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Introduction

An application of the method of contractor directions to nonlinear pro-
gramming problems in Banach space has been given in a previous in-
vestigation. The objective is there to investigate optimization problems
under rather weaker hypotheges than it i3 known in the literature. The
objective of this investigation is to extend the theory of optimization
to locally convex vector spaces endowed with an increasing sequence
of seminorms. For this purpose the diagonal method of contractor direc-
tions is very much instrumental. This method provides algorithms for
solving nonlinear operator equations in locally convex metric spaces.
The key issue of the present investigation is to establish the existence
of tangent directions in such spaces. As a consequence of this fact, one
can prove a theorem on Lagrange multipliers for the class of spaces men-
tioned above. Furthermore, an application of the diagonal method of
contractor directions along with the general extremum principle (see [4])
provide the basic tools which are needed for the extension of the theory
of optimization problems with constraints of mixed type, i.e., with in-
equalities and equality constraints, to locally convex metric spaces. This
extension will be investigated in a separate paper.

1. Tangent directions in locally convex metric spaces

Let X be a vector space endowed with an increasing sequence of seminorms
Izl < lzlh < ..., for all # of X.

Let ¥ be another vector space of the same type, i.e., with the se-
quence of seminorms

llle < vl < ..., for all y of Y.
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Let P: XY be a nonlinear continuous mapping, X and Y being
complete in the usual senge. We agsume that P is twice continuously
differentiable in the Fréchet sense and denote by P’, P” the first and second
Fréchet derivative, respeetively.

DEFINITION 1.1. Let ¥V be the vector space X with the topology
defined by a single siminorm |z{l,. Suppose that %~ =0, Pz, =0 for
2, € X and that P'(x,)h = 0, for b 5 0. Then % is called a tangent direction
at x, if there exists a number #(k) > 0 with the following property. For
each t with |t| < 1(h), there exists an element %(?) e X such that

P(my+th+y(t)) =0 and |In(®),/t—0 as 1—0,

This definition obviously generalizes the notion of tangent directions
in Banach spaces.

Put Uy, = S(wg, 1) = [w: |lx —2)lp < r]. We assume that the first
and second Fréchet derivatives P'(x) and P’'(z) exist and are continuous
at all # e U, and have the following properties:

(i) For each 2 € U, there exists an element & (x) such that P’ (z)h(x)
= —Pa.

(ii) For each k& = 0,1, ..., there exist a function B, € B (sce Appen-
dix) and an integer p(k)= 0, p(0) = p = 0 such that

(1.1) 1B (@) e < By (1P|l pry) for & =0,1,...,

where By(s) = (Os for some constant C > 0.

THEOREM 1.1. Suppose, in addition to the hypotheses (i), (ii), (1.1),
that the following relations are satisfied. There exist positive constants
Cyy 01y ... such that

(1.2) max |P"(w+th)(h, h)|; < C;||Pzll; for all 4 =0,1,..., x e U,,
0t

where P'(x)h = —Px, and
(1.3) Z 1/max (; = oc.

w=b O<isn

If Pxy = 0 and P'(x)h = 0, then h is a tangent direction.

Proof. We apply Theorem 1 of the Appendix, there =z, is replaced
by 2, +1th with |[th]l, < r/2. For 0 < ¢ < 1and & = exp(1 —q)C||P(z,+ th)l,
we get

r(t) = fs“lB =(l—g)ta<r/2
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if |t} < 0. Now put #(h) = min (e, 7/2k). By Theorem 1 of the Appendix,
where #,and r are replaced by z,+ 1tk and #(2), respectively, there exists
an element & € 8 (%, +th, (1)) such that Pa* = 0. Putw,+th—a* = —y(t);
then we obtain that P{z,+th+7(2) =0 and |ly@)|, <r(). Relations
Pz, =0 and P’(2)h = 0 imply that |P(x,+th)||,/f—0 asi—~0. Hence,
it follows that |n(t)ll,/l—0 as t{—0, and the proof is completed.
Lusternik [5] has proved the existence of tangent directions in
Banach spaces under the assumption that the Fréchet derivative P’'(x)
exists in the neighborhood of x, and is continuous at «,, and P'(2,) (X) = Y.
A generalization of Liusternik’s theorem in Banach spaces is given in [3].

2. The Lagrange multipliers theorem for locally convex metric spaces

Let P: X—Y be a nonlinear mapping which satisfies the hypotheses of
Theorem 1.1, and let F be a nonlinear real-valued functional defined on
the neighborhood U, of z,. The problem is to find an element #, in U,
which minimizes F on the set of all # in U, such that Pz = 0, i.e.,

(2.1) F(zy) = min{F(»)] v e U, and Pz = 0}.
We assume that U, = [#: ||z —2,[, < r]. We also assume that F is dif-

ferentiable in the following sense.

(a) There exists a linear continuous functional F'(z,) which has the
following property. If the linear functional F'(z,) is continuous with
respect to the seminorm | ||, then

(2.2) [F(z,+1t2) —F(x,) ] t—>F'(z,)z a8 t—0 and ||z —z|,—0.

Without loss of generality, we may assume that t = 0. The following
theorem gives necessary conditions for the local minimization problem
(2.1).

TumoREM 2.1. Suppose that the nonlinear mapping P: X—Y satisfies
the hypothese of Theorem 1.1, and that P'(z,)(X) = Y. If F is differen-
tiable in the sense (2) and if m, is a solution of the minimization problem
(2.1), then there exislts a linear continuous functional 1 defined on ¥ such
that

(2.3) F'(z)w = 1(Pz) for all z e X,
i.e., if F'(x,) 18 also the IFréchet derivative, then
@' (x,) =0, P(z)=F(z)+1(Px).

Proof. We first prove that F'(x,)h = 0 whenever P'(zo)h = 0. In
fact, by Theorem 1.1, if P'(@,)k = 0 and ¢ is sufficiently small, then
there exist O () e X such that

Pz, +th+0(t) =0 and [0O@)ls/t—0 as t—0.
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Suppose that F’(2,)h = a 7% 0, Then we obtain
F (0o +1th +0(2)) —F (2o) = tI (mo) +F"(m,) O (1) + & (%),

where £(t)/t—0 as t—0, by relation (2.2) with 2 = A+0(?)/t and © = b,
since [[O()]l,/t—0 as t—0 and % = 0 by assumption. Hence, it follows
that both, the difference

F(w,+th+0()—F(x,) and 1F (w)h =1a

have the same sign which changes if % is replaced by —»A. Therefore, a,
is not 8 minimum point and, consequently, we obtain that F'(z,)h = 0.
Now put T, =[h: heX and P'(z))h = 0] and denote by X /T, the
quotient space of equivalent classes T € X /T, with seminorms defined
by the corresponding seminorms of X, in the usual way. Then we can
define a functional ¢ by the formula

2.4) p(T) = F'(wo)h,

where % is an arbitrary element of 7', since %, €T and h, € T imply A, —
—h,eT, and I (x,)(h,—ny) = 0. Since F’'(2,)h is continuous in the
seminorm (&(l,, by assumption, it follows that there exists a constant
M such that for arbitrary h eI we have

[p(T)| = 1F" (@) 2] < M [iR]ly-
Hence,
{2.5) lp(I) < M| Ty,

and yp(T)is a linear continuous functional defined on X /T,. Let A: X /T,
—Y be the linear continuous operator defined by the formula

A(T) =P'(w)h =y  for arbitrary heZ.

Since P’(x,) is & mapping onto Y, it follows from a theorem of Banach
that the linear operator T' = A~'y exigts and is continuous. Hence, by
virtue of (2.4) and (2.5), we obtain

F'(z)h = p(T) = p(47'y) = Uy) = I(P’ (@)1},

where y = P’ (z,)h, h € T. Hence, we conclude that 7is a linear continuous
functional defined on ¥, and the proof is completed.

Lusternilkk [6] has proved the Lagrange mulfipliers theorem for
Banach spaces under the hypotheses that the Fréchet derivative P’(x)
exists in some neighborhood of #, and is continnous at z,, and P’(=z,)
is a mapping onto Y. The Fréchet derivative F’(x,) is also needed in
his proof. A generalization of Lusternilk’s theorem for Banach gpaces
is given in [3].
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Appendix

Let P: X—X be a nonlinear continuous mapping, where X and ¥ are
the same a8 in Section 1. Denote by B the clags of increasing continuous
functions B such that

B(0) =0 and B(s)>0 for s> 0;

f s7'B(s)ds << o for some positive a.
0

Suppose that P satisfies the hypotheses of Section 1. Given z,,
0<g<1,and U, = 8(zy, r) = [#: |z —2, < 7], we define the following
algorithm:

(1) By = T+ h, form=0,1,..., where P'(z,)h, = —Pz,

and relation (1.1) is satistied with # = », and %, = h(%,). The positive
numbers ¢, in (1) are defined as follows:
(2) &, = min(1l, ¢/maxC,).
tisn
THEOREM 1 (see Theorem 4.1 [2]). Suppose that the hypotheses
(1.1)~(1.3) of Theorem 1.1 are satisfied for U, with

3) r=@1—97" [ s By(s)ds with a = ¢ Peqlly, and By € B,
0

Then the sequence {x,} defined by (1) and (2) lies in U, and converges to
a solution of equation Px = 0.

The general theory of contractor directions is presented in [1]. The
diagonal method of contractor directions is discussed in [2], where more
relevant references are given.
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