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Let G be a simple algebraic group over an algebraically closed field K.
It was proved in [5] that the group-language theory of G is categorical in
uncountable powers, i.e. for every uncountable power u there is a unique, up
to isomorphisms, group G’ of cardinality px, which satisfies the same group-
theoretical conditions as G. It is worth noting that for the proof no special
information on the structure of G is needed.

One can easily observe that the theorem implies that every G’, satisfying
the same group-theoretical axioms as G, can be equipped with the algebraic-
geometrical structure of the same kind as that of G. In some sense this means
that the algebraic-geometrical structure on such groups is indeed defined by
the abstract group structure.

Another, more exact version of the last fact is given by the known
theorem of Borel and Tits [1], which states, in particular, that every
(abstract) automorphism of G is a composition of a rational automorphism
of G and of an automorphism induced by an automorphism of the field K.

The known proofs of the theorem use a deep structural theory of simple
algebraic groups. Since the analogous theorem of [5] was proved by different
and easier methods, the same kind of proof can be expected for the theorem
cited above. Such a proof of the Borel-Tits theorem is given in the paper.

_ One of our purposes is also to show how model-theoretical methods can
work in the theory of algebraic groups and, more generally, in algebraic
geometry. There are two basic facts which link the general algebraic ge-
ometry with model theory. First, since the theory of algebraically closed fields
of a given characteristic is categorical in uncountable powers, all structures
definable in an algebraically closed field, e.g., structures of algebraic ge-
ometry, are w-stable of finite Morley rank. Moreover, the Morley rank is a
good analogue of the algebraic-geometrical dimension and in most cases
coincides with it. The second fact is the theorem of A. Tarski, which states
that every relation definable in an algebraically closed field is a Boolean
combination of polynomial equations.
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We suppose the reader is familiar with main facts of the theory of
categoricity (see, e.g., [4]). We also use some standard facts of the theory of
algebraic groups, which can be found in [2].

1. Connected solvable groups of finite Morley rank. In this section, B is
a group whose theory is w-stable and of finite Morley rank. “Definable”
always means “definable with parameters”.

A group B is called m-connected (model connected) if B does not contain
any definable subgroup H of finite index in B.

Let H be an arbitrary subgroup of B. The minimal definable subgroup
H o H is called the m-closure (model-closure) of H in B.

LemMa 1. If H is solvable (nilpotent) of class n, then so is H.

Proof: For n=1 this was proved in [4], Lemma 7. Proceeding by
induction and using the same method we get the lemma for all n.

LEMMA 2. Let B be an m-connected solvable group with trivial center. Let
V be a minimal normal definable subgroup of B and let the factor group
T = B/C(V) be commutative (C(V) denotes the centralizer of V in B). Then
there are definable binary operations + and - on V such that (V, +, ) is an
algebraically closed field.

Proof. Since B is solvable, V is abelian. Since B is m-connected and V
is not central, V is infinite.

Every element of T acts by conjugation on V and defines an automor-
phism of V. In what follows we shall denote the group operation in V by +
and the action by conjugation of te T on veV by tv.

Thus, for any teT, v,, v,€V, we have

t(vy+v,y) =tv; +tv,, t0=0.

Therefore, we interpret elements of T as additive operators on V. Let —t
denote the operator defined by (—t)v = —tv and
T'=Tu{-t: teT}.
For any veV we also set

T -v={tw: teT}.

Since T is m-connected, T -v is infinite provided v is not central, i.e.
v # 0. Using the finiteness of Morley rank of V, it is easy to prove that for
every vo€V, vy # 0, the subgroup ¥V, of V generated by T -v, is definable
and there is a natural number N such that every veV, is of the form

V==t 0o+ ... +tyVg, ly,...,tN€T’

(for a detailed proof see [5], Theorem 3.3). It is evident that V, is normal in
B, so V =V, by the minimality of V.
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Now we prove that if t; vo+ ... +t,vo =0 for some ¢, ..., t,€ T, then
t,v+ ... +4,v=0 for all veV. For this we observe that for every teT’

t'(tlvo+ +tkvo)=tl'tvo+ oo +tk'tU0.

Thus, if t,vo+ ... +t,v0 =0, then t,v+ ... +t,v =0 for all ve T -v, and,
since V is generated by T'-v,, for all veV.

For any t,,...,t,e T’ we denote by t, + ... +t, the additive operator
on V defined by (t;+ ... +t)v =t,v+ ... +¢,v for all veV. Denote by F
the ring of all operators of the form ¢, + ... +¢, for any ¢, ..., ,, e T

It follows from the fact proved above that if f, v, =f,v, for some
fi,f2€F, vgeV, vy #0, then fiv=f,v for any veV. Thus we get f, =f,.

So there is a one-to-one correspondence between elements f of F and
pairs <v,, v, namely v = fv,, where vy #0, vyeV, is fixed and v is an
arbitrary element of V. Moreover, every non-zero element of F is invertible.
Indeed, if fo; = vy, vy, v, # 0, then there is a ge F such that gvy, = v,. Thus
g-f-vy =v,, which implies g-f = 1.

Finally, we summarize the above-proved facts:

F is an infinite field, interpretable in B by elements ve V, provided vy V,
vo # 0, is fixed. F is algebraically closed since F is w-stable (see [3]).

CoRrOLLARY. If B is an m-connected solvable group which is not nilpotent,
then an algebraically closed field is definable in B.

Proof. There exists an infinite group B’ which is definable in B,
m-connected, solvable, has a trivial center, and is of minimal Morley rank
among all the groups satisfying these conditions. This group satisfies the
assumptions of Lemma 2.

2. Algebraic groups over algebraically closed fields. In this section, G is
an algebraic group over an algebraically closed field K. Every such group is
definable in K (for details see, e.g., [5], Section 2), and therefore G has an w-
stable theory of finite Morley rank.

Now we recall the following well-known fact (see [4], Theorem 13.3):

TARsKrs THEOREM. Every definable subset S of the set K" of n-tuples of
elements of K is a Boolean combination of subsets of the form

((xyyevey X0 €K™ p(x4, ..., x,) =0},

where p is an n-variable polynomial with coefficients from K. In other words,
S =F\E, where F, E = K" are closed in Zariski topology.

CoROLLARY. Every definable subgroup H of G is an algebraic subgroup of
the algebraic group G.

The corollary follows from the fact that every open subgroup of G is
algebraic.

In the sequel, let G be a simple algebraic group and let B be a Borel
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subgroup of G, ie., a maximal solvable algebraic subgroup of G. The
m-closure B of B in G is a solvable algebraic group, and thus B = B.

Take a minimal normal subgroup V definable in B, which lies in the
center of the unipotent part of B. Then T= B/C(V) is a torus, and so T is
abelian.

Thus B satisfies all the assumptions of Lemma 2. Consequently, as was
shown in the proof of Lemma 2, T is embeddable in the field F of
automorphisms of the unipotent subgroup V. The characteristic of F coin-
cides with that of K because it is defined by the exponent of V. As was
already noted, T is a torus, i.e.,, a product of a finite number of copies of the
multiplicative group K* of the field K. On the other hand, T is
a subgroup of the multiplicative group F* of F. Comparing the fusion parts
of T, F*, and K* we infer that Tis a one-dimensional torus. Since any torus
T acting on an abelian unipotent group has a one-dimensional invariant
subgroup on which T acts transitively, by the minimality of V we get the
following special version of Lemma 2.

PrOPOSITION 1. Assume that V is a one-dimensional unipotent group. Let
kv be the action of ke K =T on veV. Then V is a one-dimensional vector
space over K with respect to the multiplication kv and the group operation on
V is the addition. Fixing an arbitrary non-zero element voeV we get
a birational isomorphism j: K =<V, +,-> such that j(k)= kv, for
any kek.

Remark. It is worth noting that V is just the root subgroup U,
corresponding to the maximal root d of the root system R of G.

As a consequence of Proposition 1 we get the following statement:

PROPOSITION 2. Let G, be a linear (not necessarily algebraic) group over an
algebraically closed field K, such that there is an abstract isomorphism
s: G- G,. Then the subgroups B, = s(B) and V, = s(V) of G, satisfy the
assertions of Proposition 1 and there is a subfield K| of K, such that

S: <V’ +9 >_’<Vla +a'>s jl: K’I_’<Vla +9‘>9 jl—lOSOjZ K_’Kll gI<l

are isomorphisms of the fields.

Proof. Since B, is a solvable linear group, by the Kolchin-Malcev
theorem it contains a triangularizable normal subgroup Bj of finite index.
The intersection ¥, nBS is non-trivial since B is of finite index in B,. Thus
¥, < BY by minimality. It is easy to see that V; lies in the commutant of B},
which is a unipotent subgroup. Moreover, V; lies in the center of the
unipotent part of B, since every non-trivial normal subgroup of a nilpotent
group intersects non-trivially with center.

Now, considerations analogous to those from the proof of Proposition 1
and the fact that T, = B,/C(V,) acts transitively on ¥V, show that V; is
a one-dimensional algebraic unipotent group and T; is an algebraic torus
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over a field Kj < K,, which is birationally isomorphic by j, to
M+, ).

Given a field embedding u: K — K,, we denote by u* the group
embedding

u*: GL(n, K) - GL (n, K,)

induced by u.

LemMA 3. Let u be a field isomorphism and j a birational isomorphism
of the additive group of K onto a unipotent group V. Then there exists
a birational isomorphism j, such that the following diagram is commutative:

K —

ul u‘l
Kl QK’I T Vl

Proof. Every one-dimensional unipotent group can be uniquely, up to
birational isomorphism, interpreted as a one-dimensional vector space, and
every birational isomorphism j: K — V is of the form j(k) = kv, for some
non-zero vo€V and every ke K. Thus

u* (kvo) = (“ (k)) Uy,

where v, = u*(v,). Therefore, jq,(u(k)) = (u(k))v,, and so j, is birational.

LEMMA 4. Under the assumptions of Proposition 2 define u = j; 'oso0j,
G, =u*(G), and V,=u*(V). Then there is a group isomorphism
r: G, — G, such that s =rou* and r is birational on V,.

Proof. By the definition we have jou =soj, and by Lemma 3 we
obtain joou = u*oj for some birational isomorphism j,: K| — V,. Thus we
have j, 0j, 'ou*oj=s0j. Putting r=su*)"!, we get r|V, =j,0jo!,
and thus r is a birational isomorphism on V,.

Without loss of generality we can assume that K, is algebraically closed.

The groups G, and G, are subgroup of GL (n, K,), and G, is an
algebraic subgroup of GL (n, K}). Denote by G, and G,, respectively,
closures of these groups in GL (n, K,) in Zariski topology. Obviously, G, is
simple since G, is algebraic and simple.

LEMMA 5. The mapping r: G, - G, of Lemma 4 can be extended to
a mapping 7. G, — G, which is definable in K, (in the field-language) and is a
group isomorphism. G, is a simple algebraic group over K,.

Proof. The least normal subgroup of G, containing V, coincides with
G,. Thus every element of G, is of the form v}' ... v}* for some v,, ..., v, eV,
and g,, ..., g,€G,. Using the finiteness of Morley rank of G,, we get a
natural number N and some fixed g,, ..., gy€G, such that every element of
G, is of the form v}' ... v} for some v,, ..., vyeV;.

Define 7 on ¥, as a birational isomorphism extending r. Put h, =
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r(g), ie{l,..., N}, and consider the following binary relation between
xeG, = K} and yeG, = KI:
R(x, )= (Voy, ..., one V) (x = o8 ... oW oy =F(0)" - ... -Fow)™).

It is easy to see that R(x, y) is equivalent to r(x) =y for xeG,. Since
1 €K, is an elementary extension, R defines the graph of a group

1somorphlsm of G, onto some subgroup of GL (n, K,) containing G, and V;.
Since 7|V, is a mapping definable in K, and ¥, is a definable subset of K}, R
is definable in K.

The last fact implies, in particular, that 7(G,) is definable in K,. Thus,
by the Corollary to Tarski’s theorem, 7(G,) is an algebraic group over K,
and hence 7(G,) = G,.

For char (K,) =p #0, denote by Fr, the Frobenius automorphism
Fr,: y—)®. Set Fr, =id if char (K,) =0

ProposiTiON 3. Let H be a definable subset of K} and t a definable
mapping H — K, where K, is an algebraically closed field. Then there are an
open subset H of H, a natural number k, and a rational function t: H - K,
such that, for every xeH, yeK,,

t)=y iff i(x)=Fry.
Proof. By Tarski’s theorem we have

t(x) =y =Po(x, ) v ... v Pu(x, ),

where every P;(x, y), i€10, ..., m}, is a conjunction of polynomial equations
and inequalities. Moreover,

H=H,u...UH,, where H;={xeH: 3y)P,(x,y)},i€l0,..., m)

Again by Tarski’s theorem, H; are of the form F;\E;, where F; and E; are
closed in H. Hence for some i€ {0, ..., m}, say i =0, H; is an open subset of
H. We also assume without loss of generality that the closure of H, is
irreducible.
It is obvious that t(x) =y = Py(x, y) for xeH,. Let
Po(x, )=( A\ filx,y) = /\< gj(x, y) # 0).

1isp 1<j<gq

Note that p > 0, for otherwise P,(x, y) is not a graph of a function.
Now, consider f; (1 <i < p) and g; (1 <j < q) as polynomials with one

variable y and with rational functions on H, as coefficients. Since a ring of

one-variable polynomials is a principal ideal domain, we obtain

Po(t, )=(f(x, ) =0 A g;(x,»)#0)

1<j<gq

for some polynomial f(x, y) of the ring.
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We can assume that f(x, y) is irreducible over the field of rational
functions on H,, for otherwise we could decompose P,(x, y) into
a disjunction of expressions of the same kind.

Since f(x, y) is irreducible, g;(x,y) (1 <j<gq) and f(x, y) have no
common solution in K, for every x belonging to an open subset H of H,.
Thus for xeH we get Py(x, y) =(f(x,y)=0) and f(x, y) has a unique
solution in K, for every xeH. Consequently,

f(x, y) = a(x)(Fr(y)—(x))
for some rational functions a(x), f{(x) and a natural number k.

LemMMA 6. The isomorphism 7. G, —» G, of Lemma 5 is birational.

Proof. The isomorphism 7 is an n-tuple <r,, ..., r,>, where r;: K} - K,
are definable functions for all ie{l, ..., n}. It follows from Proposition 3
that for every x from an open subset of G, we have r;(x) = Fr, (;(x)), where
f;(x) is a rational function and k; an integer, i€ {1, ..., n}. We assume that if
char (K,) =0, then k; =0, and if char (K,) # 0, then k; is maximal. Thus
f;(x) is separable, ie., df;(x)% 0, where df; is the differential of ;.

Let k be the minimal natural number such that k+k; >0 for all
ie{l,...,n}. Then Fr,oF is rational on an open subset of G,, and
thus on G,. Note that d(Fr,of) #0 since d(Fr,or)#0 for some
ie(l, ..., n}. We shall prove that k =0, ie, Fr, =id.

Suppose that k > 0. Then d(Fr, o7) is a non-zero homomorphism of Lie
algebras L(G,) —» L(G,). But d(Fr,o7) is a zero homomorphism on L(7,)
since 7 is rational on ¥, and k > 0. Thus, the kernel of d(Fr,o7) is non-
trivial. This is a contradiction since L(G,) is a simple Lie algebra.

Thus we have proved that k; >0 for all ie{l,...,n}, and so F is

rational. By symmetry, 7! is also rational, which completes the proof.

THeEOREM (Borel and Tits [1]). Let s be an isomorphism of a simple
algebraic group G over an algebraically closed field K onto a linear group G,
over an algebraically closed field K,. Then there exist:

an embedding of fields u: K - K,;

algebraic groups G, and G, over K,, G, < Gl,

a group embedding u*: G — G, induced by u and a rational isomorphism

= onto —

r: G, — G, such that s =rou*.

This theorem follows immediately from Proposition 2 and Lemmas 4-6.
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