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We consider the initial value problem (IVP) in R¥ (with Euclidean
norm |[+1})

dz
r =flt,2), @(0) ==,

with f: [0, oo) x R¥”—R¥ Lipschitz-continuous.
Assuming the variable ¢ to be a continuously differentiable function
¢ of a parameter v we get the autonomous system

dv _ dp dt _ dg
W B =g 20 =, H0) =0

This transformation may also be used for a stepsize control, for instanco
the statement

o) = [{L+](1(s), a@))™"ds

0

leads to the autonomous system

- a
d = (L4 If(¢, @)}~ (2, @), o (L+1If (&, 2)I2) "7,
dt

and with a constant z-stepsize we get segments of equal arclength for
the solution curve w(i).

Basing on this observation, we will only treat autonomous systems
dz/dt —f(®) = 0, ©(0) = z,, with f: R¥ >R Lipschitz-continuous, with
a constant stepsize A. '

[363]
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Discretization of the problem

The initial value problem
dw
(1) 7 ~fl@) =0, @(0)=a,

will be solved in an interval [0, T']. If we put ¢, = jh with j = 0, 1, ..., n,
(n—1)h < T < nh, a numerical integration method (NIM) is defined by
a formula for the caleulation of vectors y;, which have to approximate
the solution vectors »; = x(t;) = x(jh). With

Eh = E?a. = (RM)M-]! Yh = {yj};?;-o: Xh = {mj}?—o € B,
the defining instruetion can be written as
(2) Op(Y;) =0 By Dy By>Ey.

Introducing suitable norms ||+ |, and ||} in B, and H,, we state the
fundamental demand that the NIM hag to converge diseretely with an
order s > 0, i.e. that there are positive constants ﬁ, y with the property
that || Xy — Yyl < ¥h* for 0 < b < k.

The NIM is called consistent with the order s if there are positive
constants f,, y, such that (&, (X)) < y.h® for 0 < h < h,. Tt is called
realizable if there is a positive 4, such that for all # with 0 <.k < &, the
equation @,(Y,) = 0 is uniquely solvable. The NIM is called stable if
there are constants f,, v, >0 such that for all ¥}, ¥*e ®,, the in-
equalities 0 <k <k, imply

13— Yl < 7, Do (X3) ~ (TR

The main theorem of this diseretization concept suggested by Stetter
[14] states that consistency with the order s, realizability and stability
jointly lead to discrete convergence with the order s. This fact follows
immediately from

I Yh—XhHh < Y llPp(X3) =D (Xp) I = 75 1Ph(X) Ih < v weho

In a-general k-step method the equation [@,(Y,)]; = 0 for the jth com-
ponent of P, serves as instruction for the caleulation of y; from the known
vectors Y;_yy ...y Ys—r. More concretely, we have

k
1
(3R) [‘ph(yh)]y =—h“ O Yy—p —Fy;  With Fy =F(hylyyeeey Yicr)

ro=0

Obviously, this instruction may be used only for the running phase
j =1k ...,n. For the starting phase j =0,...,k—1 we need another
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system of equations:

k=1
1 ” - .
(38) [Pu(Yn)); =7 E, 0, ¥, —~F; with Fy= Fy(h, Y1y -+, Yo).
=20

k—1
Generally we assume a;, = 1, 3/ a, = 0, det(a,,);;2, = 0 and the functions

()

¥ f‘,— to be uniformly Lipschitz-continnous with regpect to y; on any
finite h-interval. |
Any k-step method of this kind is realizable. By virtue of the Dahl-

quist theorem 1t is stable (in the maximum norm || Y|, = || ¥4l = ‘max |jy,ll)
k i=0,...,1n

if the rootcondition is fulfilled for the polynomial y(z) = ) a,2", i.e. from

re=0

2(2,) = 0 it follows that either [¢)] =1 and y'(2,) # 0 or |¢,]| < 1. Under
these conditions discrefe convergence with the given order of consistency
is guaranteed. If the strict rootcondition holds, i.e. if

(4) x(1) =0, (1) #0

and if, for 2, # 1, x(2,) = 0 leads to |z,] < 1, then we get for s > 1 addi-
tionally the estimation

max o' (i) =17 gy~ g0 | < 7B

=1,...7
which guarantees the convergence of the difference quotients of the
approximate solution to the derivative of the cxzact one.

Stiff differential equation systems

The statements of the preceding section (see also [1], [6]) give criteria
easy to use. Therefore the problem of development of practicable, i.e.
diseretely convergent methods, seems to be solved completely, But un-
fortunately we have to face the fact that the constants y, & for each con-
crete method depend strongly on 7T and the differential equation system.
With increasing Lipschitz constants L, of f also ¥ and h~! increase un-
boundedly; the same iz valid for the 7'-dependence of y, (and therefore
of y). |

In many practical problems, especially in the computational simu-
lation of electrical networks with continuous behaviour, dynamics of chemi-
cal proccsses and kinetics of atomic reactors, the so-called stiff differ-
ential equation systems occur. They are distinguished by the fact that
the Jacobian Df of f has eigenvalues not only of moderate magnitude
but also ones with very large negative real parts:

(5) ADf) = Aud, with |4, € —Re(dy) for Ae 4.
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The eigenvalues from A, do not disturb the stability behaviour of the
exact solution, but they lead to very large L, because of |Re(4,)| < (4,
< [IDf< Ly, i.e. their occurence requires, in general, extremely small
stepsizes for the numerical integration. Therefore the question arises if
there are also NIM’s which lead to bounded values of 47" and ¢ for certain,
classes of stiff problems.

Linear systems with constant coefficients

The question closing the last section was at fivst treated by Dahlquist [2]
for linear IVP’s with constant coefficients

(6) ‘Z—":=Am, 2(0) = @,.

The corresponding iteration equation for the running phase is

]
(7) Zpk—r(hA)yj-r = 07

r=0

k
where the p,(w) are polynomials with p,(0) =1, 3 »,(0) = 0; especially
for extrapolative NIM’s we get p,(w) = 1. =0
Any difference equation of the kind

k
(8) D) Prr (W A)yy_p = Tty

r=(

can be written as

Ie
(9) Y+ D ter(hA)y;_, = hPu,

r=]

with ¢, (w) = p,.(w)/p,(w) and P = [p,(h4)]™", or as iteration formula

(10) §; = Q;_,+hPi

with
v [, | =gy (BA) ... —q,(hA) —go(hA)]
Vi1 0 I 0 0

gj = ] 'il‘j - ) Q Lot .

| Yi—tet1 | | 0 | 0 ces I 0
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and P = diag(P, ..., P). From (10) immediately follows

i
(11) B = @G+ 1P DO
i=k
If we pub specifically w; = [®(T')—D(¥?)];, we get for fixed A and
arbitrarily large » the obvious estimation

max lly; —yjll < p,( max gl + max  lly; —yjl),
J=1,...,0 J=ky...u% j=0,..,k—1

provided there are constants f and § with the property that the estimates

11<p and ZHQ’H B

re=i
hold for all naturals j. This condition is notoriously fulfilled iff all eigen-
values of Q are contained in the open unit circle & = {zl |2] < 1}. The
spectrum of Q consists of the zeros z, of P(hi, 2) with A e 4(4),

= Z o (w)zr

therefore Dahlquist called the set
(12) # ={w| plw)<1} with p(w) =max{z,|| P(w,2,) = 0}

the domain of absolute stability. The relation A(hA) < # ensures that
y, i8 independent of n or 7. By the transformation ¢ = z/o this result
for nnboundedly increasing 7 may be translated into a statement about
the system dz/di = (1/o) Ax for a fixed integration interval, which has
an unboundedly increasing Lipschitz constant as ¢ tends to 0.

Since the exact solution of (6) decreases extremely fast if all eigen-
values A of A have very large negative real parts, we wish to get for

Re(A)—>—cc the relation ||@||—>O. Therefore a NIM is most suitable for
the numerical integration of stiff systems if it fulfils the limit condition

(LC) p(w)—=0 for Re(w)——oo.

According to the properties of # and g, a NIM is called A-stable for
# =2 C~, the negative halfplane (Dahlquist [2]), asymptotically exact
for # = (O~ (Griepentrog [6]), A(a)-stable for o# 2 ¥, ={w| n—a
< arg(w) < m+ a} (Widlund [16]), A (0)-stable if there is an o with o7 2 %7,
(Widlund [16]), 4,-stable for s = R~, the negative halfaxis (Cryer 1973,
s.a. [12]), L-stable if s# = ¢~ and (LC) holds (Ehle [4]), stiffly stable
if # 2 %, and (LC) holds (for some a, Gear [10]). Using the results of
complex function theory many authors have analysed and developed
methods, which have some of the above properties. The most compre-
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hensive and systematic representation seems to be given by Jeltsch [11];
summarized expositions are also to be found in the textbooks of Gri-
gorieff, Gear, Lapidus—Seinfeld and Stetter ([8], [10], [13], [14]).

All the above mentioned properties include, in particular, the un-
boundedness of . Therefore, according to the Vieta theorem and p,(w)
=1, no explicit NIM can fulfil any one of these conditions. Dahlquist
proved [2] that no A-stable linear k%-step method (i.e. a k-step method
in which F is a linear combination of the f(y,_,)) can have an order of
convergence § > 2. To get a higher order we must take nonlinear implicit
methods, for instance implicit or semi-implicit Runge-Kutta-methods,
or we have to weaken the requirement of .A-stability, for instance to
the A (a)-stability of the Gear-methods. Griepentrog proved that only
onestep methods with p;(w) = —p( —w), po(w) Hurwitz-polynomial, are
asymptotically exact. This restriction leads to |po{w)/p,(w)|—1 as
Re(w)->— oo and therefore asymptotical exactness and the limit con-
dition are incompatible.

Statements for more general IVP’s

Dahlquist investigated systems dz/dt = f(z) for which a "symmetric
positive definite matrix § exists with

[8 (2, — @) 17 [ (1) — f(,)]
for f(z) = Az, A(A) < C™, § is of the form

8 = [ [exp(td))Texp(id)dt.
0

All solutions of such systems are stable because of

d
_(it_ [(wl (t) — =, (t))TS(ml(t) —, (t))] <0,

and Dahlquist proved that A-stable linear k-step methods always produce
stable approximations. But we must note that s <2 for this class of
NIM’s and that the statement cannot be extended to nonlinear methods.
It is well known that for any matrix 4 with 4(4) < ¢~ there exists
a positive « such that all solutions of dw/di = Az f(¢, ) are asymp-
totically stable, if the Lipschitz constant L, of f does not exceed w. The
running phase of a NIM is for this system given by the equation

k
(13) D, Per(BA)yy_, = hE(hy g, ..., y;_y) = hE,

=0
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(F uniformly Lipschitz-continuous on each interval 0 < 2 < k). Con-

k
sidering the angle domain %", and the polynomial P(w, 2} = > »,(w)2" we
r=0

introduce the terminology: the pair (¥, P) fulfils the fundamental eon-
ditions (FC) if the following relations hold:

FC1: deg(p,) > deg(p,) for » 3¢k (limit condition),
FC2: p,(2,) = 0 implies z, ¢ ';/;a (unconditional realizability),
FC3: P(0,2,) =0 and 2, #1 implies |2,] < 1 (strict stability),

aP P
¥C4: P(0,1) = Oa-nd—éz—(o,l) = _%(O’ 1) # 0 (order s > 2),

FC5: P(w,z,) =0 and we#, implies |z,] <1 (A4 (a)-stability).

In [7] the following theorem corresponding to the foregoing stability
statement is proved; it ensures that the convergence constant ¢ is in-
dependent of 7.

TewmorEM 1. If A(A) < #, and (W, P) satisfies the fundamenial
conditions (FC), then there exists a positive Q such that for Lp<< 2 the

estimate
k-1
[y — 2,/ < const- {max |ly; —z;l[ + %}

Jm0

holds independently of m.

The proof of this statement is essentially based on certain norm
estimates for the powers of @ given in Theorem 2 and also stated in [7].

TEmoREM 2. If A(A) S W, and (W,, P) fulfils the (FC), then there
are constants B, B, f with

(14) QM <8, B INIPI<E, IRPIDII<B
mk

F=0
independent of n e N and h (0, co),

In order to investigate the usefulness of a NIM for stiff problems
Stetter [15] suggests to consider systems
dw dz 1
Et—=f(w’z)’ _d_t_=—ofg(m’g) for o—0
with rapidly decreasing z(¢). He called a NIM E-stable if the part of the
approximate solution which corresponds to 2 does also rapidly decrease,
while the component corresponding to x discretely converges to z uni-
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formly for o—0. Indeed, this demand is so strong that till now R-gta-
bility is only known to hold for the Kuler-backward-rule. However, it
turns out that interesting results can be derived by realizing Stetters
suggestion for a guitably restricted class of problems, the class of systems
with constant stiff part.

Systems with constant stiff part

They describe processes in which stiffness is produced by constant ma-
terial parameters; usually this model assumption is adequate. The
mathematical description is given by the equation

e 1 .
(15) e =—G—BE-|-:p(E), £(0) = &,
where o—0 produces stiffness and B = § [8 3] 8! with A(4) < ¢
holds. Putting o = maxz {Re(4)] AeA(4)} and § = s[:f], o — gm, we

get, for # and ¢, the solution components of £(1), the differential equation
Rystem

dx

dz 1
(16) Tt—=f(w’z)’ ﬁ="“

Az+g(x, 2)
a

which leads to the estimates

dr dz |
[l ()1 “Et_

<e, nz(t)n@{exp(%)w},

1 al
<S¢ {— exp (—) +1}
o 20

valid on the interval [0, 7] (¢ denotes some constant).

Obviously #(?) decreases very rapidly for small values ¢ and very
soon it produces only a negligible contribution to the solution £(¢) of (15).
The NIM leads to the difference equations corresponding to (16):

running phase:

k %
h
(17R) Zl’k—r(o)yj—r = hF;, 2 Pr—r (; A) Wy, = hGy,
=0

r=0

starting phase:

k-1 k—1 1
(178) Z Py (0)y, = BE;, Z B, (—;A) w, =h,,
fou v re=0
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needed for the calculation of the approximations y; for z; and w; for ;.

Here Fy, G, F,, G depend Lipschitz-continuously on the y; and w,. Now
(17R) and FC1 1mply

)/ -1
w;+ 2 Ty (——A) wy_,=h [p ( i A)] G;
r=1
-1
limg, (iA) = lim [pk(LA)] =0,
o—( 14 =0

i.e. the w; also decrease for small ¢ very rapidly and do not then influzence

the approximation S[Z;] of £(t). Wanted are NIM’s with the property
4

and

that for any o > 0 the sequences ¥, = {y,}i, dlscretely converge to the
solution component x(f), uniformly in 0 < ¢ < 0.
In [6] we proved the following statement.

THEOREM 3. For every L-stable onestep method and for arbitrary T,
o> 0 there exist constants y, h independent of o € (0, o] with

n
1
max |g;—al+— 'y —2) < b

i=l.,n =

for 0 < h<h, (n—1)h < T <nh, Yo = Ty, Wy = 2.
This result now is generalized by Gronau for multistep methods,
where of course additional conditions for the starting phase are necessary.

THEOREM 4 (Gronau [9]). For the problem (16) with A(A) s W,a NIM
realizing the following conditions is used:
Starting phase:

gﬂ(w) p]r J,T=1 = Z'@lw
with
m = max{deg(p;)| j,r =1,..., k—1}
Julfils
det?, #0, detP(w) =0 for weW,,
k=1
D ppl0) =0 (§=1,..,k=1).

r=0

Running phase: (% ,, P) fulfils the (FC).
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Then for any T, ¢ > 0 there are conslanis y, k> 0 not depending on
o €(0, o] such that the estimale

max [y — oyl + Z ooy =4 < ¥
=L 040 J=1
holds for 0 < h<<h, (n=1)h < T < nhy Yo = B, Wy = 2.

The proofs of Theorems 3 and 4 basing on (14) are very complicated
and cannot be outlined here. It should be noted that max |w;— 2| tends
to zero as h—0, not uniformly in ¢ € (0, o). Therefore we have to expect
greater errors for (15} in the first integration steps, but because of the
above theorems they do not influence further integration.

Some remarks about the conditions should now be done. As regards
the running phase, we need nothing more than in the linear case with
constant coefficients, and the conditions for the starting phase are ful-
filled if, for instance, for the starting steps A-stable onestep methods
or Gear-formulas of increasing order are used, provided that their ¥/

k=1
contain the spectrum of 4. In the first case we have det?(w) = [] $,; (w)
Fa=l

with nowhere on - vanishing functions $;;(w) and £, is a lower tri-
angular matrix with not vanisbing diagonal elements. In the sccond case

we get m =1, det#(w) = + H —c;w) with positive values by, ¢; and
— Foml
= & ” G
=1

IFinally we have to remark that no higher order of convergence
than s = 1 is obtainable independently of ¢ & (0, ¢], i.e. the criteria given
by Theorems 3 and 4 are not improvable and therefore they are rather
complete for systems with constant stiff parts. This is easy to observe

d 1
by applying a stiffly stable onestep method on —d-:- = ——g, 2(0) =1.
(2)

We get, for v = —I/o,

oy —2) = |[g()Y —[exp(w)F| and  Y'pw—2l = g(u)
with -
() = q(u) —exp (%)

L= ()L —exp(w)
'This expression is bounded on R~ and is of order O(%*~!) as u—0. For

h
a fixed ¢ we get for—Z [w; — 2| < ST g(u) = O(2®°) the convergence

j=1
order s, but for an estimation independent of ¢ we can only use the

boundedness of g(u), i.e. the best we can get is ig(u) = 0(h).
%
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