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Local analysis of non-standard C* functions
of pre-distributional type

by V. Komkov (Rock Hill, South Carolina)
and T. G. McLauGHLIN (Lubbock, Texas)

Abstract. The authors define pre-distributions as equivalence classes of non-standard *C*
functions, and analyze the classes of the so-called K-pre-distributions. Discrete oscillation,
essential oscillation and other properties are defined in the monad of a standard point.
Distributions of Schwartz are classified with respect to the essential behaviour in the monads of
standard points. Two different definitions of order are shown to be equivalent. This analysis
deliberately avoids the L, approach suggested by A. Robinson, instead pursuing the basic L,
setting, which is lifted to a non-standard model.

0. Introductory comments regarding terminology
for the non-standard model

The basic “non-standard” concepts of this paper are all derived from the
classic work of Abraham Robinson, cf. [12]. We make no pretense of
enlarging upon the theory of non-standard models per se; all the results in
the paper are “applied”. Various technical lemmas of Robinson [12], Luxem-
burg [10], or the general folklore will be used, often implicitly, to link
together the steps in our arguments. A certain very simple formal language
& will suffice for our “logical” purposes. The key properties of &, in
interaction with its non-standard model *R are given in Appendix I, to
which we shall frequently refer. (*R is defined in Appendix I) In this
introduction, we shall morely specify our main notational and terminological
conventions and allude to some of the most fundamental properties of *R.

For simplicity’s sake, we shall take as our base (or “standard”) structure
the real line R. (All our arguments are valid for base structure = arbitrary R",
n> 1, and several of them extend without significant modification to an
arbitrary metric space as base.) The finite-rank “universe” R, based on R, is
described in Appendix I; from there one passes to the non-standard exten-
sion *R in which the analysis is to be done. The most immediate property of
R is that all functions and relations in which we are interested, for the
purposes of ordinary real analysis, are elements of R. The most immediate
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property of R is that R is embedded in R as an elementary submodel (see
Appendix II) relative to the language ¥. R is much bigger than R: it
contains “real numbers” which are larger in absolute value than any positive
element of R: the reciprocals of such giant reals are called infinitesimals. The
set of all infinitesimal reals in the R-version, *R, of R, together with zero,
constitute the so-called “monad of zero™, and will be denoted by 1(0). ;(0),
will denote the positive elements of u(0). More generally, if re R, then u(r)
denotes {xe*R| x—reu(0)}. (We shall avoid the pedantry of using different
symbols to denote subtraction in R and its extension to *R; similarly with
other operations and relations of analysis) *R; and *R” will denote,
respectively, the sets of positive infinite and negative infinite elements of *R,
and *R* =*R* U*R7. *R—*R* will be denoted by *Ry, (the bounded part
of the non-standard real line). For x, ye*R, we write x =~ y to mean that x—
—yveu(0). If xe*R,,, we denote by st(x) that unique element y of R (see
[12]) such that y = x.

Finally, analogous with our use of the notation *R, we shall denote by
*S the R-version (i.e., the non-standard extension) of any set S belonging to
R. The reader may wish. at this point, to examine the appendices.

1. Distributions, monads, and elements of *C~

The classical Schwarzian theory of distributions, in a nutshell, says:
“look at the bounded-on-compacta linear functionals from the space Cj (of
C’ functions with compact support) into the reals: you will see the Dirac
Delta and a host of other useful gadgets”. An alternative approach, of a
somewhat more “constructive™ character, was subsequently developed by
Mikusinski ([1], [11]), using the notion of a fundamental sequence of con-
tinuous functions. (For a non-standard discussion of the Mikusinski point of
view, see [9].) In the work which follows, we are motivared by the Mikusinski
approach; however, we shall in general give definitions and arguments which
bear the mark of the Schwarzian point of view. The point here is, that non-
standard analysis leaps to mind when we are confronted with a fundamental
sequence of C* functions: just pick off a term having infinite index in the R-
version of the sequence, and a distribution in R is thereby converted into a
C* function in R. On the other hand. in formulating our proofs it has been
convenient to manipulate inner product integrals rather than work with
extensions of fundamental sequences.

In the present paper, we are not concerned with “generalizing” distri-
bution theory via non-standard analysis, nor even with reproducing it in its
present state of generality by that method. Rather, we wish to apply
distributional ideas in studying the infinitesimally local behaviour of a
significant class of *C” functions (naturally enough, the significant class in
question is then the class of *“pre-distributions™): hopefully, such a study will
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provide us with some non-standard means whereby to double back and
launch a fresh attack on some old problems, e.g., the multiplication problem.
Accordingly, we shall for now restrict ourselves to the following framework:
elements of *C* defined on the whole of *R, and (standard) CJ as the “test
space”. Somewhat greather generality, if desired, can be purchased at the
usual price of increased irksomeness in the book-keeping, although it is not
clear whether certain compactness restrictions can be avoided.

We proceed now to basic definitions and preliminary results. The first
step is to define “pre-distribution”; for the classical distribution-theoretic
genesis of our definition, the reader is referred to Chapter 2 of [3].

1.1. DerFiniTioN. Let (Dy) denote (as in [3]) the set of all those elements
of C§ with support < K, K a compact subset of R. Let a functional F: (D)
— *R be called strongly bounded in case there is a positive number M €*Ry,
such that |F(g)| < M-sup|g(x)| holds for all ge(Dy). A function f(x)e*C~*,

xe*K

defined on all of *R, is a pre-distribution iff the (extended Lebesgue) integral
S(x), (x)> = [ f(x)o(x)dx is a strongly bounded linear functional on
*K

(Dg), for all compact K = R.

Since the foregoing definition involves a markedly external object,
namely, (Dy), the reader is fully justified in immediately demanding examples
of pre-distributions; in particular, it is incumbent upon us to present a *C™
version of Dirac’s delta in the form of a pre-distribution. It turns out that
this is not hard. Let {a,> be a decreasing (standard) sequence of positive
reals such that lim a, = 0; and fix a number ce R, ¢ positive. Let a sequence

n=ao

{f,(x)> of functions be defined thus:

1 ex —_i for |x| < a,;
fn(x)= ca, P ar%—xz i e

0 for (x| = a,.

Each f,(x) can be verified to be Cg; moreover, we readily see that

+ ® n 1 )

1 —a? 1 —1
j f"(x)dx=ca,, f exP(af—xZ)dx =2 Jexp(m)dé.
e “ap -1

The last integral, however, is independent of a,; so, if we simply choose
1

-1
c= jexp(cé—z)dé,

-1
+ o
we then have that | f,(x)dx =1 for all n. Now, consider the extension,

- a®

"
)
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*(f.(x)>, of the sequence {f,(x)> in R, and let n = w = an infinite positive
integer. Using integration by parts (and recalling that ¢ (x)eC™ = ¢(0) = ¢ (1)

for all teu(0), we readily calculate | f,(x)@(x)dx = @(0) for each

@ (x)eC§. Thus, f,(x) is a pre-distribution répresenting Dirac’s delta. (Upon

+ ¥

taking standard parts, ie., forming St( | f,(x)@(x)dx), f,(x) literally behaves

as 0.

Having exhibited  in terms of a pre-distribution, we can exhibit much
more. The following simple proposition shows that the usual notion of
distributional derivative is precisely the one which applies to our definition
of pre-distribution:

1.2. ProposiTION. Let f(x) be any pre-distribution, and let ¢(x)eCy,
support (¢ (x)) = I, where I = a standard closed finite interval of R. Then
Jf(x)e(x)dx = —[f(x)@'(x)dx. (Thus, in terms of Definition 1.1, we have:
1 I

S o>, = =L, >, a formula which is immediately recognized from stan-
dard distribution theory.)

Proof. The proof is just the usual elementary application of “integra-
tion by parts”: [f(X)e(x)dx =f(x)ex);—[f(x)¢'(x)dx, where I=/[a,bh].
1

i

But f(x)@(x)2 =0, since support (¢(x)) < the interior of I. That is all.
Since | f(x)@(x)dx is a strongly bounded linear operator on (D)), so
I

also must be —j'f(x)(p’(x)dx; thus 4, &', 6", ... are all pre-distributional in
]

our sense; moreover, they have uniform pre-distributional representatives
Jo (%), [ (x), fa' (%), .
(Note. The foregoing trivial proof of Proposition 1.2 readily generalizes

to arbitrary compact K < R: just enclose K in an interval I, and observe that
no support has been added, for ¢(x).)

Since, clearly, all finite (in the standard sense) sums of pre-distributions
and likewise all scalar multiples of pre-distributions by elements of *Ry, are
again pre-distributions, the class of pre-distributions forms a vector space
over *R,,, closed under differentiation. It follows (see [3], Chapter 4) that, in
particular, every classical Schwarz distribution with point support is re-
presented by a *C™ function which induces a strongly bounded integral
functional on every (Dy). This is by no means everything that is “pre-
distributional” according to Definition 1.1; but it should be enough to
convince the reader that we are not necessarily wasting our time.

We wish next to exhibit the criterion according to which we shall lump
pre-distributions together into equivalence classes which we shall call K-
distributions.
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1.3. DeriNiTION. Let f(x), g(x) be two pre-distributions in *C™; and let
Q be a bounded open subset of R. We say that f(x) and ¢g(x) are Q-
equivalent, and write f(x) =, g(x), in case [(f(x)—g(x))@(x)dx = 0 holds for

0
all ¢(x)eCF such that support(p(x)) < Q.
For convenience, let us henceforth write _C *(£2) to mean the set of C*
functions f: R — R such that (support(f)) < Q.

1.4. DerINITION, By a K (Q)-distribution (Notation: ae K(Q)) we shall
mean an equivalence class o of pre-distributions (“K (£2)-pre-distributions”, as
we shall call them) under the relation =,. (It is obvious that =, is an
equivalence relation.)

A K (Q)-distribution will be called trivial (or, the zero distribution) if
[f(x)@(x)dx = 0 holds for all fea and all peC*(Q). It will be denoted
o
by .

1.5. DeriniTION. Let peQ, Q a bounded open subset of R; and let
aeK(Q). p is called an essential point of support of a if (Vf(x)e2) [jf(x)dx

J

# 0 holds for some open interval J = u(p)].

1.6. DeFINITION. Let Q, p, and a be as in Definition 1.5. p is called a
point of infinite support of « if (Vf(x)ea) [| f(x)dxe*R* holds for some open
J

interval J < u(p)].

We pause to note that no K (Q)-distribution can have in it a pre-
distribution witnessing an entire (standard) interval’s worth of points of
infinite support. (Later on, we shall get a much stronger result; the proposi-
tion at hand is merely by way of preliminary reassurance.)

1.7. ProvrosiTion. (Vo e K (Q2))(Vf(x)ea) (VS =a non-empty open sub-
interval of Q) 3xeS)[f(x)e*Ry,].

Proof. Assume the contrary. Let ¢(x) be a C*(£2) function satisfying
p(x) =0 for xeQ2—-S and ¢(x) >0 for xeS§, where S, f(x), and « form a
counterexample to the proposition. We may assume, w.l.o.g., that f(x) does
not change sign on S. But then jf(x)qo(x) dxe*R™, which is a contradiction.

We observe that if peQ isQa point of infinite support of f(x)ea, then
f(x) must have a zero within any open set S < Q for which peS. It is easily
seen from “countable saturation” of R (see Appendix II) that this latter
statement concerning f(x) 1s equivalent to the assertion that f(x) has a zero
in u(p). (We shall formally verify this assertion later on.)

We now introduce a notion of “oscillation at a (standard) point™ which
is closely related to the concept of infinite support at a point.

1.8. DerFiniTION. Let a e K(2); and let k be a (not necessarily standard)



20 V. Komkov, and T. G. McLaughlin

positive integer. a is said to oscillate at least k times at p, peQ, if
(Vf(x)ea)[f(x) has at least k zeros in u(p)]. « is said to oscillate k times at p
if o oscillates at least k times at p and (If(x)ea) [f(x) has exactly k zeros
in u(p)]. Finally, we say that a is of discrete oscillation at p if there is an
integer ke*N, N =1{0,1, 2,...}, and a function f(x)ea such that f(x) has
fewer than k+ 1 zeros in p(p). (In this last case, we also say that the pre-
distribution f(x) is of discrete oscillation at p.)

Remarks. (a) We shall demonstrate further along, without much effort,
that all K (Q)-distributions are of discrete oscillation at p. With somewhat
greather effort, we shall then derive in section 4 one of our central results:
they are in fact all of standard finite oscillation at p. (b) As the classic non-
trivial example of “exact oscillation”, consider the k-th derivative of the Dirac
Delta; this distribution oscillates k times at 0.

1.8a. Definition 1.8 implies the definition of essential oscillation of a pre-
distribution. f(x) essentially oscillates k-times at p if and only if every pre-
distribution belonging to the same distribution o > f(x) has at least k zeros
in the monad of p, and some g(x)ea has exactly k zeros in u(p).

2. Theorems lifted from R to *R

There are various facts concerning standard C* functions which we
need to “hft” (via condition 2 of Appendix II) to the non-standard real line
*R. Most of these liftings require no comment and the lifted versions will be
stated directly; but in a few cases involving “smoothing” (or “mollification”)
we shall explicitly state the standard theorems, which are then subsequently
to be interpreted in *R. The following list of theorems is a representative
sample, rather a complete list, of the “upstairs-downstairs” results needed in
subsequent sections of this paper.

2.1. THEOREM. Every non-empty open subset of *R (in the interval top-
ology) is of the form ) 1,, where n ranges over *N, n# m=1,n1,, = Q and

{I,> is a strongly internal sequence (see Appendix II) of non-empty open
intervals of *R.

2.2. THEOREM. Let f(x)e*C™. Then the zero set {xe*R| f(x) =0}, of
f(x) is closed in *R (i.e., has open complement in the interval topology on *R
determined by the extension of the standard relation <).

2.3. THEOREM. Let f(x)e*C; and let [a, b], a<b, be a finite closed
interval in *R. Then there is a number Me*R, M > 0, such that |f(x)] < M for
a<x<b(xe*R).

24. TueoreM. (“Weierstrass C* Approximation”.) Let [a, b] be a finite
closed subinterval of *R; and let f(x)e*C*(Q), Q some open subset of *R such
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that [a, b] < Q. Then there exists a (non-standard) sequence {B,(x)) of (non-

standard) polynomials over *R such that for all non-negative ke *N we have:
lim B®¥ (x) = f®(x) holds uniformly (in the sense of *R) on [a, b]. (Here, of

course, “B¥(x)” denotes the k-th derivative of B,(x) with B (x) = B, (x), and
similarly for “f®(x)”.)

We are ready to prove some basic theorems concerning properties of
*C* functions.

25. THEOREM. Let f(x)e*C™ have zeros in [a, b}, where [a, b] is a finite
closed subinterval of *R with a < b; and suppose supp,(f(x); [a, b]) = U 1,,

where suppo(f(x); [a, b]) is defined as |xe[a, b]| f(x)# 0} and where

I, ne*N> is a disjoint (strongly internal) sequence of open subintervals of

[a, b] not all of which are empty. Finally, let © be a positive element of *R.
b

Then there is a positive integer nye€*N such that ]j'lf(x)l dx— Y [ 1f(x)dx|
nSng I,

< 1. Moreover, if E is the set of endpoints of the intervals 1,, l;) < 1, (all of
which we may assume are non-degenerate intervals), then we can arrange E
into a non-decreasing sequence [x;| i < 2no—1} such rhat:

(1) x5 < Xpi41 < Xpi42 < Xg;43 holds for i < 2ny—4 and x, < x; holds
in case nyg = 1;

(i) each x;, if not =a or b, is a zero of f(x);

(1) no zero of f(x) lies strictly between x,; and x5, ,, i < ny—1; and

(iv) there is a positive element & of *R such that min{xy,, —xy| i
< no—1} > & (whence, no point of [a, b] is an accumulation point of the set
x| i< 2ng—1}).

The remaining results to be cited in this section are standard theorems
on “smoothing”. We shall state them in standard form and let the reader
carry out the (routine) “liftings” to *R.

2.6. THEOREM. Let g: R— R be C*, and let a, b be elements of R with a
< b. Let ¢, be any positive element of R. Assume that c, d are elements of R
such that a<c<d<b and (Vx)[c < x<d=g(x)=0]. Assume, further,
that g(x) is positive in a left neighbourhood of ¢ and in a right neighbourhood
of d. Then there exist numbers e and f, with a <e <c and d < f < b, a positive
element €5 of R with |e,| <€, and a C* function h: R— R such that

(1) h(x) =g(x) for x¢[e, f1;

(i) h(x) = ¢, for xelc, d];

(1) h(x) >0 for e <x <c and for d < x <f and

< i
(iv) max {[{h(x)—g(x)dx, [[h(x)—g(x)}dx} <eé.
e d

If g(x) is negative in a left neighbourhood of ¢ and in a right neigh-
bourhood of d, the same conclusion holds except that we must choose ¢, to
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be negative and allow h(x) <0 for e<x<c and d<x <f U g(x) is
negative in a left (right) neighbourhood of ¢ and positive in a right (left)
neighbourhood of d, then again the conclusion holds except that we must
allow h(x) to change sign, once, in the interval (e, ¢) (in the interval (d, f)).

2.7. TueoreM. Ler f: R — R be a C™ function; and let a, b be elements of
R with a < b. Let ¢ be an arbitrarily given positive element R. Then there exist
numbers c(e) and d(e), and a C* function h: R — R, such that the following
conditions are satisfied:

(1) a<cle) <d(e) <b;

(i) h(x) =0 holds for x¢[a, b];

(ii1) h(x) f(x) holds for xe[c(s) d(e)] and

(iv) max{jlf(x)—h(x)ldx Ilf h(x)|dx} <& holds whenever a<u

c(e) and d(e) w<b.
The proof of 2.7, as a theorem of standard analysis, consists in a

straightforward application of “exponential mollification” arguments to the
elementary fact that f is bounded on [a, b].

2.8. THeOREM. Let f(x)eC™ be given Let a, beR with a <b; and let ¢,
be a positive real number. Ler x| i <2my;—1}, m; >0, be a finite sequence of
elements of [a, b] such that:

(1) X < X941 € Xp;42 < Xp;43 for all relevant values of i (ie., for
i < 2m;—4, or with i =0 and the last two inequalities omitted in case m; = 1);

(2) each x; is either a, b or a zero of f(x)

(3) no zeros of f(x) occur strictly between x,; and x4, 1;

(4) there is a fixed positive number m such that min{xy,;— Xy
i<m-—1}>m

Then there is a function h(x)e C* such that:

(@) h(x) =f(x) for xe R—[a, b];

(b) the zeros of h(x) in [a, b] occur exactly at the members of
{x| i<2m,—1 and f(a) # 0=x; # a and f(b) # 0= x; # b}; and

© e<d=[flh(x)—f(Ndx<e+ [ [f(x)ldx,

[a,b)— H

where H= ) [X3, X2i41]-

iSml—l

(Statement (4) in the hypotheses of Theorem 2.8 is, to be sure, an
automatic consequence of the assumption that the given sequence is non-
decreasing and finite; we mention it explicitly because in the “lfted” version
it is necessary to allow m¢ u(0)).

29. THeOREM. Let f(x): R— R be a (standard) C*™ function. Let a, b, ¢
be elements of R with a <b < c. Let ¢,, £, be any two positive elements of R.
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If f(x) is negative in a left neighbourhood of a, positive for a < x < b, zero at

a, b and c, negative for b < x < c, and positive in a right neighbourhood of c,

then there are C™ functions g(x): R— R and h(x): R— R and numbers

X1,...,Xg Such that: x; <a<x, and x, <b<Xxy<c anii g(x)=f(x) on
2

R—-[x,,c] and g(x)= —¢, on [x, x3] and max{jlf(x)—g(x)ldx,

x1
_[ [f(x)—g(x)dx! <g;; a<xys<b and b<xs<c<xg and h(x)=f(x)
x3

xq
on R—[a, x¢] and h(x)=¢, on [x4, xs] and max{||h(x)—f(x)dx,
16 a
J 1) =f(x)dx} <eé,.
x5

A corresponding statement (the exact formulation of which we shall

leave here to the reader) holds in case f(x) is positive in a left neighbourhood
of a, negative for a < x < b, zero at a, b, and ¢, positive for b < x < ¢, and
negative in a right neighbourhood of c.

2.10. THEOREM. Let f(x): R— R be a (standard) C™ function having
finitely many zeros in the (standard) interval [a, b]. Let ¢ > 0 be given. Then,
there is a (standard) C* function g(x): R — R and a (standard) interval [c, d},
with [a, b] < [c, d], such that

(1) g(x) =0 for all xe(a, b];

(i) g(0) = f(x) for xe[c, d]:

(iii) max {a—c, d—b} <& and

(iv) |f(x)—g(x)| <& for all xe[a, b].

Theorems 2.9, 2.10 can be lifted to *C* functions f: *R — *R without
changes.

We are now in a position to derive some initial results on the behaviour
of a pre-distribution within the monad, u(p) of a standard real number p; we
shall make frequent use of the “countable saturation” property of R (see
Appendix II).

3. Pre-distributions inside a monad: preliminary results

Throughout this section, Q denotes some fixed bounded open subset of

R. Our first proposition is one which will be strengthened greatly in a later
section.

3.1 ProrositioN. Let a be a K (Q)-distribution; and let pe Q. Then a is of
discrete oscillation at p.

Proof. Let f(x)ea, with f(¢) = 0 holding for at least one ¢€ u(p); and
let [a, b] = Q be a standard interval such that p(p) < *[a, b]. Let © be a
positive infinitesimal. By Theorems 2.1 and 2.5, together with the obvious
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fact that the finite additivity of the integral on R (relative to disjoint subsets
of R) “lifts” to the non-standard setting, we have the existence of a *-finite
(i.e., finite in the sense of *N) disjoint (strongly internal) set S of closed

subintervals of [a, b] such that |f|f ) dx— jlf (x) dx| < 7. Let E denote the

set of end-points of elements of S then, smce S is a *-finite collection, E
contains a largest number x, and a smallest number x,. (We are assuming
here, with no essential loss of generality, that Supp, (f(x); [a, b]) # @; in the
contrary case, we need only apply the lifted version of Theorem 2.6, to an
interval which slightly extends [a, b] at each end.) Further, in view of
Theorem 2.5, we can assume that no point of [a, b] is a limit point of
elements of E (note that each element of E other that a or b is a zero of f(x)).
Applying the lifted form of Theorem 2.8, we obtain a [unction g(x)ex such
that g(x) has no more than m, +1 zeros in [a, b] and hence no more than
that in u(p). (The function g(x) provided by the lifted version of 2.8 is, in
d

fact, indistinguishable from f(x), in the sense that ¢ < d = {|g(x)—f(x)|dx = 0;

this property obviously places g(x) in « along with f(x).) Proposition 3.1
clearly follows. There is another way to prove 3.1, and it involves the
simplest case of a notion which plays an important role in the developments
of Section 4. Letting [a, b] be any standard interval, and f(x) a function
defined on [a, b], we call f(x) (as is customary) a spline (on [a, b]) in case
f(x) is piecewise polynomial on the interval [a, b], ie, in case there is an
integer n > 1 and a partition a = xo < X; <... < Xx, =b of [a, b] such that
f(x) restricted to [x;_,, x;] is a polynomial, for 1 <i < n. By the degyree of
the spline f(x) on f{a, b] we mean max ldegree(fllxl lx]),, 1 <i<n Now,
by application of the “smoothing” theorems of Section 2, we see that splines
can be approximated by C* functions in the following sharp sense: if f(x) is
a spline on [a, b], and if two (standard) real numbers ¢ > 0 and 7 > 0 are
given, then there is a C* function g(x) such that
1

() |f(x)—g(x)| <e for x€(a, b]mn[) [x;—1, x; +1];

(i) f(x) =g(x) for xe[a, b]— U [x;—1, x;+7] and

(iii) the zeros of g(x) on [a, b] are the same as the zeros of f(x) on

[a. b].

Given a spline f(x) on [a, b] and two positive reals £ and 7, we define as
follows the class M(f, a, b, ¢, 1) of “(¢, t)-mollified splines”’M(f, a, b, &, 7)
= {g(x)e C™| g(x) satisfies conditions (i), (i), and (ii1) with respect to f(x)}.
Keeping a and b standard but allowing ¢ and 7 to be non-standard (i.e.,
elements of *R,,), and permitting f(x) to be an element of *S, where § is the
set of splines over [a, b], we define Mg(f, a, b, ¢, 1) = {g(x)e*C*| g(x)
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satisfies (i), (ii), and (iil), in R, with respect to f(x)}. U Mg(f, a, b, &, 7) is an
" f€'S

internal set (i.e., an element of ﬁ) which we shall reffer to as the set of (s, 1)-
mollified splines over [a, b] with respect to [a, b]. The alternative approach to
Proposition 3.1 which we mentioned above in now simply this: choose ¢ =1
= an element of u(0),, and apply Theorem 2.4 to obtain a (non-standard)
polynomial P(x) such that |f(x)— P(x)| < & holds uniformly on [a, b], where
pela, b] and f(x) is a given predistribution (or, for that matter, any *C*
function); then define g(x) =f(x) on *R—[a, b], g(x) = P(x) on [a, b].
Finally, by suitably applying a “smoothing” theorem (as in Section 2) to g(x)
at the points a and b, we obtain a *C™* function h(x) such that

(1) h(x) is a pre-distribution belonging to the same distribution as f(x)
and

(2) h(x) is polynomial on some interval [c, d] such that a <c <p <d
< b. Since a (non-standard) polynomial i1s of discrete oscillation at every
standard real, we are done. This argument, of course, does not require the
general definition of (g, t)-mollified splines; polynomials would suffice. Later
on, however, mollified splines become important, and this seems to be a
reasonable point for their introduction.

3.2. ProrosiTiON. Let ae K (), and let peQ. If p is a point of infinite
support of a, then f(x)ex =f(x) has a zero in u(p).

(Note. This generalizes the obvious fact that Dirac’s delta has no point
of infinite support.)

Proof. Suppose p is a point of infinite support of «; and let f(x)ea. As
was noted relative to our proof of Proposition 1.7, f(x) must then have a
zero in any standard finite open interval containing p (otherwise, f(x) would
fail to change sign within some standard open interval (a, b) containing p,

and the resultant fact that | f(x)dxe*R” would belie the pre-distributional
(a,b)
character of f(x)). For each standard positive rational number g, let F (v,) be

a formula which asserts of v, that voe(p—1/q, p+1/q) and f(v,) = 0. (These
formulae, of course, contain an “added constant”, namely, a denotation for
the *C* function f(x).) Now, any finite subset {Fql(uo),...,Fq"(vO)} of this
collection of formulae is simultaneously satisfied by a suitably chosen el-
ement of *R. Therefore, by the countable saturation of R, all F,(v,) are
simultaneously satisfied by some x, € *R. Clearly, x, is a zero of f(x) lying in
u(p).

Further on, we shall examine fully the question of a converse for
Proposition 3.2 (i.e,, does “essential oscillation” in u(p) imply infinite support
at p?) For the time being, we content ourselves with a fairly easy partial
observation:

3.3 ProposiTION. Ler e K(2), let peQQ, and assume rhat o oscillates k
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times at p, k > 3. Then (3f (x)ea) [| f(x)dxe*R™ holds for some open interval

J < u(pl. !

Note. In fact, if f(x)ea witnesses exact oscillation k at p, then f(x) is
the required function.

Proof (sketch). Let f(x)ea have exactly k zeros in u(p) (). Then, since
f(x) witnesses discrete oscillation at p, we can choose three consecutive zeros

Xy, X3, X3 10 p(p): Xy < xp < x3 and f(x;) = f(x3) =f(x3) =0 and (Vy) [(x,
x2
<y<Xxy; of XxX;<y<x3)=f(y)#0]. If either [ f(x)dxe*R* or

x3 X1

j f(x)dxe*R*, we are done; hence, assume for a proof by contradiction,
*2 x2 x3

that both | f(x)dx and | f(x)dx are in *Ry,. Now, since all of x,, x;, x;

XI X2 .1'2 1'3

are essential zeros of f(x) in u(p), one of [ f(x)dx, ff(x) dx is positive and
x3 xy x2
the other negative. Let ¢, x j f(x)dx, and apply the appropriate instance of

xy
(the lifted version of) Theorem 2.9 to produce an element g(x) of a such that
g(x) has two fewer zeros in u(p) than does f(x): contradiction. (Note that
x€ pu(p) = ¢(x) = @(p) for each standard C§ function ¢ defined at p; hence,

fgoexdx= | g@e®dx+ [ gxex)dx
Q Q—[xyg,x3] [xy,x3]
r | f(e®dx+e(p) [ g(x)dx
Q- (x}.%3] (x1.x3]
x| feWdxte) | fldx
R-1x1.%x3) [x1,x3]
= [ f(x)p(x)dx.
2

Thus, g(x)ea.)

Remark. Clearly, one of the things we must do in order to improve
significantly on Proposition 3.3 is to show that (3f(x)ea)[| f(x)dxe*R> for
J

some open interval J < u(p)] = p is a point of infinite support of a. Or, what
ts the same thing, to show that the trivial K(Q)-distribution admits no
representative f(x) witnessing infinite support. This is one of the questions we
address ourselves to in Section 4. (Also, to be sure, we wish to look into the
“missing cases”: k=1, k=2)

() It is not hard to see, by a countable saturation argument, that this implies that f(x) has
exactly k zeros in some standard interval [a, b] 2 u(p). CI. our prool of Proposition 3.4 below.
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The final proposition of this section is one which will play a major role
in the developments of Section 4. '

3.4. ProrosiTiON. Let f(x) be a K(L2)-pre-distribution which is of discrete
oscillation at p, peQ. Then:

(@) there exist a number ¢€ u(0), and a standard positive integer n such
that all zeros of f(x) in [p—1/n, p+1/n] lie inside [p—e¢, p+e];

(b) there exist a number ne u(0), and a standard positive real M s.t. for
ptntp

any Beu(0), it is true that | | f(x)dx| <M.

P
(Part (b) holds even if f(x) is not of discrete oscillation.)

Proof. (a) Suppose f(x) has exactly w zeros in u(p), where w € *N = the
set of non-negative integers in *R. We claim, first, that there must exist a
standard positive integer, no, such that f(x) has exactly w zeros in the
interval (p—1/nq, p+1/n,). For, if not, consider formulae F,(v,), n any
standard natural number > 0, such that:

(i) F,(vy) contains vy as its only free variable;

(i) F,(vo) contains special constants to denote f(x) and w; and

(1) F,(vy) asserts that 0 < vy, < 1/n and [p—vg, p+v,] contains at least
w+1 zeros of f(x). Clearly any finite subcollection of these formulae is
simultaneously satisfiable (by our assumption that n, does not exist); hence,
by countable saturation, all F,(v,) are satisfiable by a single (infinitesimal)
ze*R. But, obviously, the interval [p—z, p+2z] is then a subinterval of u(p)
containing at least @+ 1 zeros of f(x): contradiction. Hence, we may suppose
that f(x) has exactly w zeros in (p—1/n,, p+ 1/n,), where ny is some standard
positive integer. We are now in a position to apply a second saturation
argument, as follows. Since f(x) has exactly w zeros in (p—1/n,, p+1/n),
those zeros must in fact all lie in p(p). Hence, we can simultaneously satisfy
any finite subset of the following countably infinite list of formulae:

Fn0+1(00)5 Frlo+2(UO)""yﬁno-i-j(UO),"'!

where ﬁ',,0+k(vo) has v, has its only free variable, contains constants to
denote f(x) and w, and aserts of v, that 0 < v, < 1/(ny+k) and [p—1/ng,
p—1/vg] U p+1/ve, p+1/n,] contains no zeros of f(x). Thus, by countable
saturation, we conclude the existence of a number ¢eu(0), such that all w
zeros of f(x) in [p—1/(no+1), p+1/(ng+1] actually lie in the interval
[p—e, p+el

(b) Let n, be a standard positive integer such that [p—1/ng, p+

+1/n,] € Q2. For each positive integer ne*N, n> n,, define: Y (n)
p+x

—1/asx<1/n
bers; accordingly, by a well-known lemma of Robinson ([12]), if there is a

= max {| [ f(x)dx|]}. Then ¥ is an internal sequence of real num-
p—x
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standard positive real number M, such that  (n) < M, holds for all standard
n > no, there is an infinite positive integer w such that n, < n < w implies
that ¢ (n) < M,. But indeed, by the strong boundedness property of the

functional jf(x)go(x)dx we see (taking ¢(x) identically equal to 1 on
:Z'K

[p—1/no, p+ 1/ny]) that such an M, and hence such an w, does indeed exist.
ptljo+g

But this implies that | [ f(x)dx| <My,+1 holds for all Beu(0),,
p-1jo—-8
and the proof is complete.

4. Pre-distributions inside a monad: the main results

We shall now launch a more serious attack on the monadal behaviour
of pre-distributions. For convenience, we shall from now on assume that,
0eQ and work in u(0) instead of in an arbitrary monad u(p); this involves
no actual loss of generality. In order to obtain the result mentioned at the
end of Section 1, it will prove expedient to fix upon a singly, discretely
oscillating representative f(x) of a K (£2)-distribution a, and then consider the
set consisting of those discretely oscillating elements g(x) of a which are
“almost indistinguishable” from f(x).

The reason for this sort of procedure is to get our hands on a
sufficiently comprehensive internal subset of a; a itself appears to be hope-
lessly external, relative to the class of constructions and arguments that we
wish to employ. Here is the key definition:

4.1. DeriniTioN. Let a be a K (Q)-distribution, and let f(x)ea. Let [a, b]

be a standard interval such that a <0 < b and [a, b] = Q; and let ce u(0), .

By N[f: a, b, ¢] we mean {ne*Nl (Elg(x))[g(x)e*C’ and g(x) has exactly
h

n zeros in [a, b](Ve)(Vh)[(a<e<h< —c=[|f(x)—¢g(x)ldx = 0) and

e

h c ¢
(c<e<h<bhb=||f(x)—g(x)ldx=0)] and | f(x)dx = | g(x)dx]}.

4.2. LemMA. N[f: a, b,c] # 0= N[f: a, b, c] contains a smallest (non-
standard) integer.

Proof. N[f: a, b, c] is an internal set of non-negative integers and
hence, if non-empty, has a least element.

Naturally, Lemma 4.2 remains true if N[f: a, b, c] is replaced by any
one of its internal subsets.

43. THEOREM. The discrete oscillation property implies continuity at any
point in the support of a distribution.

Assuming the discrete oscillation property we intend to show that given
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a sequence of standard C™functions ¢, converging uniformly on some
interval containing a (standard) point p (say p = 0) to a C* function ¢, and

given any pre-distribution f(x), there exists a positive number ¢, = 0, such
+&

that for any &>¢g, &= 0, for any infinite integer n, { [ f(x)@,(x)dx—

-
+7

~ | f(x)@(x)dx|. Equivalently given a standard number ¢ > O there exists a

+é +4
6 >0 such that { | f-@,dx— | fodx}<e
- -5
Proof. Utilizing the result of 3.4, we can choose &, > 0 inside the
monad of zero, so that all zeros of f(x) are contained in [ —¢,, +¢&0], and

jf(x)dx~ [ f(x)dx=0, n,2n >n>0 for n, x0=xn, We
—ty1s
make use of the uniform convergence ol ¢,(x) to ¢(x) on standard interval

containing [ —gq, +¢¢]. Using the definition and lifting the appropriate
statement to *R, we choose n such that for all xe[—e, +¢]|@,(x)— o (x)|

< 1/M, where M = max f(x). Now the conclusion follows.
xe[—£g, t£g)

44. The order of a distribution. A (K, Q)-distribution « is called a
(K, Q)-distribution of order zero at x (or, it is called finite) if there exists a
function f(x)ea, such that f(x)e*R,, for all x > X.

We now introduce an inductive definition of a distribution of order n
= 1, where n is a standard positive integer. A (K, Q)-distribution « is said to
be of order n at X if it is not of order n—1 and if there exists f(x)ea such
that (x—3%)"f(x)e*R,, for all x in the monad of %.

A distribution « is said to be of order n in Q i it is of order n at some
(standard) point of €.

The following property of distributions of Schwartz, D’(£2) (obtained by
taking K(Q) = D(Q) = C§(2) with Q contained in some compact subset of
R), is well known; we restate it in non-standard terms: Let a be any
distribution of Schwartz (in D'(R)); then « is of some finite order.

Lemma. The order of the distribution o, over a test space K () with
K < C™(Q) for some m >0, is well defined. (Trivial)

ExaMpLEs. Let K (€) be the test space of Schwartz (of C* functions with
support in the precompact set Q. Then the Dirac-delta equivalence class of
distributions over K () is of order one. We also observe that 6™ (x) is of
order n. An example of a distribution of infinite order (over some suitable
space K of standard C™ functions having an essential zero at zero) is the
formal solution of the axially symmetric problem in R? posed by the
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differential equation

dY (r). 1 . d 1 3  ?
( )= —_——— Y'—(Vz Iog;), V2 = -3 (r = \/xz—l-yz),

=——+
dr 2n  dr cx? Oy

Y(1) = 0, which has a formal solution Y= Cexp{d(x)) (which is impossible
to interpret as a distribution over any of the well-known test spaces
(D,E, Z,..)).

In what follows &(x) will denote any pre-distribution over K(£2) in the
Dirac delta class.

45. LEMMA. x*3(x) = @ iff « > 0, and a% 0.
Proof. Choose any function y(x) having only near standard values in

some open standard neighbourhood of zero. Then j'x"é(x)go(x) ~ 0 for any

y
[

¥, ze p(0). But if < 0, then choose ¢(x) =1 and check that [x°d(x) @ (x)dx

y

=[d(x)p(x)dx =1, for a suitable choice of y,zeu(0). Since
y

[1x%5 (x) @ (x) dx Z ]'lé(x)(p(x)l dx if « <0, the proof is complete.
y y
(Note. The symbol § denotes: either < or =~

THEOREM 4.5. A pre-distribution f(x) having m > 0 essential oscillations
at zero is a derivative of order m of a pre-distribution having the following form
in the monad of zero F(x)= @(x)+Cé(x), where @(x) is an absolutely
continuous near-standard function in some standard neighbourhood of zero, C is
a near standard number, and 6(x) is an element of the Dirac-delta distribution.

Proof. We make the following observation. Let x,, x,,...,X, denote

the location of zeros of f(x) in the monad of zero. Then there exist points
Xgy Xm+1 € 4(0) such that

Xm+1

x1 x2
[ fdx %0, [fdx#0, .., | f(x)dx#0,
Io Xl Im
but
xQ n
[ f)dxx0, [ f()dxx0 for any & <xo, 1> Xpuys & nEM(O).
¢ m+1
Xj+1
In fact if m > 0, then f f(x)dxe*R_,i=0,1,..., m but we we shall not
make use of this prope;'ty at this time.
This observation implies that F(x) = | f(£)d¢ (y < x,) has at most m— 1
y

essential zeros in u(0).
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Next we observe that the only distributions which have zero as an
essential point of support and have zero oscillation number at zero are of the
form Coé(x), where C is a near-standard number and é(x) is Dirac-delta
equivalence class. Hence

x *m—1 Xy x
1
fj ...ff(é)dé= j(x—é)’"“f(é)dé
(m—1)!

is of the form Cé(x)+ ¢(x), where ¢(x) is a function which is regular at zero,
and C is a near-standard number.

Remark. It follows easily that any pre- distribution f(x) having oscil-
lation number m > 0 at zero is of the form: f(x Z Cd0™ (x)+y (x), where

¥ 1s regular at zero, and C,, ¥ 0.

We shall introduce the following notation.

Let f(x) be a pre-distribution having its essential support in the monad
of zero contained in an interval [ —a, +a]. Suppose x,, x,,..., X, are the
zeros of f(x) which are essential zeros in yu(0). We denote

*1 x2 e
Fo= [ f(Odé, Fy=[f(d, ..., Fn= jf(f)df;

xq X3 *m
. __fﬂ xf(x)dx ) xj xf(x)dx }xf(x)dx
WS TTF, o MT R T =
0 1 m Fm '

[ x*f(x)dx T x2f(x)dx

2[02] = ‘“_Fo_, s glmzl = Xm F,,,_’

.\'1 a
§ x"f(x)dx [ x™f (x)dx
xirt = =2 Fo i =m 7 ,

m

and f, denotes the function f, (x) =f(x) if f(x) >0, f, (x) =01if f(x) <0, f_
is defined identically.

4.6. THEOREM. A distribution f(x) having m zeros and areas Fy, F,...,F,

over the essential part of the monad of zero is equivalent to any distribution
g(x) having m zeros and areas

() FoxF,, Fi=F,,..., F,,~F, with the moments relationships,
() FoxXo = FoXy, Fi X, = F\X, ..., FpXm = Fr.X,, and

(i) Fox§' = Foxg?, ..., (m+1) Fox{™ = Foxg™, ..., Fxt™ ~ Fpxm.
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Proof. Choose any @€ K(r) having at least m+1 continuous deriva-

tives at zero. Let [ —a, +a] denote the interval of essential support in the
monad of zero for both f(x) and g(x)

Compute j' f(x)@(x)dx and j g(x)@(x)dx. Let us represent ¢(x) by

Taylor series expansmn with the remamder term:

¢(0)x+ +¢(m)(0)xm (pm+l(gy)xm+l

e(x) =@(0)+—— 0 : oy e ¢epn(0)
_[ f(x)o(x)dx = f f(x)o(0)dx+ f xf(x))+ @' (0)dx+
h 1 T4 ta
+ | (xf (x))- ¢’ (0)dx +"'+;z_' (X" (¥)s @™ (0)dx+ | (x™f(x))- @™ (0)dx}+
1 e m+ m+
NS Sem Odx}.

The last term is infinitesimal and can be ignored.
The remainder of the proof is routine. Relation (i1) implies

+a

[ (x99 (0), dx = [ (f(x)), @' (O)dx,

-a

and

__f (xg(x) ¢’ (0))- dx = _f (xf(x)- ¢’ (0)dx, etc.

4.7. A recurrence relation. In distribution theory the following occur-

rence relation is well known (see for example Gelfand and Shilov [5],
vol. 1),

x6® (x) +k8* " V(x) =0

This relation needs to be restated for pre-distributions. Clearly xd(x) =~ @
implies [xd(x)p(x)dx ~ 0 for any e K (£), and any set S = *R,,. Of course,
S

the usual distributional argument, namely xé(x) = 0=5(x)+ xé'(x) = 0 does
not apply, since xd(x) = O (essentially) is the best available statement. And
just because xd(x) is essentially infinitesimal, it does not follow that

d—(xé(x)) is also essentially infinitesimal. However, if we compute
x

[(x6(x)) ¢ (x)dx (where by results of Section 3 it suffices to consider only
3

some interval S =[— A4, + A] inside the monad of zero, A being a suf-
ficiently large infinitesimal), a similar recurrence relation emerges. We have in
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fact
+A tA
[ (x0(x)) p(x)dx = — | &' (x)(xp(x)) = 0.
A -4
Hence
+4 +4

[ (%6 (x) p(x))dx = _jA &' (x)(xe(x))dx

=0(x) x @14~ _I 0(x): [x¢'(x)+ o (x)] dx.

Our choice of —A, + A4 can be made such that §(x) x @(x){X4 =0, and

+A4

[ (x0'(x)p(x))dx = — | 8(x)@(x)dx.
“4

—A

Hence x4'(x) = —-8(x)eK’'(R). The relation x6®(x)+ké%* V(x) ~ 0 results
from an identical argument following integration by parts:

A +4
[ (x0®(x)@(x)dx = —k [ 8* P (x)o(x)dx.
4 “4

The following lemma follows easily from this recurrence relation.
48. Lemma. 8% (x) is of order k at zero.

49. THEOREM. If a pre-distribution f(x) has an order m = 0 at zero, then
f(x) has oscillation number m at zero.

Proof. Suppose that the conclusion is false, and that f(x) has n
essential zeros in the monad of zero, n # m. By remark A, f(x) =y (x)+

+ Y C®(x). If n<m, it follows that f(x) is at most of order n at zero
k=0

which is a contradiction. If n > m, and C, # 0, then f(x) is of order greater

than m, again contradicting the hypothesis. Hence n=m, as required.

Combining theorems (4.6) and (4.7) we have this result:

4.10. THEOREM. At any point of its essential support the oscillation number
and the order of a distribution are equal.

CoRroLLARY. Every distribution f(x) over K(Q) is equivalent in the monad
N

of zero to the distribution ), C,6%(x)+y (x), where N is a standard integer.
k=0

C., k=1,2,...,N, are standard real numbers, and Y (x) is regular at zero.

Proof. This follows from Theorem (4.6) and (4.7), (4.10) and the fact
that every distribution is of (standard) finite order at zero.

3 — Annales Polonici Mathematici XLIV.1
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Remark. We could define the order of a distribution a by stating that
a (k, Q) distribution « is of order zero at zero if and only if fea implies that
£2

{ f(x)dx = 0 for any &, &, =0, and is of order one if it is not of order
£ £

zero, and if for any &, e, 0 | xf(x)dx = 0. fea is called of order zero

£y
if o is order zero. We introduce an inductive definition of the order of a
pre-distribution. A pre-distribution f ea is said to be of order n > 1 at zero
if 2 is not of order (n—1) and for every pre-distribution g,e¢ and every
l:z

&, &, 20 it is true that | x"g,(x)dx =0
£y

Note. Since « is not of order n—1 at zero there exists some fea, some
€2

£y, & = 0 such that [ x"~!f(x)dx # 0. It only involves an elementary argu-

€1
ment to show that the two definitions of order are equivalent.

5. Some non-counter-examples
(a) The following “distribution” appears to be a counterexample to
Lemma 1.2, and to the corollary to Theorem 4.10, f(x) Z (6 (x—1/n)/n),

where as usual é stands for any pre-distribution belonging to the Dirac-delta
distribution. The trouble with this “counterexample” is that f(x) is not a
distribution over %, since it fails to be a bounded linear functional over 2.

(b) The following pre-distribution f(x) = ¢(x)sin(1/x), with ¢(x) > 0 in
some neighbourhood of zero seems to contradlct the finite oscillation
theorem. Of course, it does not contradict it, since it is indistinguishable from
any other bounded function inside the monad of zero, and in any closed
interval [ —g, +¢] = u(0), f(x) is indistinguishable from f(x) = . Hence the
oscillation number of f(x) at zero is zero.

(c) Choose any representative of d(x— p), where p is a standard point
and define f(x) =exp(d(x—p)) on a standard interval p—a<x<p+
+a,a# 0. Then f'(x) has oscillation number equal to one, but it is not of
order one. The answer is that neither f(x) nor f'(x) is a pre-distribution over
any test space except the trivial one consisting of the zero function only.
Hence Theorem 4.10 is not contradicted by this example. The last “non-

counter-example” suggests the following imprecisely stated problem. Can
+e
some estimates on the order of the galaxy of | f(x)dx be made, which imply

that f(x) cannot be a pre-distribution over any test space?
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6. Concluding remarks

In this paper we have set out to achieve two objectives. Characterize
*C* functions which are candidates for pre-distributions, and relate their
local behavior to the corresponding global behavior of the distributions.
Having answered some questions we have created in the process some more
question which need answers. We have deliberately avoided related algebraic
questions, topological problems, or the deeper aspects of approximation
theory. The basic setting was L, (£2), which was “lifted” to *L, (*Q2). We have
deliberately avoided the approach suggested by Robinson [12] of extending
the L,(Q) theory to the non-standard setting. The equivalence classes we
have introduced here do not survive the operation of pointwise multipli-
cation preceeding the integration and a much more detailed analysis is
required to even define the meaning of the commonly used “standard”
procedures.

Appendix 1. Universe R and formal language ¥

The setting for all standard definitions and results in the paper is the
collection R consisting of the real numbers R together with all the sets of
finite rank based on R as the domain of individuals. Precisely, R is defined
thus:

R(0)=R;

Rin+1) = P(U R(k)), where P(A), for any set A, denotes the powerset
Of A, k<n
R = R(n).

n

In Appendix II, we shall “axiomatically” describe the non-standard
extension R of R which is the setting for the arguments in the paper; first,
however, we must indicate the language & relative to which R will be an
“elementary extension” of R.

& is to be a first-order language with identity, of the usual kind (for the
basic syntax and semantics of such languages, we refer the reader to [2] or
to any other of the many available sources on non-infinitary first-order logic
and its model theory). The binary relation symbol € and the ternary relation
symbol Pr are to be present in & as its only “non-logical” relation constants.
For each x in R there shall be in % corresponding constant symbol x which
“names” x. In R, the sentences “xey” and “Pr(z, x, y)” are to be interpreted,
respectively, as asserting that x is a member of the set y and that z = {(x, y)
= {{x}, {x, y}}. (Inclusion of the symbol Pr, in &, is a convenience item.) “x
= y” is, of course, interpeted in R as the assertion that x = y. The only other
symbols for & are: variables v,, v,, ...; propositional connectives &, A, —,
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and 1 (for and or, implies, and not, respectively); quantifiers 3 and V (for
exists and for all, respectively); and, finally, “punctuation” symbols [ , J, and
comma. (The reader will note that the formal symbols € and = of ¥ are
here written in the same way exactly as their respective R-interpretations of
membership equality; this is a matter of convenience which can hardly cause
any real confusion.)

Appendix I R |
. The non-standard context of our work is a non-Archimedean ordered
fieldextension R, of R, satisfying the following “axioms”:

l. R is an Z-structure (as defined, say, in [2]).

2. R is an elementary extension of R with respect to &; that s, for each
sentence & of the language ¥ we have Ehat @ holds in R if and only if ¢
holds in R (note that each element of R has a name in .%¥).

3. Ris an enlargement of R; i, if b is any binary relation such that (i)
beR and (ii) whenever F is a finite set of elements of the domain of b we
have b(x, y) for some fixed y and all xe F, then there is a fixed element )’ of
R such that )’ satisfies the formula b(x, v,) in R for all xedomain (b). (Note
that, on account of 2, y' cannot in general be the R-interpretation of a
constant z of %))

It is proven in (for example) [10] that R, satisfying conditions 1, 2, and
3, can be obtained as an ultrapower of R; for a general discussion of
ultrapowers and of “Lo$’ Theorem” (which provides condition 2 for R), see
[2]. An important special class of objects in R are the strongly internal
objects; they are just those elements x of R such that x satisfies (in R) the #-
formula voey for some yeR. The most fundamental examples of strongly
internal objects which are not, themselves, R-interpretations of constants of
& are the so<alled infinitesimal R-reals (see Section 1). A very useful
property possessed by our ultrapower R, in addition to 2 and 3, is the
property of countable saturation (for a general discussion of saturation, and
for material from which the countable saturation of R in the sense to be
defined is derivable, see [2] and [10]): this means that if #? is obtained
from .# by adjoining new constants denoting the elements of D, where D is
an arbitrary countable subset of R, and if C is a countable set of formulas of
%P such that each {eC has v, as its unique free variable, and if each finite
subset Cr of C is simultaneously satisfiable in R, then C is simultaneously
satisfied by some zeR. (Thus, countable saturation is an “internal com-
pactness” phenomenon.) As an example of countable saturation, consider the
following:

ProrosiTiON. Let {r]| ie N} be any non-empty countable set of positive
elements of *R. Then there exists B€*R such that $ >0 and B/r; is in-
finitesimal for all i.
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Proof. Let T={r| ieN}; and let D =a set of new constants d;, one
for each r;e T. Clearly, each finite subset of the following set of #P-formulas
F, is simultaneously satisfiable in R:

F, is the formula voeR and 0 < v, and vy/d; < 1/n; here ne N* = the
set of all (standard) positive integers. By countable saturation, all F, are
satisfiable by a fixed Be*R; clearly such a § is as required by the
proposition.

Note that the above proposition both establishes the mere existence of
infinitesimals in *R and, at the same time, shows that if C is any (standardly)
countable collection of infinitesimals then there is an infinitesimal which is
simultaneously “of higher order” than all elements of C. (Other examples of
the utility of countable saturation abound; for instance, consider several of
the proofs given in Sections 3-5 of the present paper.)

Finally, we observe that higher levels of saturation can be built into
enlargements of R by intertwining the enlargement-yielding construction with
a saturation-producing construction due to Keisler, and appealing to the
well-known Tarski-Vaught theorem on unions of chains of elementary
extensions. Also, by merely iterating the enlargement-yielding construction
once (replacing R by R at the beginning of the iteration step), we obtain an
elementary extension of R (with respect to a language containing names for
all elements of R, and taking into account all memberships and pairings that
occur in R) in which a non-standard copy of u(p) occurs as an object, for each
peR. No particular uses for such “second-level extensions”, however, are
apparent in connection with the investigations of the present paper.
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