i = 1, ..., n. If $v_j(x_i) = \infty$, then we assume in the sequel that

$$v_j(x_i)|h(x_i)|^p = \begin{cases} 0 & \text{if } h(x_i) = 0, \\ \infty & \text{if } h(x_i) \neq 0. \end{cases}$$

Further, let W, \widetilde{W} , W_0 , and W^0 denote classes of the functions $h \in abs C$ defined as previously.

THEOREM 5. For every function $h \in \widetilde{W}$ the inequality

(28)
$$\sum_{i=1}^{n} v_{j}(x_{i}) |h(x_{i})|^{p} + \lim_{t \to \beta} v |h|^{p} - \lim_{t \to \alpha} v |h|^{p}$$

$$\leq p \left(\int_{r} r |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{r} s |h|^{p} dt \right)^{1/q} + \int_{r} u |h|^{p} dt$$

holds. If $h \not\equiv 0$, then (28) becomes an equality if and only if $h = c\varphi$, where $c = \text{const} \neq 0$ and $\varphi \not\equiv 0$ in I is an absolutely continuous function in I such that in each of the intervals (x_i, x_{i+1}) , i = 0, 1, ..., n, we have

$$\varphi \equiv c_i \exp(\lambda \int_{t_i}^t w \, dt),$$

where $t_i \in (x_i, x_{i+1})$ is an arbitrary fixed point, $c_i = \text{const}$, and $\lambda = \text{const} > 0$, provided the integral conditions

$$\int_{x_i}^{x_{i+1}} r|w|^p \exp(p\lambda \int_{t_i}^t w dt) dt < \infty,$$

 $\int_{x_i}^{x_{i+1}} \left| (r|w|^{p-1} \operatorname{sgn} w) \right| \exp \left(p \lambda \int_{t_i}^t w \, dt \right) dt < \infty$

(29)

are satisfied or $\varphi \equiv 0$ otherwise. Proof. Let $h \in \widetilde{W}$. By (27) and Remark 2 (a) we have

(30)
$$\lim_{t \to x_i^+} \inf v |h|^p < \infty, \quad \limsup_{t \to x_{i+1}^-} v |h|^p > -\infty$$

for i = 0, 1, ..., n. From Lemma 2 it follows that the limits in (30) exist as proper and finite ones. From the proof of Theorem 1 we get

(31)
$$\lim_{t \to x_{i+1}-} v |h|^p - \lim_{t \to x_{i+1}} v |h|^p$$

$$\leq \lambda^{1-p} \int_{x_i}^{x_{i+1}} r |\dot{h}|^p dt + (p-1)\lambda \int_{x_i}^{x_{i+1}} s |h|^p dt + \int_{x_i}^{x_{i+1}} u |h|^p dt$$

for i = 0, 1, ..., n, where λ is an arbitrary positive constant. Take an arbitrary i = 1, ..., n. By the continuity of h at the point x_i and from the

existence of finite limits $\lim_{t \to x_i^-} v |h|^p$ and $\lim_{t \to x_i^+} v |h|^p$ it follows that if there exists $h \in \widetilde{W}$ such that $h(x_i) \neq 0$, then there exist finite limits $\lim_{t \to x_i^-} v$ and $\lim_{t \to x_i^+} v$, and $v_j(x_i) < \infty$. Hence, in that case we have

(32)
$$\lim_{t \to x_i^-} v |h|^p - \lim_{t \to x_i^+} v |h|^p = v_j(x_i) |h(x_i)|^p.$$

If $h(x_i) = 0$ for every $h \in \widetilde{W}$, then in the case where $\lim_{t \to x_i - 0} v |h|^p \neq 0$ by (27) we have $\lim_{t \to x_i - 0} v = \infty$, and therefore

$$\lim_{t\to x_i^-}v\,|h|^p>0.$$

Similarly we deduce that

$$\lim_{t\to x_i^+} v\,|h|^p\leqslant 0.$$

Thus in the considered case $v_i(x_i) = \infty$ and

(33)
$$\lim_{t \to x_i^-} v |h|^p - \lim_{t \to x_i^+} v |h|^p \geqslant 0 = v_j(x_i) |h(x_i)|^p.$$

Adding by sides inequalities (31) and using (32) and (33) we obtain

(34)
$$\sum_{i=1}^{n} v_{j}(x_{i}) |h(x_{i})|^{p} + \lim_{t \to \beta} v |h|^{p} - \lim_{t \to \alpha} v |h|^{p}$$

$$\leq \lambda^{1-p} \int_{I} r |\dot{h}|^{p} dt + (p-1) \lambda \int_{I} s |h|^{p} dt + \int_{I} u |h|^{p} dt$$

for $\lambda > 0$. By (34), in an analogous way as in the proof of Theorem 1 we get inequality (28).

Now, let (28) be an equality for some function $h \in \widetilde{W}$ and $h \not\equiv 0$. In that case also (34) becomes an equality with $\lambda = \lambda_h$, where $\lambda_h > 0$ satisfies (11). Simultaneously, inequalities (31) hold with $\lambda = \lambda_h$. Thus all the inequalities (31) become equalities for that function h with $\lambda = \lambda_h$. From Theorem 1 it follows that

$$h = c_i \exp\left(\lambda_h \int_{t_i}^i w \, dt\right)$$

in the interval (x_i, x_{i+1}) , where $t_i \in (x_i, x_{i+1})$ and $c_i = \text{const} \neq 0$, provided conditions (29) are satisfied for $\lambda = \lambda_h$ or h = 0 in (x_i, x_{i+1}) if for $\lambda = \lambda_h$ at least one of the conditions (29) does not hold. The function h of the above-stated form satisfies (11) identically, and therefore $\lambda_h > 0$ is an arbitrary constant. Now, it is easy to complete the proof.

We denote by \check{W} the class of functions $h \in W$ satisfying the following limit condition:

(35)
$$\liminf_{h \to a} v |h|^p \leqslant \limsup_{h \to b} v |h|^p.$$

From Theorem 5 we easily obtain (see Theorem 2)

THEOREM 6. For every function $h \in \check{W}$ the inequality

(36)
$$\sum_{i=1}^{n} v_{j}(x_{i}) |h(x_{i})|^{p} \leq p \left(\int_{I} r |\dot{h}|^{p} dt \right)^{1/p} \left(\int_{I} s |h|^{p} dt \right)^{1/q} + \int_{I} u |h|^{p} dt$$

holds. Inequality (36) becomes an equality if and only if $h = c\varphi$, where c = const and φ is a function satisfying all the conditions of Theorem 5 and the additional condition

$$\lim_{t \to \alpha} v |\varphi|^p = \lim_{t \to \beta} v |\varphi|^p.$$

In an interesting case where u > 0 almost everywhere in I the class \check{W} can be described similarly as the class \hat{W} (see Theorems 3 and 4) because by changing w into -w the class \hat{W} becomes \check{W} .

Example 4. Let $I = (\alpha, \beta)$, $-\infty \le \alpha < \beta \le \infty$, and let $x \in I$ be an arbitrary fixed point. Let r > 0 be an arbitrary absolutely continuous function in I. We put $w = r^{-q/p}$ in (α, x) and $w = -r^{-q/p}$ in (x, β) . In that case u = 0 in I and from Theorem 6 we obtain the inequality

(37)
$$|h(x)|^{p} \leq \frac{p}{2} (\int_{I} r |\dot{h}|^{p} dt)^{1/p} (\int_{I} r^{-q/p} |h|^{p} dt)^{1/q}$$

which is valid for $h \in \check{W}$. Using Theorem 3 we infer the following:

if
$$\int_{\alpha}^{t} r^{-q/p} dt = \infty$$
 and $\int_{t}^{\beta} r^{-q/p} dt = \infty$ for some $t \in I$, then $\check{W} = W$;

if $\int_{\alpha}^{t} r^{-q/p} dt < \infty$ and $\int_{t}^{\beta} r^{-q/p} dt = \infty$ for $t \in I$, then $\check{W} = W_{0}$;

if $\int_{\alpha}^{t} r^{-q/p} dt = \infty$ and $\int_{t}^{\beta} r^{-q/p} dt < \infty$ for $t \in I$, then $\check{W} = W^{0}$;

if $\int_{a}^{t} r^{-q/p} dt < \infty$, then $\check{W} = W_{0} \cap W^{0}$.

If $h \not\equiv 0$, then only in the case

$$\int_{a}^{t} r^{-q/p} dt = \infty \quad \text{and} \quad \int_{t}^{\beta} r^{-q/p} dt = \infty \quad \text{for } t \in I$$

inequality (37) becomes an equality if and only if

$$h = c \exp(-\lambda \left| \int_{t}^{t} r^{-q/p} dt \right|),$$

where $c = \text{const} \neq 0$ and $\lambda = \text{const} > 0$ provided

$$\int_{I} r^{1-q} \exp\left(-p\lambda \left|\int_{x}^{t} r^{-q/p} dt\right|\right) dt < \infty.$$

Taking $\alpha = -\infty$, $\beta = \infty$, and r = 1 we obtain the inequality

(38)
$$|h(x)|^p \leq \frac{p}{2} (\int_{-\infty}^{\infty} |\dot{h}|^p dt)^{1/p} (\int_{-\infty}^{\infty} |h|^p dt)^{1/q}, \quad -\infty < x < \infty,$$

which is valid for an arbitrary function h absolutely continuous on $(-\infty, \infty)$ for which the right-hand side of the inequality is finite. Inequality (38) becomes an equality only for the function $h = ce^{-\lambda|t-x|}$, where c = const and $\lambda = \text{const} > 0$.

Taking $\alpha = 0$, $\beta = \infty$, and $r = t^{p/q}$ we obtain for $0 < x < \infty$ the inequality

(39)
$$|h(x)|^p \leq \frac{p}{2} \left(\int_0^\infty t^{p/q} |\dot{h}|^p dt \right)^{1/p} \left(\int_0^\infty t^{-1} |h|^p dt \right)^{1/q}$$

which is valid for an arbitrary function h absolutely continuous on $(0, \infty)$ for which the right-hand side of (39) is finite. Inequality (39) becomes an equality only for the function $h = c(t/x)^{\lambda}$ for $t \in (0, x)$ and $h = c(t/x)^{-\lambda}$ for $t \in (x, \infty)$, where c = const and $\lambda = \text{const} > 0$.

Inequalities (38) and (39) were considered in [6] in the case p = 2.

REFERENCES

- [1] D. C. Benson, Inequalities involving integrals of functions and their derivatives, Journal of Mathematical Analysis and Applications 17 (1967), p. 292-308.
- [2] B. Florkiewicz, Some integral inequalities of Hardy type, Colloquium Mathematicum 43 (1980), p. 321-330.
- [3] and A. Rybarski, Some integral inequalities of Sturm-Liouville type, ibidem 36 (1976), p. 127-141.
- [4] G. H. Hardy, J. E. Littlewood and G. Póly a, Inequalities, London 1951.
- [5] D. S. Mitrinović, Analytic inequalities, Berlin 1970.
- [6] R. Redheffer, *Inequalities with three functions*, Journal of Mathematical Analysis and Applications 16 (1966), p. 219-242.
- [7] Integral inequalities with boundary terms, p. 261-291 in: Inequalities, II (ed. O. Shisha), New York 1970.
- [8] H. Weyl, Gruppentheorie und Quantenmechanik, Leipzig 1928.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCŁAW

Reçu par la Rédaction le 2.7.1980; en version modifiée le 1.4.1982