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REMARKS ON THE SPACE OF MONOTONIC FUNCTIONS

BY

JAN MYCIELSKI (BOULDER, COLORADO)

1. Introduction and meotivations. Let M be the space of continuous
nondecreasing functions f: I -1 with f(0)=0 and f(1)=1, where I
= [0, 1]. With the distance max |f; (x)—f>(x)|, M is a complete metric space

xel

without isolated points. For any fe M we define its length by the natural

formula
n—-1 / 2 1/2
wn=gm S ()Gt

Banach announced in [1], in a slightly different form (for a proof see [6]),
that the set of all fe M with L(f) < 2 is meager (i.e. of the first category). It
is easy to see that the set of all f e M which are not strictly increasing is also
meager. Therefore, the set of all fe M which are strictly increasing and
satisfy L(f) =2 is comeager in M.

Let H be the space of continuous strictly increasing functions f: I — [
with f(0) =0 and f(1) = 1. We introduce in H the natural metrization

max Ly () =f2 ()} + max I ) =f T (),

which turns H into a complete metric group relative to composition of
functions.

Again one can prove (by an easy modification of the argument of [6])
that the set of all fe H with L(f) =2 is comeager in H.

Now, it is well known that category and measure may disagree. For
example, the set of numbers of I in whose binary developments 1 has
frequency } has measure 1 (Borel’s strong law of large numbers). But the set
of numbers of I in whose binary developments 1 has any frequency is meager
(see [2], p- 100, for a nice game theoretic proof of S. Ulam of this fact).
Therefore, we should ask if the above theorems of Banach are true or false in
the measure theoretic sense. Unfortunately, neither the space M nor H
carries a natural probability measure. But, as we have argued in [4], every
natural space of analysis has a natural finite counterpart in which we have
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the obvious counting measure. And we shall now prove that the measure
theoretic or probabilistic counterparts of the above theorems of Banach are
false. We shall not write about length (because length is a very unstable
functional, see [3]) and will show instead that the majority of nondecreasing
functions cluster around the identity function. This supports Laplace’s prin-
ciple of insufficient reason (see Section 3).

We let

I,=k/m|k=0,...,m],
Fo.=fIf: I,-1,, fis nondecreasing, f(0) =0, and f (1) =1},
F., =!f1f:1,-1, fis nondecreasing, f(0) =0, and f(1) = 1}.
Then F,,, has the uniform “counting” probability measure. As for F,,,, it can
be identified with the (m— 1)-dimensional simplex
sy i+ oy =1,320]
using the map f —(y,, ..., ym) defined by

w2

Thus F,,, gets the normalized (m— 1)-dimensional Lebesgue measure from
this simplex.

For all m < o0 and n < o we write P(F,,, ¢) for the probability that an
feF,, satisfies |f(x)—x| <¢ for all xel,,.

THEOREM. For every ¢ > 0 we have

() lim P(Fn,. &) =1,
(i) ]i_{n P(F,..€)=1 for n+1 = 2/e,
and

siii) lir_p P(Fpn &) =1,

(iv) lim P(F,,, &)= P(F,,, ¢).

(Statement (iii) was announced in [5])

2. Proofs. First we need the following preliminaries.
Let X, (m=1, 2,...,0<k < m) be random variables with values in [/
and distributions

Pr (X, < a) =(m+1) (k) ({ (1= x)™ k dx
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(these are called B-distributions). As well known, and readily checked,

k+1
) E (Xm) =

(this is the Bayesian estimator of the probability when one got k successes in
m trials) and

(k+1) (m—k+1)

& Var (Xm) == mt3)
Let
m‘ min(1,p+¢)
S(m, k, p, a)=(m+1)( ) [ x*(—x)""*dx.
k max(0,p—¢)

LEMMA. If m — oo, k/m — p, and ¢ > 0, then
S(m, k, p,e)—>1.
Proof. By (1), E(X,,ﬁ)—*p and, by (2), Var(X,,) —0. Hence the

Lemma follows.

Proof of the Theorem. (i) Let 44 denote the regular d-dimensional
simplex of height x in RY and |49 its d-dimensional Lebesgue measure. Thus
|4%] = ¢, x%, where c, is a constant. Let P(m, k, p, ) be the probability that
an feF,,, satisfies |f(k/m)—p| <e. Thus, by our previous definition of the
probability measure in F,,, we have

min(1,p+e¢)
j‘ IAk l”Amlz lldx
P(m, k, p, &) = =x02=9 =S(m-2,k—1, p, ¢).
IIAk ll IAm k- lldx

We choose an integer N = 6/¢ and mtegers 0=ko(m) < ... <ky(m)=m for
each m such that k;(m)/m —i/N for i =0, ..., N. Therefore by the Lemma,

lim ﬂ P(m k(m), — E)— 1.

m=y .

Hence to prove (i) it is enough to show that, for m large enough, the
inequalities
ki(m)\ i
()

imply |f(x)—x| <¢ for all xel,,.
We choose i < N such that

k;(m) <x< ki1 (m)

m m

<§ for i='0, .... N
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Then, since k;(m)/m — i/N and k;,,(m)/m — (i+1)/N, for m large enough we
have |[x—i/N| < 2/N. And since f is nondecreasing and N > 6/¢, we have

F )l < f(x)—f(" ('"’)l f("—,‘ni’)-% %_x
ki+1(m) kim)\{ & 2
<) (e
kiv,(m)\ i+1 ki(m\ € 2
S e R T ) B
£ 3<
<§+N‘\€
(i) and (iii). For all yel we define
k k k+1
va(y) = E'ﬁ_ﬁ V<7 and  ¢,(1)=1.

We also define ¢,: F,,,, = F., by ©,(f) = ¢,0f. Then it is easy to check that
@, ! is measure preserving and

1
lon () () =f ) <=~

Hence, if 1/(n+1) < ¢/2, then

1

Pp :feFmv I Vx 'f(x)_xl <8/2} = {fEanl Vx If(x)_xl <8}‘
Therefore
P(F,,,¢/2) < P(Fp.¢) for n+1> 2.

Thus (ii) and (iii) follow from (i).
(iv) This is visible from well-known properties of the Lebesgue measure

and the fact that the set {feF,, | Vx|f(x)—x| <e] is an open polyhedron
in the simplex F,,,.

3. Conclusion. Laplace’s principle of insufficient reason tells that if X is a
random variable taking values in [0, 1] and we have no information about
its distribution, then it is reasonable to assume that X is uniformly distrib-
uted. Since F,,, is the space of distributions over I,,— {0}, our Theorem (i)
supports this principle.

In any quantitative study of the physical reality which involves the space
M of Section 1 it should be possible to replace M by a space F,, with
sufficiently large m and n. (Using the theory FIN of [4] we could also apply
potentially infinite m and n; then a notion of continuity of such functions is
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also available, see [4].) Thus our theorem has more physical meaning than
the theorem of Banach stated in Section 1.
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