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1. Introduction

We consider for 2 €]0,1[ and > 0 the equation

ou 0
(1) r +_65f(u) =0,

with fe C'(R), and the initial and boundary conditions

(2) w(-,0) =u,eBV(]0,1[) (space of Bounded Variation
T"unctions),

(3) %(0, ) =a,e R

(4) w(l, ) = a, eR} (if needed).

We shall see later that the right way of writing the boundary con-
ditiops is, instead of (3), (4), the following for ¢ =0 or 1,

5)  min [n;sg(a,—k)fly,u)—f(k)} =0 (a.e. on 10,4 co[),

kel(a;,vpu)
where 7, = —1, #, =1, y;% is the trace of the solution % on the houndary
2 =1 and I(e, ) is a notation for the real closed interval, the bounds
of which are « and g. '

The plane of these lecture is the following. A few examples are given
in Section 2, to show that (3) and (4) are not always satisfied. Some nota-
tions are introduced, and some results are recalled in Section 3. Section 4
deals with the vanishing viscosity method; some estimates are proved,
which are used in Section 5 to state Existence and Uniqueness of a weal
golution (satisfying an entropy condition) of (1), (2}, (5). The convergence
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292 A. Y. LE ROUX

of the approximation by the Godunov scheme is proved in Section 6,
and by the Glimm scheme or the Lax Triedrichs scheme in Section 7.
Then coneclusions and references are given.

2, Examples

We give three cxamples; the first and the second one are linear.
1. For f(u) = «, the solution to be found is

() {ao if »<t,
w(r,t) = i
’ uglw—1) if x> t,
which shows that (4) iz not useful.

2. Tor f(u) = —u, we get as the solution

W, 1) =ja1 if 2>1t,
o luo(m+t) it o <t,

and now (3) is not used.
3. For f(u) = u?*/2, (1) is known as the Burgers equation, and for

a, = —1, a; =1, w, =0, the solution is zero and no boundary condi-
tions are used. For a, =1, a; = —1, 4, = 0, the solution is given by
0 ft<oe<l—1,
w(z,t) =1—1 if 2> max(},1—1),
1 if # < min(},1),

and both (3) and (4) are used. Note that two shocks meet, to give only
onc. For ¢, = —1, a, = 4, =1, the solution is

#(x, ) = min(x/t, 1),

which seems as if «, is put equal to zero. Since f is a decreasing function
on [ —1, 0f, all these values are sent outside by (1) and since f is an in-
creasing function on 10, 1], these values are taken in account. The con-
dition (5) improved this argument.

3. Some notations and results of functional analysis

We shall use the sign function sg and its approximation sg,, defined by

0 it 2 =0, sg(x) if n<C |z,
6 by — S g = - .
(6)  sgl@) {m/[m{ iftx #0, 38(4) xn it n> |z, (n>0)

Let T'>0 and denote by £ the set ]0,1[ x]0,T[. The space
BV(]0, 1[) is the space of Bounded Variation functions defined on ]0, 1[,
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with real values; it is a Banach space for the norm
1-4 1
(") Ioll = (O +1im [ = o (a+8) v ()i .
d—0
i}
We introduce, as Tonelli Cesari, its gencralization to the bidimen-
sional case

(8)  BV(2) ={wel*(Q) fﬂw ,t|dt+fuw Yida < +o}.

Since a function of BV(]0,1[) has a left and a right limit at any
point, we can define a trace y,u(') at # = 0 and o trace y,u(-)at z =1
almost everywhere on ]0, T[, for any function % in BV(Q). Moreover,
from % e L*(2), by the Lebesgue theorem, these traces are reached
through a strong convergence in L' (10, T'[) as « tends to 0 or to 1. By
the same arguments, a trace yu(z, 0) may be defined for almost all o
in 10, 1[ which is also reached by a L'(]0,1[)-convergence on u as ¢
tends to O.

We also use the Sobolev space

(9) Wi () ={w e IMQ ff(

whose inclusion in I'(2) is relatively compact. Moreover, W''(£) is
included in BV(2), and by passing to the limit W on a sequence w,, which
is bounded in Wb(Q), we get from (7) and (8) that W also belongs to

BV ().
The following lemma, which is due to Saks, will be used:

)d dt < -I-oo}

d—.u—)— dr = 0.

(10) Vwel(]0,10), lim
740 {zx110(2)) <}
We also introduce the real funection I, defined on R by

v

(11) I,(y) = [ sg,(@)dw

0

4. Vanishing viscosity method

Some estimates in W»!(2) will be derived for the solution w,, which is
admitted to exist in C*(2) for > 0, of the parabolic equation

8 01t
(12) —if—+——f )—e—- =0,




24 A. Y. LE ROUX

and satisfying to the boundary conditions (3) and (4) for all { > 0, and
to a regularized initial condition

(13) ,(+, 0) = vy € C*([0,1])
such that

91z q0,10 S € (gl + laol + as 1)

and
05(0) = 09(0) = vy (0) = m,(1) = (1) = v’ (1) = 0.

The parameter ¢ physically corresponds to a coefficient of viscosity,
and will tend to zero. In order to ensure Uniquencss for (1), (2), (8),
we shall use in the estimates that ¢ was a positive number before passing
to the limit.

ou,

Let us begin by an estimate of . We take the derivative

T \LYa)
of (12) with respect to z, multiply by sg,(0w,/0x) and integrate by parts
on ]0,1[, to get

1
d o ou,\ 0 ou \ T
A - I 4 d 2 & . r : — -4
) 5 uf "( 6.'17) i [Sg"( am) o (f(“‘) o )]

1 1
, | O, ou, 0*u, [ ou,
= (se (2% 5 o [ sgy (2
!g'(ax)f(u) ow owt EO gg"(c’ia:)

From (12), the second term is obviously zero, since the boundary
condition are constant; the last term has a constant sign, we use it to
transform (14) into an inequality. The third term tends to zero as » tends
to zero, by (10). Now, for ¢ > s, we get by integrating on Js, ¢[

o,
oo '

ou,

)

(';3)

~

1
LI(0,11)

Li(o,11)

dx

and for s tending to zero, for all te]0, T'[,

(16) f
0

This gives also, from

ou,
ox

(2,2) | do < C(lluoll + lay] + la,]).

Ty

| 0
(16) (@, 01 < laol + [ |2 (@, )| da,




APPROXIMATION OF INITIAL AND BOUNDARY VALUE PROBLEMS 2b

that «, is uniformly bounded in L™ (Q); this estimate may be also directly
obtained from the principle of maximum. By the same arguments, we
get an estimate of |du,/d¢|;1 o, DY deriving (12) with respect to ¢ and
multiplying by sg,(éw,/dt). The analogue of (14) is,

1
d ou oun .\ @ ou \T
o I _._E d & _ E_
dtuf ”( at) ‘H[Sg( P ) ot (f(“) o )]
1
dou, au otu o,
Ofs (———)f( Y, —d,r fsg,,( )

where sg,(0u./dt) is zero on the boundaries. We finally get that for £ > 0,
u, belongs to a bounded set of W' (L), and then a sequence u, can be
extracted, with ¢, tending to zero as m tends to infinity, which converges
in Z'(Q) towards a function % lying in BV(Q).

%,
ox ot

5. Existence and uniqueness

We now prove that the funection %, we have just exhibit, is the solution
in a weak sense of (1), (2), (5). Our first goal is to give a definition which
characterizes this solution, recalling that it was obtained from (12). We
introduce the set

D(R) = {peC*([0,1]x[0,T]), >0, ¢(,T) = 0},
and for ¢ @(Q), I € R, we multiply (12) by ¢sg(u —%) and integrate by
ok 0
parts, to get (note that — = Fry f(k) = 0 are introduced)

P
a 1
(17.1) ffI k)—aft’-dmdt+ufr,,(vu—k)¢(m,0)dm+
8
(17.2) + f f Flu) —f (k) sg, (2, — k)a—zdmdt+
3
(17.3) +ff (1) —F (1) 55 (10— ) —— (4, — ) p vl —
17.4 g / Ot 2d at
(17.4) —aj;fhg,,(us— c)q;?m— xdt —
< o, ?
(17.5) —eju a?i, .;g,,(u,—k)a_";dmdz—
2
(17.6) —_ (j(u,.) flk)— e e ) o (i, 1)5g,(a; — k)n,.
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We first write that (17.4) is negative, and then let 5 tends to zero,
to get that (17.3) is zero at the limit by (10). The limit on the other terms
is obvious. Now we put £ = ¢, and let m tend to infinity (e, tends to
zero); we have only to replace u, by % on all term, but a part of (17.6),

o,
o

For a non negative v e 0'(]0, T[), with »(0) = 9(T) =0, and 1>

4 > 0, we multiply (12) by »(f)max(0,1—x/8) and integrate on 2, to got

1 O
= —ff(lﬂ (l———) Up 9 — 3 f(us)—'rp—;-—a'%-)dtdm_r_

II'
t)dt — j Flagyw(t)dt.

(, )} is needed.

We make first ¢ (=¢,,) and then § tendmn* to zero. Since % € BV (2) we get
T

(18) lim f 6 w(t)di = f {Flag) —Flyu i)}y (.
sm—>00
(m—>00)

Now, from (17) we obtain, using (18) and a similar result for z =1,
the inequality (where u, is written instead of v, since the passage to this
limit is obvious)

(19) fﬂ f (m—m—‘?a% + sg (1 — 1) (f (u) — f (%)) —g‘%)dwdwr
—l—f |%o —k|@p(2, 0)da

T
> 2 f nesg (0, — 1) {flyiu ) —f W)} G, O,

since f(a,) get away by (18) and (17.6). We have the following

THEOREM 1. The problem (1), (2), (B) has & unique solution v € BV(Q)
which is characterized by (19) for all k € R and all ¢ in O().

H

Proof. The existence is stated. By taking ¢ (x, ¢} = y(¢8)max (0, 1—z/d)
in (19), we get, as § tends to zero, the inequality

(20)  {flpiw()—f(k))}{sg(a;— ) —sgpu(t)—k} =0 (ae. 10, T[)

which gives (6) for & in I(ayi, yiu(t)) and is obvious for & outside.
It remains to prove uniqueness; this is done by using the same
arguments as Kruzkov in [3]. Let % and v be two solutions (i.e., satisfying
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(19)), with the initial data %, and »,, and the same boundary conditions
a, and a,. From (3) we get

(21) ff {lu——vj—ag sg(u—v)(f(n) —f() %}dwdt =0

for any test function ¢ in &(2), equal to zero on the boundaries of £.
Now we take the following form for ¢, with p defined as above,

p(2,1) = p({l—max(0,1—=/8)—max(0,1—(1—2x)/6)},
n (21) and let é tends to zero, to obtain

T
[[lw—vlp aedtz D' [ nisglyi—vw)(flrie) —f (7o) () de

i=0,10

—
[N
Q)

S

The last term in (22) iy nonnegative. To show it, we introduce two
funetions (1), for i =0, 1, in L°°(]O T'[) such that, almost everywhere
on 10, T[, k(1) eI (yn(t), )r\I(yl y a;), and use (5), already deduced
from (20). Now we can write ﬁom ( 2), for any nonnegative v,

I(W , 1) —( )1”L1(]01[))w dt >0,

which states that the semigroup operator associated to (1) and (5) is a
nonlinear contraction in L'(]0, 1[). Obviously, we have for almost all ¢
in ]0, T'[,

(23) () —w(y1) !Ll(]o.l[) < (% — Volr1(0,112

and then uniqueness by taking 4, = v,.

6. Approximation by the Godumov scheme

Let TeN and & = 1/I. We inlroduce the space

(24) ¥, = {v e L*(]0,1[), v is constant on each
I = 1k, G4+L)R[, & = 0,..., I—1}

anel project the initial condition on V,, using the L*-norm (i.e. averaging).
We wel the values

- ) L
("')) ("|1/) :—_-_}'L“ ’Mu(.E)d.T,

Tgqn

and, denoting by P (he operator of projection, the discrete initial con-
dition

P o T, . U oy n :

(26) ty = Pty g () =gy, 0 we L.
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Obviously, the operator P preserves the L™ norm, and the BV(]0, 1[)
seminorm defined by 9| = o] — [v(0)] from (7). It is also a contraction
for the J' norm.

We denote by ¢ a positive parameter, which will confrol the sta-
bility, and take as time meshsize 4t = gh. We suppose that, at time
nAt, the approximate function 4}, € V,, is known, and try to built v} e 7.
Tirst we solve exactly the problem (1), (0), starting with the initial con-
dition ) at time ndt, on the strip J, = Jndt, (n+1)4¢[. The solution
is & constant on each straight segment {ik} xJ, when the following sta-
bility condition
(27) ¢ sup  |f(R) <1,

Il <lugl Loogg0,11y
known as the Courant-Friedrichs-Lewy stability condition is satisfied.
Then, at time (n-+1)4f, we use the operator P to projeet this solution
on V,. Since, this projection needs only the values of the solufion, on
each {ih} X J,, given by u} € (] y;, %;4,;) sSuch thap

(28) SE (Ui s — Uiy o) f(07) = min (Sg(""’?ﬂlz — “?—1/2)]0(70))’
KeTGep_y v 1)
with w”,, = ay, 47,,» = &, we get the projected values, for ¢ =0,...
oy 11,
(29) “?:11/2 = '“?ﬂ/z _Q(f('“'?—u) —f('“'?)) .
The Godunov scheme is (28), (29), and we have the following

THEOREM 2. Provided that (27) is verified, then the approximate sol-
ution built by the Godunov scheme converges in L'(Q), as h tends to zero, {o
the unique solution of (1), (2), (B), which was characierized by (19).

Proof. We define the approximate solution as the solution on each
gtrip J,, and note it u,(=z, ). From (19), in each strip, we can write, for
any ke R and ¢ € @(0),

é d
@0 [ f {157 ot Rt —109) 57 dnit+

1
+ f | Puy—k|p(x, 0)dw
0
1

> D) [ msgle— 1 (f(rw) —F ) pi, O a1 -
{==0,10

— Zf (|Pup (@, ndt) — k| — |[uy (@, ndt) —k|) p(x, ndt)ds.

n 0
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For any function » e L*(R), we have Po— = P(v—1%), and since P
is a contraction in L'(]0, 1[), the last term is nonnegative. Moreover, P
preserves some estimates on u, from a strip to another, such as the 7°
norm and the variation (i.e. seminorm |v|—|v(0)] on BV(]0,1[), the
L' convergence of a sequence Uy, s 88 hy, tends to zero, is implied, by
using the same arguments as in Theorem 1. Denoting by % e BV{Q)
this limit, we get that the first member in (30) converges to the first
member in (19), We look now at the time integrals on the boundaries;
denoting by 2, e L*(]0, T'[) the weak star limit in L®(]0, T'[) of a sub-
sequence of f(y;u; ), we get from (30) at the limit

{31) j‘;f |2 — k| %? +sg(-u.—k)(f(fu-) —f(k)) —ngmdt —1—6[- [y — K|@(z, 0)dz

.,
> Z f nesg (a;—B) (A() —F(R) o (i, 1) .

By taking ¢(x,t) = () max (0, 1 —2z/d), as above, we get at the
limit, that

8g(ag— k) (Ao (t) —f (k) — sg (vou (1) — k) (f{wors (1)) —F (%)) = 0
(a.e. 10, 1)

which gives, for & ¢ I{y,u (1), ay), that 2,(t) equals f{y,u(?)) almost every-
where. We have the analogue at # = 1, and Theorem 2 is proved.

7. Approximation by the Lax Friedrichs scheme and by the Glimm scheme
Tor any even I e Nand k = 1/I, we defince two spaces V%, for I = 0,1 by
V! = {v e I*(2), v constant on each I, = J(i—1)h, (¢ +1)[, ¢+ even}

and denote by P, (I = 0,1) the operator of I* projection (averaging)
on V). The Lax Friedrichs scheme consists to project the initial con-
dition on ¥;, to solve (1), (3) on a strip ]0, 4t[, with 4¢ = qh, to project
the obtained solution onn V3, to solve (1), (5) on the strip ]4i¢, 24¢[ and
then to project on V), ete... If the stability condition (27) is fullfilled
then we arc ensured that the solution is a constant on the triangles

, 1
{(m, t), le—ih| 4 —q— [t —ngh| < h},

and thus the scheme is easy to write, at the time level nd?,

1 .
(82) W = kel - o (fd) —f@i) (e 0dd).
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For n odd only we use the boundary conditions, by writing for
example,

(33) Uy = Gg; By = Gy;

and taking in account that, for the projections, the intervals near the
boundaries have a length equal to 7, instead of 2k for the other intervals.
Note that (33) is not exactly the good way to introduce (5), since an
analogue of (28) really appears.

The same gpaces V% are used for the Glimm scheme, which differs
from the Lax TFriedrichs scheme by interpolating at a random point on
each I, instead of a projection using the L* norm, at each time level ndt.
We also need the stability conditions (27), and following Glimm [2], we
have to integrate an analogue of (30) with respect to a,, if ¢, €70, 1 i8
the uniform random value such that the interpolation at time level nAt
is performed at the points (¢ + 2¢,—1)A, in such a way that the arguments
used for the operator P above are suitable here.

Theorem 2 is true for the Lax Friedrichs scheme (32), and for the
Glimm scheme, but for (a,, ..., a,,...) belonging to a negligible set of

J11[0,1]. This scheme may be written

=1

wpt! = uR((f+2¢,~1)k, (n+1) 41),

if uy is the exact solution on the strip 10, 1[ X J,, from the initial data
in V% at time level nAt.

All these results are suitable, even when the boundary conditions
are non constant data or when (1) has a second member; see [4]. Theorem 1
is true for a multidimensional problem (see [1]), but the approximation
by the Godunov scheme is proved to be convergent only with an hy-
pothesis of monotony on the components of f (see [6]). Quasi order two
schemes may also be applied, and give numerically, good shape for shocks,
see [b]. The profiles are rather good for the Godnnov scheme, but not
for the Lax Friedrichs one.
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