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CHARACTERIZATIONS OF METRIC COMPLETENESS

BY

SEHIE PARK (SEOUL)

In this paper, we give some necessary and sufficient conditions for a
metric space (X, d) to be complete. Such characterizations of metric com-
pleteness are given mainly by results relevant to Caristi’s fixed point theorem.
Works of Cantor, Kuratowski, Ekeland, Caristi, Kirk, Wong, Weston, Ciri¢,
Hu, Reich, Subrahmanyam, and others are combined.

Kuratowski [18] first noticed that the Cantor intersection theorem
characterizes the metric completeness. Hu [12] showed that a metric space is
complete if and only if any Banach contraction on closed subsets thereof has
a fixed point. On the other hand, Kirk [15] showed that Caristi’s theorem
characterizes the metric completeness. Later, motivated by Wong’s proof
[27] of Caristi’s theorem, Weston [26] showed that a metric space X is
complete if and only if X satisfies a condition of Ekeland [10], [11], that is,
for each lower semicontinuous function h: X —(—o0, c0o) bounded from
below on X, there is a point p in X such that h(p)—h(x) < d(p, x) for every
point x in X. Reich [23] and Subrahmanyam [25] also obtained character-
izations of the metric completeness using Kannan’s result [13] similar to the
Banach contraction principle, which is known to be a consequence of
Caristi’s theorem. On the other hand, Kolodner [17] and Boyd and Wong
[2] noticed that the Banach contraction principle follows from the Cantor
intersection theorem.

Now we combine those results and state our characterizations of the
metric completeness. Let w denote the set of nonnegative integers and ~ the
closure operation.

THEOREM. For a metric space (X, d), the following statements are
equivalent:

(1) X is complete.

(i) For every sequence !a,}..., of positive numbers converging to 0 and
every sequence XF,}.., 0f nonempty closed subsets of X such that
F,.ycF, new, and each F, is a union of finite number of subsets of
diameter less than a,, we have ﬁ F,#Q.

n=1
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(i) For every sequence {F,},., of nonempty closed subsets of X such that
F,.,cF,, new, and the sequence {diamF,},., converges to 0, we have

ﬁ F,#0Q.
n=1

(iv) Every lower semicontinuous function h: X —(— oo, o©) which is
bounded from below has a d-point p in X, that is,

h(p)—h(x) <d(p, x)

for every point x in X, x # p.

(v) For every selfmap f of X with a lower semicontinuous function
V: X - (— o0, o) which is bounded from below and such that, for each x in
X with x # fx, there exists y in X —{x} satisfying

d(x, y) < V(x)— W),

f has a fixed point.
(vi) For every selfmap f of X such that there exists a lower semicontinuous
Junction ¢: X —(— 00, o0) which is bounded from below and satisfies

d(x, fx) < @(x)— @ (fx)

Jor each x in X, f has a fixed point.
(vil) For every selfmap f of X such that there exist a ue X and an
ae[0, 1) satisfying
d(fx, f2x) < ad(x, fX)

for each x in {f"u},., and f is continuous on {f"u}, f has a fixed point in
ul.

(viii) For every selfmap f of X such that there exist a ue X and an
ae[O0, 1) satisfying

d(fx, fy) < amax{d(x, y), d(x, fx), d(y, fy), [d(x, fy)+d(y, x)]/2}

for all x, ye{f"u}, f has a (unique) fixed point in {f"u}.
Proof. (i) =(ii) is given in [18], [19], and (ii) = (iii) is clear.
(iii) = (iv). We order X by defining x <y iff d(x, y) < h(x)—h(y). For
each xe X, let X(x) = {yeX | x <y}. We construct an increasing sequence
{x,} as follows: Choose x,€ X arbitrarily, and if x,, ..., x, are given, then
choose x,., € X(x,) with h(x,, ) < infh(X(x,)+ 1/n. Thus x, < x,., and for
each xe X(x,+,) = X(x, we have

h(xp+1)—1/n < infh(X (x,)) < h(x)

and
d(x’ xn+l) < h(xn+l)—h(x)'



METRIC COMPLETENESS 23

Hence diam X (x,.;) < 2/n. By (iil), the intersection of the decreasing se-
quence of nonempty closed sets {X(x,)} contains exactly one point, say p.
Since p < x implies xe X(x,) for all n, p is a maximal point and also a
d-point of X.

(iv)=(v). By (iv), V has a d-point pe X. Suppose p # fp. Then there
exists ye X\{p} satisfying d(p, y) < V(p)— V(y) by assumption. However, we
have V(p)—V(y) <d(p, y), a contradiction. Hence p is a fixed point of f.

(v)=(vi). Put y =fx in (v).

(vi) = (vii). Since

d(x, fx)—ad(x, fx) < d(x, fx)—d(fx, f*x),
putting @(x) =(1—a) 'd(x, fx) we have d(x, fx) < ¢(x)—¢(fx) for each
xe{f"u}, and ¢: {f" u} - [0, c0) is continuous.

(vii) = (viii). Putting y = fx, we have

d(fx, f2x) < amax {d(x, fx), d(fx, f?x), d(x, f>x)/2}
= amax {d(x, fx), [d(x, fx)+d(fx, fx)]/2}
< ad(x, fx).

Suppose there exists a subsequence {f™u} converging to some pe{f"u}.
Since {f"u} is Cauchy, f"u - p and

d(fp, f* ')
< amax {d(p, f"u), d(p, fp), d(f™u, f*'u), [d(p, f** ' u)+d(f"u, fp)]/2}
implies
d(fp, p) < ad(fp, p).

This shows that fp = p and f|{f"u} is continuous. Therefore, f satisfies the
hypothesis of (vii).

(viil) = (i). Suppose that X contains a nonconvergent Cauchy sequence
{Xu}new- We may assume that {x,} consists of distinct terms. Take any xe X;
then

I(x):=inf{d(x, x,) | x, # x, new} >0

because {x,} has no cluster point. Choose any a (0, 1); We define 6: w » @
inductively as follows: (0):= 0; and if n > 1 and g (#+1) is defined, let o (n)
be an integer greater than a(n—1) such that d(x;, x;) < al(x4,-,,) for all
integers i, j = o(n). Then {X,u}no IS @ subsequence of distinct terms and
does not converge. The set {x,,} is closed and the ‘map f: X —» X de-
fined by

f(x)=x¢ if x¢ {xc(n)} and f(xa(n)) = Xo(n+1)
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is a Banach contraction on {f"x,} ; hence f satisfies the hypothesis of (viii) on
{f"xo} . However, f does not have a fixed point.

This completes our proof.

Remarks. (1) Kuratowski [18] obtained (i) =>(ii) as a generalization of
the Cantor intersection theorem (i) = (iii) (see [19]). He also noticed that
(1) <> (iii).

(2) (i) =(iv) was actually due to Ekeland [10], [11]. Weston proved
(1) <>(iv). Our proof of (iii) =(iv) is based on the proof of (i) = (vi) of Penot
[22].

(3) Caristi’s fixed point theorem (i) =(vi) with ¢: X — [0, o0) was given
in [7]. It is actually equivalent to (i) =(iv) announced in 1972 by Ekeland
[10], whose result is an abstraction of a lemma due to Bishop and Phelps
[1]. Various proofs of Caristi’s theorem were given by Brgnsted [4], [5],
Browder [6], Kasahara [14], Kirk [15], Pasicki [21], Penot [22], Siegel
[24], and Wong [27]. Condition (vi) was due to Brgnsted [5].

(4) Kirk [15] showed (i) < (vi). Wong [27] claimed that (i) = (vi) implies
(1)=(v). A proof of (v)=-(iv) was also given by Wong [28]. Brézis and
Browder [3] showed that (i) =(vi) is equivalent to (i) =(iv).

(5) Kirk and Caristi [16] noted that (i) =(vi) implies the Banach
contraction principle. Weston [26] noted that, by putting

@(x) = (1-20)" '(1-aw)d(x, fx),
the contractive type condition

d(fx,fy) <ald(x,fy)+d(y, fx)}, a<1/2,

implies the hypothesis of (vi).

(6) In the proof of (vi) = (vii), f and ¢ are continuous on { f"u}. Browder
[6] observed that, in (i) = (vi), if f is continuous, then lim f"x exists for all
xe X and it is fixed under f.

(7) A variant of (i)=(viii) was first given by Ciri¢ [8], and later
extended by a number of authors. Pal and Maiti [20] considered an
extended form of (viit), which is a particular case of (vii).

(8) The basic idea of the proof of (viii)=(i) is due to Hu [12]. Reich
[23] used Hu’s idea with respect to Kannan’s contractive condition [13]:

d(fx, fy) < a{d(x, fX)+d(y, fy)], a<1/2.
Similar results are given also by Subrahmanyam [25].

(9) Kolodner [17] and Boyd and Wong [2] noticed that the Cantor
intersection theorem implies the Banach contraction principle. However,
using an example of Connell [9], Subrahmanyam [25] noticed that the
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Banach principle does not characterize the metric completeness, that is, we
cannot claim that a metric space is complete if any contraction on it has a
fixed point.
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