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GEOMETRY OF THE FREE PART
OF THE SHELL OF AN AIR SPRING

1. Introduction. Air springs are widely applied in motor-cars and
railroad vehicles (see [1], [3], [B], [6], [9], [10], [14], [16]-[18]). They
are used in buses and big lorries and in the passenger railroad vehicles
as well. In Poland, the buses “Jelcz—Berliet” are equipped with air
Springs of type “sleeve with cover” (Fig. 1f). The reason for such
a large propagation of air springs is that they have many advantages
as compared with gum and steel springs. Their main advantages are
the following:

it is easy to obtain the required characteristic () which may be
Tegulated; for instance, the load being changed, the self-active return
of the car body to the given height may be assured;

it is possible to disjoint constructing the springs and constructing
the conduct of wheels;

large changes of shape yield small tensions in the shell;

the acoustic isolation is given as an additional effect;

the pressure in the air spring may be used to measure the load of
the vehicle for controlling the brake system.

By a spring we mean in the sequel the system consisting of:

(i) a given quantity of gas whose pressure is greater than 1 atm.
and which may be compressed and decompressed;

(ii) a vessel containing this gas and having a flexible non-expanding
Shell as an essential part.

The typical air springs are shown in Fig. 1. They are all circle-shaped
€Xcept for the bag (Fig. 1g,h) whose shape is a lengthened one.

The energy of decompressing the gas contained in the spring from

\\

() The characteristic of a spring is a function which describes the dependence

between bending and load.

9 — Zastos, Mat. 18.2
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the volume v to the volume v, is given by the formula

(1) L = flpdv.

It is equivalent to the energy of compressing which consists of the work
Ly done by the external force P and of the energy produced by the at-
mospheric pressure p,:

(2)

Fig. 1

Comparing (1) and (2) we obtain the following formula for the valuc
of the work done by the external force:

31 v
Ly = fpd'v—fpadfu.
v 4

The derivation of L, with respect to the height & of the spring yields

dLp  dLp dv
ah ~ dv dh

av
= - (p _pa) ﬁ“'
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Introducing the bending f = h,—h, we obtain

dLp dv
P = ah —(.’p_pa)ﬁ°

The form of the function p(v) follows from the well-known principles
of thermodynamics. The process in gas connected with the change of
the spring shape is in general a polytropic one with variable exponent.
It is close to the adiabatic one if this change is quick and to the isothermic
one in the case of a slow change. If the increments of the volume are
small relatively to the global volume of the air, this process may be approxi-
ately treated as an isobaric one. The form of the function f(v) is con-
hected with the shape of a spring and with the way of its deformation.
A most frequently used model is the piston in a cylinder with a supple-
lentary volume v,. Then v = Sh--v,, where 8 denotes the area of the
Piston. The domain of validity of this computing model has been treated
in [12]. A more exact model of an air spring or of its part is a solid of
revolution, consisting of a flexible non-expanding ring-shaped fold and
of two rigid plane targets (Fig. 2). The parallels of the fold are circles
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because such a shape has been given to it. Usually, the meridians are
also treated as circles [7], [8], [13], but generally there is no reason for
Making such an assumption. A more detailed study of a meridian section
of the fold is the purpose of this paper.

2. Formulation of the problem. It is known that the gas compressed

vessel tends to have the maximal volume. Accordingly, the shell’

soli tf) hax.re such a shape which assures the maximal volume of the

Secti, With given area of its surface. Therefore, to define the meridian.
10n of the fold, we are to solve the following problem (Fig. 3):

iI]_ a
tends
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Suppose that two points 4, B of the (x, ¥)-plane are joined by a line
such that the surface obtained by its rotation about the y-axis has a given
area. Choose this line in such a way that the volume of the solid obtained
by rotation of the figure aABb is a maximal one.

In such a formulation of the problem the fold has to be convex.
Therefore, the point of the line which is the nearest to the axis of rotation
should be one of the points A and B. Accordingly to Fig. 3, let A be
such a point. Our problem can be formulated equivalently if we subtract
from the volume of the solid the volume of a cylinder of radius A« and
height ab. Such a cavity of the solid makes it easier to compare its volumes
corresponding to different choices of the shapes of its surface.

The formulated here “space” problem may be replaced by a “plane”
one if we use the well-known theorems due to Guldin (see [11]). They
state that the ratio of the area of a surface of revolution to the statical
moment of the line circumscribing this surface and the ratio of the volume
of the solid of revolution to the statical moment of the plane section
of this solid are both constant and equal to 2=x. Therefore, our problem
may be reformulated as follows (Fig. 3):

Given a statical moment of a line AB with respect to the y-axis,
we seek such a form of this line for which the statical moment of the
surface ACB with respect to the y-axis is a maximal one. Such a “plane”
formulation of the problem is very convenient because it makes easy
the verification of the obtained results if we know the length of the line,
the area of the surface, and the position of its centres of gravity.

3. Derivation of the equation of the line. The statical moment of
the plane domain with respect to the y-axis (Fig. 3) is given by the formula

v, = [[eas = [ ( ] sa)a,
S b x
whence ’

1,0,
U, =—2—f(w“—w§)dy.
b

The statical moment of the line with respect to the y-axis is defined as

a

T, = [a@d = [2V1+a"dy.
AB b

We try to solve our problem using the well-known Lagrange method.
So we are looking for the extrema [2] of the functional

a

® =T, = [ (o gy iTe e,
b
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Where 1 is a constant. As the integrand in (3) does not depend on y, denot-
ing it by F we get the first integral of the Euler-Lagrange equation in
the form

F—a'F, = C,

or, after evaluating the derivative F,,, in the form

19

Axx -

MY _ ¢,
V1+2? !

)

d

1 1 s
(4) —w2——9—x§+2ml/1+w'—

After some calculations, (4) takes the form

20x

= —z? 4 +2C,
Y1+
or
() —21__f—_— = x} — a2
V1442
with
(6) i, = @ +20,

ff we choose the constant C; in such a way that the right-hand side of (6)
IS non-negative. Solving (5) with respect to x', we obtain

_ V —a* 4+ 20° (2 + 24%) — 2t
x;,— a*

’

xr

’

and integrating it with respect to z we get
2 2
(7) y+C =f (@, —x*)dx

l/w(w)
Where w(x) = —a*+2a° (2} +24%) — k.
~ Equation (7) describes the required line in the (z,y)-plane. This
Ine will be called an anti-ellipse because, as will be seen below, it has
the shape of an oval with some properties which are opposite to those
Characteristic of the ellipse.

4. The study of equation (7). In this section we study equation (7)
More thoroughly and bring it to the form which will be more convenient
I further investigations. We are going to express the constants 4 and
T by means of the roots of the polynomial w(z) occurring in the denomi-
Dator of the integrand in (7). Without loss of generality we may suppose
to be non-negative because in (7) only A* does occur. As will be seen

1 the sequel, the case 2 = 0 may be neglected, so we assume A > 0 from
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now on. From the equation
(8) — (@) + 20 (2} + 24%) — (2})* = 0
we obtain

(#%), = a2 +222 —22Va + 7,
(@%)y = @7 +22*+22 l/w,f——}—ﬂ—z
Thus (8) has four distinet real roots
%, = —i+ l/m, X, = A+ l/m,
@y = A—VR+ahy, 3= —A—VPtal
and the following relations hold:
Xy = —Xyy, X =xi, Xy= —Tyy & =X,
B1By = L%y, T1+2y = —(X3+2,).
Obviously, 2, >z, >0 and
(9) Xy = L1y, A = 3(@y—w,).

We may suppose further that x;, > 0 because only &} occurs in our con-
siderations. The denominator of the integrand in (7) may be written in

the form V — (22 —a?)(2?—a2), so it is real valued only for # belonging
to the interval [#?, #3]. In other words, the right-hand side of (7) is real
valued only for [z,, 2,] and [#,, #;] lying on the non-negative and non-
positive semi-axes, respectively. Thus the anti-ellipse consists of two
branches. Let us consider first this one which corresponds to x> 0. It
follows from our considerations that x, is the abscissa of this point of
the line which is the nearest to the y-axis and x, is the abscissa of the
second end-point. Changing the constant C in (7), we shift the anti-ellipse
along the y-axis. This constant may be eliminated if we reformulate (7)
using the definite integral. The following simple example shows that
it is most convenient to integrate with x, as the lower bound, assuring
in this way the condition ¥ (x;) = 0 to be satisfied. Let us consider namely
the case where x, = 0, thus #;, = 0 and z, = 21. If we suppose that
& positive value of the radical in (7) is taken, this equation is of the form

xdx
N V4r: —ao?
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or, after evaluating the integral,
(10) y+C =Vair—a® (x,y-+C>0).

The last equation describes a quadrant of the circle with radius 24 and
centre (0, —C). The condition ¥(z,) = 0 in (10) is equivalent to C = 0
and in this case the circle has the “best” position with respect to the
coordinate system. According to these remarks we write equation (7)
in the form

3 (xf — o) dz

2V —a*+20% (2} +22°) —a}

(v, <o <2,

or in the following two equivalent forms:

v T2, —x%)dr
a oy folmmE
2 V—a'+ 2 (a? +ad) — 2l
and
(13) y =f (@2, —&)dz 2, < & < )
V— (2} — o) (2° — a?)

Note that the right-hand side of (11) or, equivalently, of (12) and (13)
is an improper integral. Its convergence follows easily from the form of
(13). In our basic equation (7) the square root occurring in the integrand
ay take two values of opposite signs. Changing this sign in (12) we
Teflect the described line in the x-axis.

To consider the second branch of the anti-ellipse, corresponding to
the interval [z,, #,], we describe it formally by the equation

T
Yy = fg(“')d*” (g < @ < @),

T
Where g(x) denotes the integrand in (7) and the square root takes also
two values of opposite signs. As g(x) = g(—wx), it is readily seen that
this second branch is symmetric, with respect to the y-axis, to that one
flescribed by (11). Since we have assumed that the shell of our air spring
IS the surface obtained by rotation of the required line about the y-axis,
1t is sufficient to consider only the first branch of the anti-ellipse, cor-
Tesponding to non-negative . In the sequel we suppose that the square
00t in (11), or in (12) and (13), has the positive sign, so this equation

describes half the anti-ellipse lying upon the z-axis.

_ We introduce now some geometrical concepts concerning the anti-
ellipse. We call namely the constant 21 the diameter of the anti-ellipse.
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The constant x,, which according to (9) equals the geometrical mean
of #, and z,, may be called the mean distance of the anti-ellipse to the
axis of rotation. It is readily seen from the form of the integrand in (11)
or in (12) that the tangent to the anti-ellipse at the point (x,, 0) has the
direction of the y-axis. The same holds at the point (x,,y,) if z, # 0.
It is easy to verify also that y(x) takes its maximum value for v = z,,.

5. The length of arc of the anti-ellipse and evaluation of the ordinates
of its points. Denote by I(z) the length of arc of the anti-ellipse from
the point (z,, 0) to the variable point (z, y). Using the formula

l(z) = fl/1+y'2da7,

Lo

5

we get, after calculating %’ from (12),

x
1 2xdx
o) =5 (B—2) [ e
2 - V —a* + (a2 +a2)a® — 222k

o
-

or, after evaluating the integral,

@k —
(14) l(z) = (x,—x,)arctan |/ ——-.
x* — a3
Making use of the identity
t
Sinlp = —_E—?__'
Vi+ tan2g
we bring (14) to the form
B —x
(15) l(x) = (wz—x,)arcsinl/%—_% )
2 1

which will be more convenient in the sequel. It follows from (14) and (15)
that

(16) Uay) = 5 (w—a) = 7l

Therefore, the length of the anti-ellipse depends only on its diameter;
particularly, it does not depend on z; and =z,.

Equation (15) may be used to the approximate calculation of the
ordinates y of the points of the anti-ellipse. We divide the interval [z,, z,]
into » parts by means of the points

(Ul = §n<6n-1<°"<§0 =x2
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and we put A‘Sz = Ei_‘fi——l (1 = 1,2, ceey M) and Ali = l(gi—l)—l(‘fi%
where the values (&) are obtained from (15). Identifying Al, with the
length of the chord, we obtain the following approximate formula for
Ay, = Yi—Yi:

(17) | Ay, ~ V(4L —(4E)

Therefore, the ordinate y; may be approximately evaluated after summing
Some number of the right-hand side expressions in (17) under the assump-
tion that the increment Ay, is positive for &; > x, and negative for &,_, < ;.

(Fig. 4).
_ Y
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Fig. 4

Let us suppose now that we have changed the scale on the x-axis
Putting » = 74 (z >0) and, in the same manmer, @, = 1@, @, = 73,.
Therefol-e’ by (9), #, = 12, and A = A Transforming the integral in
(12) we obtain
1 y(a) = (@),

Where § denotes the right-hand side of (12) expressed in terms of new

Parameters. In other words, multiplying the parameters z, and 2 by

3 constant factor yields a similarity transformation of the anti-ellipse.

. aOJllllsequ.en-tly, two anti-ellipse§ having the same ratio /1 Wi.]l be

val ed similar. The values of §(#) can be simply obtained from (18) if the
ues y(x) are just known.
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6. The evaluation of y(x) by using the tables of elliptic integrals.
Equation (13) may be written in the equivalent form

dr
19 = 1%2
v fl/w—wl)wz—'m) o fVm—%)(%—“

Using the known methods [4] we transform the last identity into

Y = 0. E(p, k) —u, F(p, k),
where
: . l/wi—a:f @3 —at
k =sina = B and ¢(z) = arcsm]/ pe S
By (15) we have
I(x) ()
p(xr) = = .

Lo — 4 22

The numerical values of functions E and F (in terms of the independent
variables a and ¢) are to be found in the tables of elliptic integrals [4].
Note that this method of evaluating y(x) is less convenient than that
described in Section 5, which may be realized using the computers.

It should be noticed that the usually used methods of approximate
integration, as trapezium method or Simpson’s method [15], cannot
be applied to evaluating the integrals occurring on the right-hand side
of equation (13) because its derivative becomes infinite at the points
%, and x,.

7. The radius of curvature of the anti-ellipse. Using the well-known
formula for the radius of curvature

1 /213/2
R = (__H{T)__,
)
we get, by (12),
2 —
(20) R(z) = 2%
x 4 2,2,

or, equivalently, after introducing constants 1 and w,

205°
(21) B = o
Particularly, we have
R(z,) = 24, (j =1,2) and R(z) = A
Ty + 2,

if 7, = 0. Assuming 2#; = 0 and, therefore, #, = 0, by (10) we get B = 24.



Shell of an air spring 307

t
We shall now see how R(xz) changes if z, grows to infinity but the
diameter 2/ of the anti-ellipse remains constant. From (21) and (9) we
obtain
2 2
i - R (x) < @,

~ P ~ .
1 & -+ 03 24 N

As r, <@, and z, = 2,—24, both x, and x, also tend to infinity. But
in this case, as is easy to verify, the first and the third terms in (22) have
the same limit 1/2. Therefore,
(23) lim R(x) = A.

a:k—>00
We can see now how the shape of the anti-ellipse changes when z, runs
over the interval [0, co]. For x, = 0 the anti-ellipse is the semi-circle
of radius 24, for z, >0 it is an oval with two end-points (wl, y(ml)) and
(2, —y(@,)). It follows from (23) that for ,— oo the anti-ellipse becomes
a part of the circle with radius 4. But according to (16) this part must
coincide with the whole circle (Fig. 5).

yh
rﬂ..- /‘\
r
2 Xyg—> =
Fig. 5

The knowledge of numerical values of the radius of curvature, which
May be found by (20) or (21), yields the method of approximate con-

‘;zﬁletion of the anti-ellipse (Fig. 6). We divide the interval [, 2,] as
ows:

T = §2n< E;zn—l <. e <Z §1< fo = @y.
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As we have seen in Section 4, the x-axis has the normal direction to the
anti-ellipse at the point (x,, 0). Thus the centre of curvature S, at this
point lies on the z-axis and has the abscissa & —ER(&,). Setting 8, to be
the centre, we draw an arc of the circle with radius R(&,), which meets
the line x = &, at the point @,. On the segment 8,0, we choose a point
S, such that its distance to @, equals E(§,). Now, taking 8, as the centre,
we draw an arc of the circle with radius R(&,), which meets the line x = £,
at the point @,. Iterating this procedure we obtain the approximation
of the anti-ellipse in the form of a line with a constant tangent. Joining
the points 8,, 8,, 8., ... by the segments of straight lines, we obtain
the approximate shape of the evolvent (Fig. 6).

A

yﬂ A
112}
Py
7 ant(-ellipse
/ 1.081
evolvent. / /
/ Qa 1.04+
/ 1 1
%
L+
| > 1.00 ] ] ) 1 »
0 S, x 0O 02 04 06 08 10
m/A
Fig. 6 Fig. 7

8. Final remarks. The plane line studied in this paper, called by
us an anti-ellipse, has been obtained as an integral curve of the Euler-
Lagrange equation which, as is well known, gives only a necessary con-
dition for the extremum of a functional. So it remains to prove that the
anti-ellipse is indeed the solution of the variation problem posed in
Section 2. This proof, based on certain numerical investigations, will
be published in a forthcoming paper.

To complete our considerations let us introduce the difference

1+ @y
m = — Vo,
2

which will be called the eccentricity of the anti-ellipse. For x, = 0 both
ends of the anti-cllipse are on the axis of rotation and we have m = x,;2.
It is easy to verify by simple calculations that m tends to zero if x;, grows
to infinity and the diameter 21 remains constant. We have seen that in
the two “cxtreme” positions, i.e. z,—>oco and w;, = 0, the anti-ellipse is
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a circle or a part of a circle. In the remaining situations, where x,, € (0, oo),
the anti-ellipse may be considered as a deformated circle and the ratio
% = y(x,) (v, — ;) gives a measure of this deformation (note that » =1
in the two “extreme” cases described above). The dependence of » on
the ratio m/4 is shown in Fig. 7. Numerical calculations prove that the
maximal value of x is close to 1.13; thus the above-mentioned deforma-
tion is rather not too great.
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