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We consider some classes of generalized interpolation. In every class
we distinguish generalized Lagrange, Newton and Hermite formulas. Our
main interest is the interpolation in H? spaces. The aim of the present
paper i8 to give a survey of generalized interpolations and to show how
they can be used for the numerical solution of ordinary differential equa-
tions.

We obtain the following results: -

The use of generalized interpolation formulas in H? spaces enables
us to construct explicit linear multistep methods for approximate nume-
rical computation of the solution of a system of ordinary differential
equations of the first order

v =10, 9), y0) =y, ((yeR™ 1=0),

which are A- or L-stable and are of arbitrarily high order. These methods
involve at least one free parameter, which can be used to make the ap-
proximate numerical solution fit certain stiff problems. The coefficients
in the methods depend on the stepsize h and on the points chosen in
the interpolation.

I. ON GENERALIZED INTERPOLATION

Let us remind the classical Iiagrange interpolation polynomial

n

L (f; 9 =§n]f,H Y

L, — T,
= iwer 7 J
j=0

[365]
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If we replace z—w, by functions h;(2) with hy(z;) =0 and Ry(x,) 0,
for j £k, we get a generalized Lag'range interpolation funection

Ln fs Z) = Zﬂ:fr hj wr)

It was introduced already by Thiele [1] in 1909. In the recent years
generalized interpolation methods were widely considered. H. Engels [2]
dealt with the following generalized interpolation problems: Lagrange,
Newton and Aitken—Neville interpolations, the cubic spline and Hermite
interpolations, the applications of generalized interpolations as quadra-
ture methods and Richardson extrapolation. In another paper [3] he
developed the Runge-Kutta methods on the basis of generalized interp-
olation. H. Engels has concentrated his investigations on constructive
aspects.

In [9] a further clags of functions {g;(z), ! = 0,1, ...} is introduced
into generalized interpolation representations The investigation of in-
terpolations with pairs of funetions (h(2), g;(2)), § =0,1,..., leads to
a better theoretical understanding of genera,hzed 1nterpolat10n and to
gsome new results. In the following we give the main ideas of [9].

In Section I.1 we define some generalized interpolation representa-
tions and write-down their properties. Then we are able to classify dif-
ferent generalized interpolation representations into types.

Each of these types is identified by a choice of a set of pairs of funec-
tions {(h;(2), g;(2)), § =0,1,...}, and is characterized by some essential
properties.

In Section 1.2 we show that two types of interpolation are strongly
connected with orthonormal series in H2(B) spaces. The concept of in-
terpolation types seems to be very advantageous in applications. And
80, in Chapter IT we consider the approximate numerical solution of initial
value problems for ordinary differential equations, by means of certain
types of generalized interpolation.

In the sequel we use, along with a set of points {w;, j =0,1,...},
two sets of functions

(@), 5 =0,1,...},  {g(=), 5=0,1,...}.

We assume that the variable # and the points w;, j = 0,1, ..., are el-
ements of B, where B is a finite or infinite connected domain of the complex
z-plane. We require that

1) hylm) =0,  Tylm) #£0, for j #4,
(2) 9;(%) #0, Vze®B.
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1. Definition and properties of some generalized
interpolation representations
1.1. Two interpolation representations

Generalized Lagrange interpolation. Assume w; %=y, j# % §, &k
=0,1,... Let us consider the following representation of f(z):

(3) flo) = L(f; 2) + B 1 (f5Zay ooy Ty 2)Wo(2), 0 =0,1,2,...,
with

hj . g; () (*)
(*) L, (f; ) = %f 156
and

2y k(%)
5 W, (2) = Ay
(5) ) ﬂ 2

Because of the requirements (1) and (2) imposed on %;, g;, the functions
L.(f;2) and W,(z) fulfil the conditions

%) La(f;a) =fp 7 =0,1,.00pm
and
(M Welz,) =0, r=01,...,n

In (3) we have representel f(z) by generalized Lagrange interpolation
with g remainder term. Here L, is called the generalized Lagrange operator
and L,(f;2) the Lagrange function, both of order n.

In the classical case (h;(2) =2—a;, g(2) =1, j =0,1,...) the
function B, ,,(f; ey ...y T, #) i8 the divided difference of order n -1
of the function f(z) with respect to ..., 2,,%. We call B,,,(...) the
generalized divided Lagrange difference of order 41 of f with respect
to @y, 24, ..., B, 2.

Generalized Newton interpolation. In order to generalize Newton in-
terpolation we choose the following representation of f(2):

(8) J(2) = No(f; 2) +4p 1 (f; @0y oy Ty )W, (2)
with
(9) Nu(fi) = ZA W)

W;{z) from (B) and W_,(2) = 1.

() We write f, = f(z,).
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The interpolation requirements are

(10) Nolfso) =f, r=01,..,n

If we assume that #; #amy, for j #%, j, 5 =0,1,...,%, We can compute
the coefficients 4; from

(11) ZAjgﬂ D @) =f, r=0,1,...m

In the case 7;(2) =2—ay, ¢;,(2) =1, § =0,1,...,n, we get the classical
Newton formula.

In (8) we have represented f(z) by generalized Newton interpolation
with a remainder term. Here NV, is called the generalized Newton operator
of order » and N,(f;2) the Newton function of order n.

We call the function 4,,.,(...) the generalized divided Newton dif-
ference of order n+1 of f with respect to g, ..., %,, 2.

Remark. From a well-known theorem of complex function theory
it follows that the Newton and the Lagrange functions converge to f(2)
a8 » tends to infinity, provided that the functions f(2) and &,(2) gj (2
j =10,1,..., n,areregular analytical in B and the points x;, j = 0, 1 "o n
have an accumulation point in B.

1.2, Types of interpolation. We now briefly present some essential
facts concerning generalized interpolation. We give no proofs here and
refer to [9], but we illustrate the results by examples.

Exaverrm 1. For ;(2) =2—u;, g;(2) =1, ¢ =0,1,..., the gener-
alized interpolation representations (3)-(7) and (8)-(11) are reduced to
the classical Lagrange and Newton interpolation formulas. Their prop-
erties, in particular the identity

L,(f;2) =N,(f;52), n=0,1,...,
are well known.
ExampLE 2. For rational interpolation we choose

z—a, )
hi(2) = 1—wz g:()) =1, |zl<1, ¢=0,1,..., lg<1.

The Lagrange and Newton functions for n =1 are

g—my 1—mm, Lt — @, 1—m0m1
i} 1
1—(1312 mo—ml 1

Ln(f;2) =fo

Toe L1 — Dy
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and
Z-—-.ﬁb‘o
1—az.2

with 4, =f, and 4, = (fi —fo) (1 —a,2,)/(x, —x,) from (11).
For the Newton interpolation we get

Ni(f;2y =A,+4,

g—o 1@ v 2—®, 1—zm,
) .

l—x42 25—, 1—me2 @,—5, )

N.(f;2) =1o

We see that the interpolation conditions
L,(f; %) = No(fy2,) =f,y, forr=1,2,

are fulfilled.
This example shows that the identity L,(f;2) = N,(f;2) is not
naturally provided. Here it does not hold.

ExAMPLE 3. Another type of rational interpolation is obtained by
choosing

hz(Z) =z—$,-, gz(z) =1—{121-z, 7: =0, 1,-.-
The Lagrange and Newton functions for # =1 are

2—x;, l1—a 11—z, 2—zy l—m3, 1—2at

Ll(f;z)=f°mo—-—m1 1-2,2 1—ay2 +‘flm1—-mo 1—o,2 1—zy2
and
Nylf; o) = Aoy g, 170 2=
1—x42 l—z,2 1—m,2
with

Ay =foy A= (f1(1“95'0371)—fo(l—a’g))/(m1—mo)-

If we expand the function N,(f;2) we see that in this case the identity
Ni(f;2) = Ly(f;2) holds.

These examples lead to the questions:

For which kind of generalized interpolations doeg the identity between
the Lagrange and Newton interpolation functions hold, and which of
them have properties similar to those of the classical ones?

In [9] four types of interpolation are considered. Of these, the types
I, IT and III are the following:

L By(z) = w(e)—u(xy), g;(2) =1,
IL: by(2) = u(z)—u(ey), g;(z) = L—u(w)u(2),

24 — BHansach Center t. XIII
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TI: Ty(e) = w(@)o(z,) —v(2)ulay), g;(2) = ()0 (e;) —u(2)ulz)
(for each type j =0,1,...).

The values of %(w;), v(z;) in g;(2) can also be replaced by their com-
plex conjugates.

Tiet us remark that for v(2) = 1 type III is identical with type II.
If we use the notation

o u(2) for type I and II,
® = \u@piz), for type IIT

and require for all z2:

(el): U(2) is single-valued,

(¢2): |U(2)] <1,
then the sets {k;, g;} from types I, II, IIT fulfil the conditions (1) and (2).
For type I the conditions (c¢2) is not necessary. We call U(#) the basic
function and v~ !(2) the weight function of the interpolation.

THEOREM 1. For types I, X1, IIL the following identities hold:
Apna(f5 o) =Bya(fi..), n=01,...

We again turn attention to the examples.

Example 1 belongs to the interpolation type I and Example 3 to
type II. Example 2 does not belong to any of these types. For interpola-
tion of this kind we cannot give general theoretical assertions.

Therefore, in what follows we consider only interpolations of type I,
IT and III.

DermviTION 1. ¥(2) is called a fiwed element of a linear interpolation
operator D, if

D, (P;2) = ¥(), VzeB.

Also from the practical point of view it is desirable to characterize
the fixed elements of interpolation operators.

In the classical case (h;(¢) =2 —u;, g;(2) ==1) the fixed elements

of the operators L, and N, are ) ¢;2’, with arbitrary constants ¢;. For
]=0

the generalized interpolation operators L, and N, of types I, II, III
the fixed elements are:

n

I: 3 e u!(2),

j=0
n n

11: j;. e;u! (2)] [] (1 —’“j“(z)),

j=0
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n

Z e (7)™ (2)] n (v (2)v; —u(2) )

=0 §=0
with arbitrary complex or real ¢, j =0,1,...,m, and u; = u{z),
v; = v(w;). We see that the fixed elements in type I are polynomials
of the basic function u(2). Further, we can seec that the fixed elements
in type II are rational functions of the basic function u(z).

The degree of the numerator is n, and if #; =0 for j = 0,1, ..., n,

the degree of the denominator is # 1. Using the above defined basic
function U(z) we rewrite the fixed elements in type III in the form

TII: ;%z—)(zn' d, U"(z)/ﬁ(l——UjU(z))).
J=0 j=0

This means that the fixed elements in type II1 are rational functions
in U(z) = u(z)/v(2) multiplied by the weight function »7(z).

1.3. Taylor series and Hermite interpolation. For the Lagrange and
Newton representations we have assumed the points x;, j = 0,1, ..., to
be distinct. For the proofs of some properties of interpolation operators
(for example, the identities from Theorem 1 and the fixed elements)
the condition x; # ay, for j # k is not necessary.

If now a, tends to «, for some ! and %, then the interpolation operator
changes its shape, but its essential properties remain inaffected.

It is convenient to use the following concept for interpolation of
types I, IT and ITI. We define Taylor operators for type I. The interrela-
tions between the types I through IIT allow ns {o use this definition for
all the three types.

With the help of Taylor operators we can construct generalized
Hermite operators for a general choice of arguments z;

To indicate that an interpolation function depends on the points
Z;, we wWrite

D, (f;2) = D, (f;2; gy -y Tp).
DerinITION 2. The operator T, defined by
To(f52; @) = Ny (f; %5 @5 -0y To)
is called the Taylor operator of type I with respect 1o x,.
Because of the relations between the types I through III we set
T (f; 25 00) = g7 ") TLY; #5 @),
T (525 o) = v (2) g5 ™ (2) Th(f- vg"“ 23 3y).-

For type III we have assumed that T, is viewed with respect to the basic
function U(2) = u(2)/v(2). For h,(2) = u(2) —u, the operator T, possesses
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n
the fixed elements ) o;u’(z). Also for the operators T, of type IT and

j=0
III we can see that the fixed elements are the same as in the case of the
operators L, and N, of the same type. Only the roots of the denominator
are different.

DErFINITION 3. A Lagrange operator L, is called a Hermife operaior
if at least two points of the set {;,, j = 0,1,...,n} are identical.

The Hermite operator
H,(f;2) = Ly 1 (f; 25 Tyy D1y Toy Bay o v vy Byyy By)

is of special interest for the derivation of quadrature formulas of Gaussian
type (see [9]).
For our interpolation types I and II we obtain, for instance,

n

e misse - ST () T] (%)

r=l :,j{' i=1
<(ofma (3 - Y] )
' )\ g & Mylw) 1 hea)
i=1
with
(13) H,(f;2) =f,, H;.(fi 2,) =f1'-1 r=12,...,n,
and the fixed elements
n 1 2n—1

(14) W, ()= Q e go: o U (2).

If we multiply the right hand side of (12) by »~'(z) and replace f. by
f.v, and f, by f,v,+f,0, then (12) holds for type III, too. In this case
we have assumed k;(2) = U(2)—U;, ¢;(2) =1—U,U(2). From this we
get the fixed elements ¥,, ,(2) from (14) divided by v(2).

We obtain a rather general method for the construction of Hermite
interpolations by using the following lemma:

LevmA 1. For k< n the following relation holds:

n n
h;(2) 5
Ln(f;z;mo,...,wn)= I 1 ( I’k(f l ] i'5"“55!707~--sa71'c)‘|‘
i=k+1 9:(2) i=k+1 s

k

K
hys (2) g
+ !J gz(z) Ln—k—l(fﬂﬂy 23 @y, ..-,a}‘n).
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If we want to obtain a Hermite interpolation with #, =&, = ... =2,
we have to replace the I, from Lemma 1 by the corresponding Taylor
function and h;,g;, ¢ =0,1,..., %k by &, and g,.

2, Interpolation and orthonormal systems in H?(B) spaces

The aim of this section is to show that the Newton interpolations of type IT
and I11 are orthonormal series in suitable H2(B) spaces. For the Newton
geries of type IT we use a space with an inner product defined on the bound-
ary @ of the domain B. In the case of type IIL we have an inner product.
with a distribution function ¥ () £ 1. In both cases the basic function
U(z) = u(2)/v(z) 18 the generating element of an orthonmormal system
in H2(B). Again we give results from [9].

2.1. The space H*(B)

AssumMPTION 1. Let B be a bounded convex simply connected domain
in the complex #-plane with rectificable boundary € of length 4 = A(E).
By introducing the inner product

1 -
1) (f,0) =7 [fig®ds  (ds = jau),
&
we get the space H?*(B) with the norm
1 1/2
@) 51 == ( [1rweas)”.
e

In H2(B) there exists an orthonormal system {p;}:

(3) (@9 @) = 8.
For f € H2(B) it yields the expansion

o]

g(z) = Zaﬂ’j(z)’ a; = (0, @),

j=0
with

o0

Z la;12< [IfI*  (Bessel inequality).

Je=0

If {p;} is a closed system, it follows that
g9(z) =f(2)
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and the equality in the Bessel inequality holds. Then the kernel funetion
of the system {p;}

Kz, 1) = ) (@) (t)
j=0

has the reproducing property
(4) f2) = (f(t), K (2, 1), {for fe HB).
2.2. Basic functions

AssumpTION 2. Let #(2) be a single-valued function in B =BuUE
with |u4(2)] =1 on € and with a single root in the interior of B.

Let us remark that Assumption 2 expresses a connection between
the domain B and a function u(2), which we choose as our basie function.
It is clear that «(2) defines a conformal mapping of the domain B onto
the unit dise, We give some lemmas.

LeMMA 1, The system {u/(z), ] = 0,1, ...} is orthonormal and closed
in H*(B).

The orthonormality is easy to prove by using the definition of the
inner product in H2(B) and the fact that |u(z)] = 1 on €. Since %(z) has
a single root in the interior of B, the system is closed in H2(B). So we
can write the kernel function in the form

o0

(®) (1) = M w(@)wh) = ———.

pay 1 —wu(2)u(t)

2.3. Kernel expansion and interpolation

LEMMA 2, For ae®B (|u(a)] < 1) 4t holds:

1
K _—_—
& 1—u(2)u(f)
— [u(a)|?
(1— u(z (e))(1—u (t)fw(a))
(4 (2) — 2 (a)) (u (1) — u(a)) 1

(1—u w(a))(1— u(tu(a)) 1—u(z)ult)

I

We can prove this lemma by elementary operations. Here d denotes
the complex conjugate of d.

The repeated application of this lemma for any constants x,, @, ...
with |[u(2;)l <1, j =0,1,..., leads to the following theorem.
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THEOREM 1. Kor x;eB, j =0,1,..., the ém_pansion

E(z,1) = ) p;(2)p;(0),

je=0
with
py(e) = Vicw® 1 w(e) -
1—gue) L1 T-%up)
and
(Pir 22) = Oy
18 valid.

The orthonormality (p,, p;) = d; can be proved by using the rela-

| w(2)—u(a)
| 1—u(a)u(z)
Now we repregent the function f(z) by the system of orthonormal
functions {p;(2)}.

TErOREM 2. Let f e H*(B), v, €B, j = 0,1, ... If there is an aoocu-
mulation point for the sequence {m;} in B, then

=1 for zeC(.

tion

fle) = D AL —lul g (2),

i=0
with
1
9,(z) = pi(2) end A, =(f,q).
Vit J15,]2.
The series converges absolutly and uniformly in B.

The assumption about the accumulation point of {#;} is needed in
order that the identity theorem of complex function theory be applicable.
From Theorem 2 we get

(6) 1P = D) 1AL — fasf2).

Because of the property p;(#;) =0, k = 0,1,...,j—1, we can com-
pute the coefficients 4, from

() fla) = D) 40— lwPglz),  * =0,1,...,

J=0
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nnnnnnnnnnnnnnnnnnn

It is clear that Theorem 2 provides an interpolation representation of
type II. This is a generalized Newton interpolation if we set

(8) h(z) = u(z)—u(®), @) =1—u(n)u(z).

If we now write

(9) Fo(2) = D) 41— luyMg(2)

I=0
then from Theorem 1 from I.1 follows
THEOREM 3. The equality
F,(2) = N,(f; 2) = L,(f;2)
holds with h,(z), g,(2) and F,(2) defined by (8) and (9).
Because of the orthonormality of the functions {p;(2)} we obtain

COROLLARY 1. Let F* e H%(B) and F*(»,) = f(z,), r = 0,1, ...,n3
then F,(2) is the unique fumction such that

|F,l = min I
FreH2(1B)
In connection with Corollary 1 let us remark that the interpolation
of type II is optimal in H*(B) with respect to the chosen points @y, ..., z,.
This proposition holds also for quadratures based on interpolation of
type IL. In this case we obtain Wilf's quadratures by using u(z) ==z
(see [9], Chapter III).

2.4, Examples. Now we give some examples and discuss the possi-
bilities of the choice of B or .

First we restrict our investigation to holomorphic functions w(z).
The following two cases are possible.

(a) The domain B = {#| |u(2)] < 1, 2z € C} is bounded. This means
that the boundary curve [u(z)] =1 is closed. Here it is possible that
an infinite number of domains exist for one basic function wu(z).

(b) The domain B is unbounded, which means that the curve |u(z)] = 1
is not closed.

In this case it can happen that we do not need the whole boundary
(ju(z)] = 1) of B to define the inner product in H2(B).
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ExAaMPLE 3'. We consider Example 3 from Section I.1 in more de-
tails. The function u%(2) = z gives the identical mapping of the unit disc
E, onto itself; therefore B =€ = {z| [¢| < 1}, € = {#] |¢| = 1}. Thus
we consider the space H2?(B). Let us require |9 <1, 71=0,1,...
There exists the orthogonal system {¢, 1 =0,1,...} and the kernel

1
function K(z,t) =
1—=z

normal system in H2(E)

2 Besides, from Theorem 1 we get another ortho-

_l/g,(w,)ﬁhi(z) Vi—gR 17 2—a

A g:(2) 1—z2 X 1-—-z#

acm

and the kernel expansion

K(z, 1) ij (#) 24 ()

7=0

According to Theorem 2, we write the orthonormal series for a function
f(z) in the form

T b
1) = Pole) +usslfi 30y oy 20, 9) | [ 2400
[l

with

n j-1

o\, 9 1 — o) 2—%;

Fn‘”)—Z 7 g,(2) Hg(z) Z 11 —z2 17,2
L I i j=0 i i=0 ¢

#n = 0,1,..., where the cocfficients 4, can be computed from (7).
This orthogonal series I, was found by Takenaka [4] in 1925. The
remainder term is called the Walsh remainder term [5].
We know that

Fn(Z) = Nn(f; Z) = L‘n(f; Z)
with

L,(f; ) =2frnm — H o

r=0 i#r
=0

The fixed elements of L, and N, are

EW’/”

J=0
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Thig interpolation of the type II is a rational one. The degree of the nu-
merator is n. The degree of the denominator is # +1 — %, where the integer
k is the number of the points #;, I = 0, 1, ..., n, which are equal to zero.
Because of the remark after Corollary 1, this rational interpolation ig
optimal in H?(E) with respect to the points =, j = 0,1,...,n. Let us
write down the norms in H?2(E):

oo

IFIe = D 14,21 — |y ?)

1=0
and

INa(f5 212 = Ly (f5 2)F = ZlAjl — |o;%)

=0

ExAMpPLE 4. We choose #(2) = ¢~°. The domain B with |u(z)| <1
ig given by Re(#) > 0. This means that the function « (¢) defines a conformal
mapping of the right half-plane onto the unit disc. If we choose ¢: 0
< Im(z) < 2w, then the set {¢%, 1 =0,1,...} is a closed orthogonal
system in H?(B) with the inner product

() =5 ff (ds, ds = |d].

'The kernel function and its interpolatorical expansion are

Ko, t) = — = —Zmz @),

pyte) = 'ehm)mﬁ —
? 1—6%e> iy 1—e e '

The Newton interpolation is again an orthogonal series. We write down
the Newton and the Lagrange interpolation functions:

1— T2 j-1 e~ % — e %
N, (/) ZA [ =
1—e¢%e™™ s & 1—e e™?
1—6 %e "
- [ [
r=0 i gty {=0 1--¢"%e
tea0

Of course, they are identical. The fixed elements are

n

St/ [Jo-en

=0 i=0
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These interpolations are optimal in H?2(B) with respect to the points
m‘, 7; - 0’ 1’ ...,‘n.
We have in H?(B)

Ifue = [ ] 1,ip—1e=i2)
§=0
and
IV, (F5 22 = WL (f5 22 = D) 14,121~ [e7}2).
j=0

ExamMPLE 5. We now give an example for type III. Let u(2) = 2v(2)
where 9(z) is arbitrary such that »(2) %0 for [2|<1. With U(e) =
w(2)/v(2) =2 we obtain the interpolation functions

u( z)v (@)U T 00— %, T
Ln(f32) = Zf'n — 0,1, H v(2) 0, —u(2)U;

re=0 wér i=0
_ Zf n U(z) Y 1-U,T,
v(?) rr 1-0,U()
r=0 Tm=0

t—ﬁ

and

) — N 012 — |u,|® — (%) v;— v (2) U;
N.(fi2) = ZA,. v(2) 5 —u(2) G g v (2) 5 —u (2) B

J=0
_ 1 N1 1-I0E T UE-T
IREF= ”1 U;U 11 1-U,0(@)°

We know that the fixed elements are

(Zd U‘(z)/n (1-0,T z))

1=0 i=0

The connection with the formulas of type II can easily be seen.
If we use the notation LI, NI, AT for type II and LI, N3¥, AT for
type III, then under the condition U(z) = u(2)/v(2), with v(2) # 0 for
z€ B, we can write

v(2) LI (f; 2) = LI (fv; 2),
»(2) NI (f; 2) = NL(fv; 2),
v, ATH(f) = AP (fv).
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The orthogonality in the space H?(B) is transferred to the space H*(B, V),
where V is a distribution function. The space H*(B, V) is generated by
the inner product

1 1
(£, 00 = JIOIORY O = 5 [F)g0r@)ds,
with
av
T = v%(1).
The kernel is
1 1

K(z,t) = — — = — =
#:%) v(2) v () —u (=) u (1) v(2)o(t) (L—-TU{2) U (1))

In H2(B, V) the orthonormal series provides the norm

[P = ZIAIH Mlogl2—lyl?) = AP (o2 (L — | Ty12)

i=o f=0

= N AP ()1 — | Ty,

=

The equality holds between the norms of H%*(B, V) and H2(B):
Iflly = llfoll.

II. LINEAR k-STEP METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Let us define the general linear k-step method for the approximate nu-
merical computation of the solution y = y(f) of a system of ordinary
differential equations of first order

(1) v =fty), 90 =9, (yeR" 1=0),
by the formula

(2) Your = Cp1Yesi—1 T+ Y+ Brfosr+ Bu—1forp—1+-- . + Bofs

Here it is assumed that the coefficients a;, 8;, ¢ = 0,1, ..., k-1, B, are
real numbers, ?; are real numbers with #; <4, ,, and f, = f(t;, ;). If
the vectors %gy ¥4, -+.y ¥r_, ar0 given then ¥, ¥r.1, ..., can be computed
from (2). This offers no difficulties, if the method is explicit (8, = 0).

If 8, #0, ie, if the method is implicit, some conditions on 1,

j=20,1,..., and on f are required in order to guarantee the existence
and uniqueness of the vectors ., ¥yy1y-.-

Let us remark that we have not introduced the stepsize © in (2).
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It is possible to choose the points #; arbitrary real. The coefficients a;,
B; depend on the %.’s.

1. Derivation of the methods

We assume that €y, ...y &1y Yoy oeey Yeo1s foy ++-s fr_y aTe given. We want
to compute ¥,.

This is an extrapolation problem. We can solve this task formally
if we use a generalized Lagrange interpolation formula I, (¥, 1), r < 2k—1,
over gome or all points ¢y, Lo, 8y, fyy .eey tpgy Ty, and compute ¥,
= L.(y; t). Here we always choose the special case of r = 2k —1.,

We use the Lagrange funetion L,, ,(y;t) with

(3) sz—l(y;tr) = Yy I’;k—l('y;f’r) =fr1 r =0$ 1""Dk_11
and obtain
(4) Yie = Lo 1 (Y5 %) = Lox—1 (Y5 &i tos Toy - oy Tap—as la—1) s
We can apply this formula using the special Hermite form (I.1(12)) of
the Lagrange formula. It is claer that (4) provides an explicit (f; = 0)
form of (2).

Now we give an implicit form of (2). For this we need an interpola-
tion formula L3, (y;1) with

L;k(?/itr) =Y r=01,...,k-1,

and

n¥it) =¥ =f, r=01..,Fk
Using the interpolation formula I,,_, from (3) we express Ly, (y;1) by

’

®) Lo(ys1) = Ly (y; )4 Do immrl¥3l) o
Pax (Tr)
with
- 0z ()
k\"“k
(6) Par(t) = I 1 (h«;(t)/gf(t))zm-

=0
Then an implicit method is given by
(7) Vi = Lp (Y5 )

Choosing %(t) = ¢t we get an example for the interpolation type I (classical
interpolation) and ¥ = 1. By (3) we get

Lo (y; 510y to) = Yo+ (E—10) Yoo
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Taking h = t,—1, we obtain from (4) the explicit Euler method

Y, = yo'}'h@/:} = Ly (y; 115 toy o) -

Let us now show an implicit method for &k = 1. Setting ¢, () = (1 —1,)
we get

Y1 — Yo

O _ ty  d1™ %0
L3 (y;1) = Yo+ (E—to) ¥+ 2 (ty— to)

(t—10)%

So (7) becomes
R,
= Yo+ o (Wo+y1) = L3(y; ).

This is the trapezoidal rule.

2, Properties of the methods

We restriet our investigations of the interpolation representations to
the basic function U(z) = 2. For the type I we meet the clagsical case
of polynomial interpolation. Let us first consider this case.

It we choose #,—1t,_, = h, Vj, we have , = af, j =0,1,...,k in
(2) and a;, f; are real constants. Observe that we can derive all linear
k-step methods (2) with constant coefficients a;, f; from the clagsical
interpolation formulas. For this ecase the following two theorems of G.
Dahlquist [6] are well known.

THGOREM 1. An explicit k-step method cannot be A-stable.

THEOREM 2. The order p, of an A-stable linear muliistep method cannot
exceed 2,

2.1. Explicit methods based on interpolation of type II. We are going

to consider methods (2) employing interpolation of type II (methods
of type II).

Now we use the formula I.1(12),

k—1 k-1

o mon- ST [0

r=0 7o

k-1

X {"”[1_2(”_(”')(21_._60;?4"2 p imj)]+wl(z—wr)}-
i=0 T jer T

Je0

Let us 8eb @, = Yyrry @ = 0 Fosr = 0'f (byry Ysuphy ¥ = 0,1, ..., k—1 andlet
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the real points z;, |2,/ <1, j =0,1,..., %k, be given by the linear trans-
formation

\ & —a@
(9) mi_9(3+j ts) =+ 2o, 1=0,1,...,k, o = ! 0

t8+1—t )

Then we get an explicit linear k-step method (2) by carrying out the
extrapolation

(10) Yeve = Hp (3 m), §=0,1,..,
From (8) we get the coefficients a,, §, of the k-step method in the form

-1

(11) a —R[ (21 — e, ;miw,)]

=0
(12) B, = B (2 —a,),
with
&), — 1 -2,
(13) ”(az —mj) H(l mjwk)
# Je=20

for r =0,1,...,k—1 and 5, = 0.
The order of consistency of this method is 2k —1.

2.2, L-acceptability. Now we are going to investigate the properties
of the explicit linear methods just described. We can consider the rational
function (8) or, more generally, a function of interpolation type 11, with
#4(2) = z a8 a k-point Padé-type approximation [8].

If we want to show the 4- or L-stability of a method (2) based on

the rational function (8), we have to prove the A- or L-acceptability
of (8).

DrrINITION 1 ([7], [8]).- A rational approximation E(2) to ¢™° is
said to be (i) A-acceptable, if |R(2)] <1 whenever Re(z) > 0, (ii) 4(0)-
acceptable, if |R(2)| < 1 whenever z is real and positive, and (iii) L-accept-
able, if it is A-acceptable and, in addition, satisfies [R(z)|-—~0 as Re(z)

— 4 o0,
Let us consider the general interpolation funetion
Ln(‘pi z) = Ln(¢’ 2R PIERR) mn)

of type II with real ;, § =0,1,...,m, and -1 <2 <KH < ... <2, < 1.
According to Definition 1, we want to show that under certain conditions

(14) IL (e7¢%0); 2)| <1, for all z with Re(2) > 2,.
That is the A-acceptability of IL,(e~¢%0; 2),
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In order to prove (14) we have to verify the conditions (see [8],
p. 28):

1. |L,(67®™); g+ it)| <1, VieR,

2. lim |L,(e~®%); 2)| = e¢<K 1,

3. IIIJ (6”0 z) is analytic for Re(z) >

The function I, (¢~*~%); 2) is L- a,ccepta,ble if ¢ =0 can be taken in
condition 2. If conditions 2 and 3 hold only, then the approximation is
A(0)-acceptable, and with ¢ = 0 in condition 2 the approximation is
called L(0)}-acceptable.

We are interested in L-and L(0)-acceptability. The function L, (e~ ®=%,

2) is of the form
L, (6750 & Zojz’ / H 1—m;2).

f=0

Tt is immediately clear that condition 2 with ¢ = 0 and condition 3 are
fulfilled, if we choose

(15) ~l<m;<0, §=0,1,...,n

Condition 2 with ¢ = 0 is fulfilled, since the degree of the denominator
is greater than the degree of the numerator. In order to verify condition 1
we consider the relation

1+4a,824...+a, ™" <1
14+bytt ... +b, 8" +b, 0>

for { ¢ R. Since the rational function in (16) approximates the term
e~"et" = 1 with order O(t"*?), it is sufficient to show that

(16) Ly (o™¢ %) wy+it)|? =

(17) b, > a,, for'rz[n_gz],...,n.
([@] denotes the integer part of d.)

It is to be expected that we get a condition for the points #; which
restrict their position more than (15).

We are going to express the coefficients a,, b, in (16) by @,’s in order
to prove (17). We can do this in the following way. We have

Ljemt- ‘”0)]“7 T 20+ 1)

1— —;
(18) L5 gy 4n) = %o

1 ~ 2;(%o+ 1)
j=0 1 '—.’L'jwo

where IT and I denote interpolation types. Writing

(19) 6; = u; /(1 —m,a,)
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we get

(20) L,I%I(G_(Z_IO); To+n) = 1+d;77+"'+dn77n ‘ ,
[[a—en
ij=u

We calculate the coefficients d; from the identity

n

1 9 1 3 n 1 n
(21) (1—77+—2—°7 % " +...+(—1) P )”(1— i)

j=0

= L+dy+...+dyn"+0 (),
finding that

d, = —1— ch,

j=0
n n n
22)  d=1+ Do+ D D ge,
j=0 j=0 r>j
7 n n ke n "
Gy = —3=1 o= Yoo— ) ) Yeac, ..
i=0 1=0 r>j i=0 r>§ a>r

Using (20) we obtain the function occurring in (16) in the form

1+ a2 4...+a,i™

(23) |Lt (e~ E=%0); ay+it)|2 = 2
[[a+¢)
J==0
where
n -
(24) = di+2 D (—1Vdyp s,
j=1

with d, =1 and d,,; =0, d_; =0, for j>1.
Now we write the coefficients b, in (16) in the form

w
_ 2
bpy1 = I_I €y
=0
n n

(25) b, =D [

P=0 7 #p

n n n
bp_1 = 22 ”0?1-“1

T=0 g>r J #1,8

25 — Banach Center t, X1
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and from (24) and (22) we obtain the coeificients a:

o = {fn' (n 1)! 2 +'n, 2)! ZZGG—" +ZHJ}:

r=0 §>r r=0 7#*¢r
n—1 7n—1 n—1
1 )
Gy 1 ={(’)’b-—- ! ’)’L-—‘) 1%01'*" ’n 3)' ggajc =+
n—1 n—1 P
vt STl -
r=0 J #Ep
1 1 n:i n—2 n—2
(26) _2{(n—2)!+ (1@—3)!%0§+"'+ggaj}x
1 1 n nﬂ| n
X{n! BT g"j+"‘+%g%}"”

So we have represented the coefficients a,, b, in the form
ay(Coy ovey 0,) and  Dby(€g,...,06,), With ¢’s given by (19).

From (25) and (26) we are able to derive condition (17) for given ¢; < 0,
§=0,1,...,n

The existence of a vector (g, ..., ¢,) which fulfils (17) is immediately
clear because there are always ¢;, j = 0,1,...,n with

/ n+2
p(Coy evy 0) <0, 'r=[ ]:---)'"'

2

For the coefficients in (25) the inequality b, > 0, V%, holds. Further,
it is clear that for ¢; = 0 and for ¢;—— co, j=0,1,...,n, the condition
(17) is not valid. But there exists a range [, vr] such that for ¢; & [Ty, valks
i=0,1,...,n, condition (17) is fulfilled.

For n =1,...,10 the condition

(27) gel—-1,—-%}, ji=01,...,mn,

is sufficient for the inequality (17) to hold. This means that constants
Loy oy % =1,2,...,10, exist, with

1 0.618034
such that
(29) T € [Pn) 71;]

is sufficient for (17).
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For n =1,2,3 we can give the exact constants I, y,:

Iy = —0.7491, TI,= —0.879, Iy= —0.82,
y, = —0.2714, y, = —0.176, ys = —0.277.

Summarizing, we formulate

TAEOREM 3. @Qwen n>1. If ,e(—1,0), j =0,1,...,7n, then
L,(e~®%); 2) is L(0)-acceptable and there are two constants L, v, with
1< I, <y,<0, such that w,e[l,,v,], i =0,1,...,n is sufficient
for the L-acceplability of L,(e~"~%0); z),

2.3. Stability. Now we state certain stability properties of the explicit
method (2) constructed on the basis of interpolation of type II.

We restrict our attention to the special Hermite form (8) of I, (g, 2}
with # = 2k—1 and with the points m,, g, X1, Tyy .oy Bp_1s Tpqs

THEOREM 4. The explicit (8, = 0) method (2) with coefficients given
by (11), (12), (13) and

Ty — %o

B; = Qtsyy—t)+ B0y € = T ¢
8+1 8

\
(i) L(0)-stable if —1 < a;<0, 5 =0,1,...,%k—-1,
(i) L-stable if w; e [I,, v,], j = 0,1,..., k—1 for suitable I',, v, with
—1< I, <y, <0, and suitable o,
(iii) stiff-stable if (i) and || << 1.
The order of consistency is 2k —1.

18

The assertions (i) and (ii) are true in view of Theorem 3. The nu-
merical solution of the differential equation (1) is accurate for |a,] << 1,
because the function (8) or, more generally, L, (g; 2), converges absolutely
and uniformly for |2 < 1 as a—oco. For 2z, > 1 the L-stability is secured
if ®; e [I,, yn]. So the method is stiff-stable (see [7]) for |z,| < 1.

Remarks. By formula (9) we have transformed the initial value
problem from the #-plane into the unit circle of the z-plane. Of course,
we can express the coefficients a.,f,, r =10,1,..., k-1, of the linear
explicit method (2) by the original points ¢, if we use (9).

Theorem 4 can be interpreted in the following way. Let the points
gy teq1y -ovs ts1p De given. By means of the transformation (9) a cirele
with radius B = (,,,—1,)/(x,—3,) and centre iy =t,—x,R is defined
in the ¢-plane. Only the positions of the pointsi,;in this circle, j = 0,1, ...
.+.y k, and the radius B determine the stability properties of explicit
methods (2) based on interpolation of type IL.
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In this way the coefficients a,, §, from (11) and (12) depend on the
points t..;_,. If we work with a constant stepsize h =+¢,.,—1,.,
j=0,1,..., the coctficients «, = e, (h), f, = B,(h) are the same
constants for all computations of the wvectors %,.., ¢ =0,1,... But
if it is necessary to change the stepsize, we have to provide new
coefficients.

2.4. Introduction of parameters. Linear explicit methods (2) of type
II are optimal in /1*-spaces with. respect to the points «; used. In general,
it is possible to optimize over these points (see [9]). Besides, we can extend
the methods of Theorem 4 to the spaces H?*E, V). This means that
we can consider methods which are constructed on the basis of the in-
terpolation type ITI. We can fix a weight function #(2) in the linear
methods of Theorem 4. This can be easily done because of the relation be-
tween the types Il and III:

1
L (y; 2)= ml}}f(yv;z) (see also Example 5 from 1.2.4).

Introducing a parameter p in the function o, v(2) = v(2; p), we find the
optimal H*-gpaces over a set v%*(z; p) of distribution funections, if the
equation

- - - 1
1 = Y’ (1 h = L s )
fes ) = §'(t), where #(2) o) Y0 (D3 2)5 2),
can be solved.
By the special choice of

{30) v(2; p) = ¢*

and of suitable p, the iterative computation of p;,,,

(31 Ypy = € 21LL, (y6¥1%;2,),
31) ;
T s Yg) = €7 P1%Ly, (ye¥3®5 2,) — Dy 1 Uiy,

for j =0, 1, ..., produces a sequence convergent to a fixed point p* or
Yy, respectively. It is clear that p must be a vector of same dimension
as y. If we work with the method of Theorem 4 and if we want to iterate
according to (31), we need, besides the coefficients «,,f, defined by
means of the special function H,(y;=2), also the coefficients «, Sy,
r=0,1,...,k—1, which are computed from H,(y;2).
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3. Remarks

The present paper should have shown that methods based on generalized
interpolation provide some new aspects in the matter of linear k-step
methods and that their further investigations may be of interest.

Let us remark that the treatment of implicit methods constructed
according to (b) to (7) is more difficult than the explicit case. Working
out the implicit methods of type II we obtain

Yie = Loy (45 20) — Loy (¥ ) D+ y;cD?
with

k k-1
F €T 1
D =q:2k(wk)/¢p2k(mk) = 2 g -l——j——|-2 _
j=0 j=0

By using the scalar test equation ¥’ = qy we get

Yo = {Lop—r (Y5 @) —‘I';k—1(?/§ z) D} [{D — ¢}

Because of the term D —gq in the denominator we have a more compli-
cated situation with regard to stability than that occurring in the explicit
case. Therefore we cannot expect as far reaching assertions as those
stated in Theorem 4.

A. further possibility of constructing methods with special proper-
ties of stability and approximation consists in using basic functions other
than U(z) = 2. For example, we get the right half-plane for the domain
of the Hardy-space if we use U(z) = ¢~% In this case we have to define

the consistency with regard to ) d;e ' (see also Example 4 from I1.2.4).
j=0

The author would be like to express his gratitude to J. Borchardt
for stimulating discussions.
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