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1. Imtroduction

Many problems arising in applications can be described by systems of
nonlinear equations

(1.1) G(z,1) =0, G: Dzc R"XR'-RY,

The vector « € R denotes the variables of the problem while ¢ ¢ R plays.
the role of an extra parameter which is of special interest. For some classes.
of problems the system (1.1) has for all ¢ from a basic interval [* ¢**]
an at least locally unique solution 2(t), and {(2(2), t): ¢ e [¢*, #**]} is a smooth
golution path, see Fig. 1. Such regular problems can be solved by classica.
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Fig. 1

continuation techniques using ¢ as natural parameter and performing-
small steps along the ¢-axis, compare [12], [19] for a detailed discussion..

The simplest singular case is sketched in Figs 2, 3. In both examples.
there is a smooth one-dimensional solution path, too, but the a-part

* Invited Lecture, Semester on Computational Mathematics, Stefan Banach.
International Mathematical Center, Warsaw, Poland, May 1980.
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624 H. SCHWETLICK

is not uniquely determined by the i-part. Especially, the path has one
or more go-called turning points (z, ?), (7, f).

For applications we refer to [18], [3], [9] where problems of non-
linear mechanics are treated which lead directly or via discretization of
certain integral or differential equations to systems of type (1.1). Other
examples come from chemical engineering, see [10], or from the analysis
of resistive electrical circuits, see [4].
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Fig. 2

In all problems mentioned there are of interest the turning points of
the solution path characterizing certain critical states of the system. Often
it is also desirable to have a pointwise approximation of the path near
to the turning point or over the whole bagic interval.

In this paper a number of effective methods for computing turning
points is described, analyzed, and compared with other methods known
from literature. Since the most real life problems are both of high dimen-
sion and sparse the following properties should be met by a reason-
able algorithm:

(P,) The subproblems to be solved per step should only be quadratic
regular linear systems so that standard software as packages for
solving sparse linear systems can be used.

(P,) Only values of @ and of ity first partial derivatives should be used
in order to avoid the generation of subroutines for computing second
order derivatives.

(P3) The algorithm should converge superlinearly.

(P;) The number of scalar functions to be evaluated and the ecombina-
torial costs per step should be smnall in comparison with the order
of convergence (low complexity).

In the following only algorithms having all these desirable properties
will be considered.
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First of all, in Chapter 2 some basic notions and notations are in-
troduced. Chapter 3 is devoted to the so-called indirect methods. These
methods are bagsed on a local parametrization {(w,(z), %(7)): v € T = R}
of the solution path in a neighborhood of a known solution point (aF, t,)
of (1.1), the last iterate. By using such a parametrization the turning
point is characterized by a scalar condition as, e.g.,

(1.2) i (7)—>Extremum.

The problem (1.2) is approximately solved by applying one or more
steps of an appropriate scalar algorithm leading to a new parameter
7, that defines the next iterate #*t' = w,(7;), #411 = #,(7) on the path.
Due to the implicit definition of the parametrization, the computation
of (#*',t,,,) requires the solution of a nonlinear system and, hence,
is an infinite process. Therefore, indirect methods are at least from a
theorctical point of view not implementable in a strong sense. Never-
theless they work well in practice.

In Chapter 4 the direct methods are described. These methods char-
acterize the turning point by (1.1) and an additional scalar equation

1.3) p(myt) =0, ¢: D, = R"XR'->R

in terms of (@, ?) without using any parametrization. The combined sys-
tem (1.1), (1.3) is solved by a fast algorithm as Newton’s method or
some modification of it. An example of the bordering equation (1.3) is

(1.4) det (8,6 (z, 1)) = 0

that has to be satisfied at a turning point. Here 9,G denotes the Jacobian
of G with respect to », see Chapter 2. Some other conditions more reliable
for computation are proposed and a special Newton-like method is devel-
oped which holds the number of scalar function evaluations per step on
a low level.

The paper ends with some numerical examples listed in Chapter 5.

Most of the material presented is the result of common research work
done by the author and G. Poénisch and can be found in [15], [16] and
in the dissertation [13] of the latter. Further references are given in the
text.

2. Basic notions and notations

For simplicity of notation we set % := (x, )7 e R*** and H(u) : = G (2, t)
for all w = (@, 1) from the domain of G. Then (1.1) reads as

H(u) =0, H:Dc R"“'>R"

40 — Banach Center t. XIII
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Let H'(u) be the (n,n41)-Jacobian (0H,/ou;) of H composed of the
(n, n)-Jacobian §,G(x,t) = (8G;/dx;) of G with respect to the first argu-
ment  and the (n,1)-derivative 8,G (=, t) = (0@,/dt) of G with respect
to 1 according to

H (u) = (8,6, 1) 0,02, 1) =: (0.0 ()| 2,G(w)).

Further, let ¢ denote the ith coordinate vector, and ||'| means either
the Euclidean norm of a vector or the spectral norm of a matrix, respect-
ively. Finally, define

Z = {ueD: H(u) = 0}.

2.1. DEFINITION, A point % €% is called a turning point (from the
right) of & if there is a § > 0 such that

(2.1) ()T (-7 <0 VuelE@dne.

If the “<"-gign is replaced by “="” then % is called a turning point from
the left.

In order to get necessary and sufficient conditions for # to be a turning
point a parametrization of & in the meighborhood of #% is introduced.
Since such a parametrization is also used as an algorithmic tool by the
indirect methods, it is described for an arbitrary reference point z € %,

- 2.2, LEMMA. Let H: D = R""' >R"™ have a continuous derivative H'
on D, let z eint(D) with H(2) = 0 be given and suppose

(2.2) rank H'(z) = n.
Let v e R"*! be the with ewception of the sign wnique soluiion of
(2.3) H'(z)p =0, b =1,

and let w € (0, 1] be o fived number. Then there are constants e, 6 > 0 such
that the augmented system

(2.4a) H(u) =0,

(2.4b) T (u—2) =7

has for all veT :={—e¢,8) and for all r € R(w, ?),

(2.5) R(w,v):= {reR": |r| =1 and |rTo| > w},

a solution w = w(r) = w,,(7) that is unique in 8(z, 6) := {u € R"*: |u—

—z|| < 6}, The function w(-): T—R"*! is continuously differeniiable on T,
and w i8 the wnique solutton of

(26) [H, (w (T))]w (T) — 6"+1.

’OT
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If, in addition, H is twice differentiable on D then the same is true for w on
T, and w solves

Hl ) _H” . - .
[ (:A;(r))] ) — _[ (w ()} ( )'w(r)].

(2'7). )

These results are direct implications of the implicit function theorem
applied to the system (2.4).

Fig. 4

The arc {u =w,,(7): veT} can be considered a3 a local par-
ametrization of % near #, and the parameter 7 is the projection of w(z)—=2
on the parameter axig r, see Fig. 4, A parametrization of type (2.4) has
been independently proposed in [181, (4], [7], [11], see also [6], [3] for
related but somewhat different ideas.

Because of (2.3) there holds

(2.8) (0) = ——

(2.9) Bz, r) :=[

oceurring for v = 0 on the left side of (2.6), (2.7) is regular if and only
if +Tv # 0. In the regular case there holds

(2.10)  cond (B(z, 1)) g—l;iTlmax{”H'(z)“, 1}max { |H' ()], 1},

see [11], [19]. In the sense of (2.10) the tangent direction v is the optimal
parameter axis which is intuitively clear from Fig. 4, compare [18] for
a similar result using the Hadamard condition number of B(z, 7).
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Now let the assumptions of Lemma 2.2 be fulfilled at a turning
point z =% € %, let ¥ be a solution of (2.3) at 2 = @, and take r =5
as parameter axis. Substituting % = W(7) := wy;(r) in (2.1) we get

t(z) 1= (") TW(7) < (6"F)TB(0) = ("T)TT =1
for all v € T. Therefore,
(2.11) t(7)>Extremum
is a necessary condition for # to be a turning point of .#. Differentiating
with respect to 7 leads to
(2.12) i(r) =0
ag a further necessary condition to be fulfilled at 7 = 0. Because of (2.8)
there holds w(0) = 7 so that (2.12) is equivalent to
(2.13) (*)Ty =0

as a characterization in terms of H.
A gufficient condition for 7 = 0 to be 2 strong minimizer or maxi-
mizer of #(7) is

3 = . [H" (m)v?]
(2.14) B:=1 (0) = (") Tw(0) = _(en+1)mB(a’v)_1[ (0) ] £
Thercfore, the following assumptions are supposed to be satisfied in
future.

2.3. AssumprioN (TP). The function H: D = R*"''—-R" is said to
satisfy assumption (TP) if H is twice continuously differentiable on D,
there is a % eint(D) with H(u) = 0 and rank H'(%) = n, and with the
exception of the sign unique solution ¥ of H'(%)% = 0, ||5| = 1 fulfills
the first order condition (2.13) as well a8 the second order condition (2.14).

Note  that the full rank condition can not be dispensed with for z
may be a bifurcation point in the rankdeficient case.

3. Indirect methods

Let a point ¥ € £ near % be given so that H'(w") has full rank ». The
indirect methods to be discussed in this chapter are based on the local
parametrization w = wy(r) := w,k x(t) of £ defined by Lemma 2.2 with
z = 4* and an appropriate parameter axis r*. Due to this lemma there
are constants g, d, > 0 such that 4 = w,(z) is for all v e T}, 1= (—&, &)
the unique solution of the system

(3.1a) H(u) =0,
(3.1b) (,'..k)T(u_%k) = 7
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in S(u* 6,) provided that r* satisfies |p*| =1 and

(3.2) (7Y ¥ > 0 >0

with a fixed o € (0, 1] and the tangent direction »* being one solution of
(3.3) H (wo =0, [|p]l =1.

Obviously, % := (r*)* (% —u*) is the parameter belonging to the turning
point. If 4" is sufficiently near % then we have z, e T, so that # can
be described as u = ®,(7,). The idea of the indirect methods consists
now in determining an estimate 1, for 7, that defines the next iterate
w*t = w,(r,) on &£ as a better approximation to % than the current
iterate w".

Before describing some ways for choosing 7, the problem of com-
puting #**! = w,(r,) for a given value of v, will be discussed. As, e.g.,
in [18], [19], [11], #**! can be computed by applying Newton’s method
to the system (3.1) using %* as initial point. Due to the full rank of H'(u,)
and the definition of v* the first Newton iterate #*° can be written as

T
(3.4) Wkt = w4 A0k, A= —-—(rk);vk ,

and the following iterates w*? are the solutions of the linear systems

H’ uk,i . H uic.i
(3.5) [ (:R)T )}(u""‘“—u"”)-l—[ (0 )J =0 (t=0,1,...).
The first Newton step can be considered as a predictor step using Euler’s
formula whereas the further iterations play the role of a corrector iter-
ation moving the predictor point on the path .#. Note that all iterates
wk (i =0,1,...) satisfy (3.1b), see Fig. 5.

Now the basic algorithm of indirect type can be formulated.

3.1. Basic algorithm

Step 0: Choose m initial points »’ € R**! with H(w)) =0 (j =0,
—1,..., —m+1) and an #'e R with [r|| =1, set
k:=0.

Step 1: Determine 9" € R"*! such that

(3.6) H(wo* =0, [o¥=1 and (*H)To¥> 0.

Step 2: If (e"*t!)To* = 0, stop.

Step 3: Choose ¥ € R**! with |p¥|| =1 and (r*)To* > 0.
Step 4: Determine a stepsize 7, € R

Step 5: Compute

k,0 k T Ty
Wt e = Y +A:v }‘l b= —
’ (1 ) Y
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Step 6: Determine #**' = wy(r,) a8 limit point of the sequence
{u*?} defined by w*+!:= ubt — gh? ¢4 golution of the linear system

H’(,u’k,i) i H(uk.z’) o
(3.7) [ ooy [s _] . ] (6 =0,1,...).

Step 7: Set k:=k+1 and go to Step 1.

The number m of initial points depends on the specific method for
determining z,. The vector »~' defines the initial orientation of the tan-
gent vector »° and Step 2 is a termination criterion based on (2.13).

In the following some ways for determining 7, are proposed. Let
the algorithm be at stage k. As in Chapter 2 the unknown parameter
7, belonging to % can be defined by the condition

(3.8) @i (1) 1=t (7) = (6"T")Tw,(7)>Extremum.

Therefore any method for maximizing or minimizing a scalar function
as used in optimization can be taken for defining 7,. In order to make
the whole algorithm superlinearly convergent only interpolative methods
will be considered. At first the method of interpolating parabolas is used.
The function ¢, is interpolated at

(3.9) Ty i = (%7 (0 — u")
corresponding to the points w’ by a quadratic polynomial p, according to
Pi(trg) = @ultry) = (6n+1)T’Ulj =4 ([J=kk-1,k-2).

Then the value 7 = 7, that makes p,(r) extremal is determined from
the linear equation p,(r) = 0. This construction yields the

3.2. Stepsize rule (QIP) using quadratic interpolation of ¢,
Step 4: Set

_ 6$c1.)k-—1 Tk, k—1 6§c2,?lc-—~l,k—2

T, = where
’ 20 102
T ~— ey b1 — g2
55:,)1:—1 =y 5$¢1—)-1,Ic—2 = )
Tk, k-1 T e—1— Tr,k—2
o, —of). .
6}52') gy ;c.lc 1 Sc 1,7lc—=2
Tk, k—2

are the divided differences of ¢,.

In 3.2 only the function values ¢; = ¢,(7;;) of ¢, are used. Note,
however, that the tangent directions v’ of £ at w/ are also available,
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Because of (2.6) and %' = w,(v,,;) there holds
H'(w)
. (Tk)ﬂl'

On the other hand ' solves H'(u/)v = 0. so that w,(r,;) must be a
multiple of v/ due to the full rank of H'(«’). Therefore, there holds

]@bk(‘[k_j) - en-i—l_

i
Wy (Ty,5) = F:')%?j—
and, consequently,
(en+1)T,vj
(F)T o

(3.10) P (Th,y) = =3 Ppye

This fact suggests the use of a cubic polynomial p, interpolating ¢, and
¢, at the last two points according to

Pu(Tr,1} = @iltry)

. . j =k, k—1).
y (Tk.j) = q’k(Tk,f) 0 )

(3.11)

Then 7 = 7, is the zero of the quadratic equation #,(z) = 0 which is
nearest to 7, = 0. This principle gives

3.3. Stepsize rule (CIP) wusing cubic interpolation of ¢,
Step 4: Set

2¢1,1

———="—  where
ar (1 + Bi)

Tk:= -

1= & —8s 1 80, Pui= ]/1 - TZ;S’—L,

8, 1= Prie ™ Pre,e—1

?

Tk, k—1
1 th—1
o =__{- B = }
% (Tep1)® Pre,k — + P r1
Differentiating (3.8) we get
(3.12) @, (r) = 0.

In order to solve (3.12) one step of Newton’s method from 7, = 0
could be used but this would require @, (0) and, therefore, second deriva-
tives of H, see (2.7). Using the ideas developed in Chapter 4 the terms
involving H' could be approximated by using 4 values of H. However,
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this possibility will not be discussed here since there are simpler algorithms
avoiding the explicit use of H'  as, e.g., the secant method with nodes
7y, (j = k, k—1). This gives the following stepsize algorithm.

3.4. Stepsize rule (LIP1) using linear interpolation of g,

Step 4: Set

Pr e 5 i Pk — Pho—1
— Ik P= .

Tk V= I
6!: ~—Th,k—1

All the stepsize rules described are based on the characterization of 7, by
the extremal principle (3.8) and the associated necessary condition (3.10).
Another basis is the condition

(3.13) i(7) 1= det(J (0, (7)) =0, J(u):= 8,6 (u)

following from the fact that J(4) must be singular at a turning point.
Indeed, define

(3.14) v (%, %) 1= B(u, r¥)" 1",

Fig. &6

The matrix B(u,r¥) is regular if « is near #%, and (**)T% s 0 so that v
is well-defined. Note that » = v(u, r*) solves the linear system

Jwloew|
(,rk)fl" v=e ’

B(u, )0 =[

Applying Cramer’s rule to the last component
(3.18) o, r%) 1= (0"+1)TB(,“’ rhy=1gn+1
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of v we get

det (B (u, ¢**1))
Ky _ y
Pt ) det (B (u, 7))

and by substituting 4 = w,(z) the representation
(3.16) w,(r) = det(B (wy(z), e"+1)) = det(B (wy,(7), rk))-tp(’wk(r), %),
For 7 =7, there holds ¢ (w(7:), ) = ("*1T5)(r*)7F so that (2.13) im-
plies 9,(7;) = 0 as stated above. Note, further, that (2.14) implies
the zero 7, of v, to be simple in the sense of ¢, (7,) % 0. Indeed, differen-
tiating (3.16) we get
¥y (Te) = det (B (%, Tk))' Vup(a, rk)ka(?k)
since the second term coming from the produet rule vanishes. Considering
H' (u)v(u, ?‘)h]J
0

(B3171)  Pup(u,Th — —(@)7B (s, T)—l[

for all h e R*! and w,(7,) = o (%, 1) = 5/(")7%, we get
(%) = det(B(m, )-8/ ((")77)* 0.

Therefore, 7, is well behaved, and one step of the secant method applied
to (3.13) at 7, ; (j = %, k—1) should give a better parameter z,.

3.5, Stepsize rule (LIP2) using linear interpolation of v,
Step 4: Set

. Ve T, k) — P (Tae—1) -
T = "Pk("k,k)-
Tk, e—1

Obviously also other stepsize rules are possible but the four given
above seem to be the most effective ones.

In the following some remarks concerning the implementation of
the methods will be made.

The first problem is to get the 2 (for 3.3, 3.4, 3.5) or 3 (for 3.2) initial
points «° v~!, =% required by 3.1. The natural way for doing this is
beginning from a #° with H (4% = 0 to use a path following algorithm
of the same structure as 3.1 but with a different rule for choosing 7,
see, e.g., [11], [19]. As a successful rule the formula

(3'18) T - = mm{rk-lla! rmax}

has proved where 7_,, i8 a user provided stepsize bound and a € (0, 1),
say, ¢ = 1/2. If Step 6 is successful in the sense that B (v*, #*) is regular
and the descent condition

(3.19) 1H (u™ < BIH @A) (6 =0,1,...)
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is satisfied with a § € (0, 1), say # = 0.9, for subsequent ¢ then the corrector
iteration is considered as convergent and finished if a termination ecri-

terion such as
IH (@5 ) <e or | <e

is fulfilled. Otherwise Steps 5, 6 are repeated with a smaller stepsize ar,.

During the path following phase, the points u*e.# are observed
with respect to the behaviour of the ¢-component , = (¢™*')Tu*, If (¢, ~
—1,) (#,—t,_,) < 0 then there is a turning point between the points u*?
and «**', Note that a change of sign of the determinants det (S (u"))
indicates the presence of a turning point, too. The last iterates u*+!,
w¥, w¥~! may serve as initial points u% w~', w~* for the special turning
point algorithms of this chapter.

In the meighborhood of a turnihg point the stepsizes of the path
following algorithm will be small, in general, so that the last iterates
will be good enough to make Step 6 suceessful. Otherwise, the path fol-
lowing algorithm should be restarted at the last point with a smaller step-
size.

Step 1 should be implemented as follows, remind (P,) claimed in
the introduction.

Step 1’: Solve the quadratic system

.B(‘Mk, ’Jc—l)ﬁ — 6n+1

for ¢ = v(u®, ¥ 1) =: ¢~

Step 1': Set o* := %/ ||5%|.

Clearly (#*~1)T4* > 0 is then satistied because of (+*~*)74* = 1. Having
computed #* and o* all information required by 3.1 and the rules 3.2,
3.3, 3.4 is readily available, For realizing 3.5 the determinants y,(t;;)
must be evaluated. Note, first of all, that the implementation of Step 1
a8 described requires a LR-factorization of B(w*, v*~!) and hence

8y 1= det {B(u*, r*1))

can directly be calculated during the Gaussian elimination. Since the
identity
det (B(u, 7)) = det(B(u, 8))-[+Tv(u, 8)]

holds for all u,r, s e R*, |r| = |s|| = 1, such that B(w,s) is regular
because of v(u*, r) = §*rT5*, it follows that

v lTn) = & [(e"T)T5"],
We(Trpo1) = &y -[(e®THTF 1],

Moreover, Step 6 should be monitored by (3.19) as mentioned in the path
following algorithm,
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Finally the choice of +* will be discussed. The optimal choice in the
gense of (2.10) would be

Step 3: Set
{8.20) =

which should be used for problems of small or medium dimension. If %
is large and H’ is sparse a choice as

Step 3: Determine j; e {1, ..., 2+1} such that
I(6'6)Tv¥| = max{|(e/)To¥|: j =1, ..., n+1}.
Set
{3.21) r¥ : = sign ((¢7%)T v¥) - 6%

would be preferable because 7* is then sparse which is not the case for v,
In sparse problems it is often desirable to use the same pivoting
sequence for the Gaussian elimination in consecutive steps. In this case
{3.21) can be weakened to
Step 3: Determine j, as in (3.21), set \

(322) ?"k s = if I(,r]c—l)T,vkl > wol(gjk)T,uk[ then ,rk—l else Sign((ejk)T'Dk).ejk

with a fixed o, (0, 1), say o, = 0.1, and an initial r~! = /71,

In all cases the condition |(#*)Tv%|> w,/Vn =: w > 0 is satisfied
so that r* e B(w, o").

A reduction of work is possible, in general, by replacing Newton’s
method in Step 6 by its modified form, i.e. by replacing (3.7) by

@] . [Ee]
(3.23) [ (r")TJS = [ 0 ] (t=0,1,...)

so that only one evaluation of H’ and one LR-factorization are to be
performed per step. Note, further, that the interpolation prineciples used
in 3.2 and 3.3 can also be used to replace the tangent line at »* by a poly-
nomial fit #, to w, in order to get a better predictor point w*° : = (1)
and, therefore, to reduce the number of corrector iterations.

The convergence behaviour of the algorithms dicussed in this chapter
is described by the following theorem.

3.6. TurOREM. Let H: D < R""'>R" satisfy assumpiion (TP) and
have Lipschitz continuous derivatives wp to order 2 (for 3.4 and 3.5), 3 (for
3.2), and 4 (for 3.3), respectively. Then the basio algorithm 3.1 combined
with the stepsize rules 3.3, 3.4, 3.5 and with the choice of +* according to
{3.20), (3.21) or (3.22) 48 well-defined and terminates after a finite number
of steps at @, or else it is infinite and converges Q-superlinearly toward @



636 H. SCOWETLICK

provided that the initial points u°, uw™" are sufficiently near %. The speed of
convergence 1is characlerized by the imequalities

g | O~ B for 8.3,
Olw*— T~ — @l for 3.4, 3.5

corresponding to the R-orders x =2 (for 3.3) and » = (1 +V 5)/2 = 1.62
(for 3.4, 3.B).

If 3.1 combined with 3.2 is well defined for all &k and convergent toward
% then the R-order is » = 1.32 which s the dominant zero of »® = x41.

For the proof in case #* = v* see [13], [15], the generalization for
* € R{w, v*) is straightforward.

Note, at this point, that the first indirect method for computing
turning points seems to be described in [18] but without any analysis.
In [22] an interpolatory method is given that uses an instable parametr-
ization and, again, without analysis. The combination 3.1/3.4 has been
proposed independently in [8] without analysis and in [13], [20] in the
form given here. Further indirect methods are sketched in [21].

4. Direct methods

As mentioned in the introduction the direct methods are based on a char-
acterization of the turning point # by a nonlinear system of the siructure

(4.1) Hu) =0,
(4.2) p(u) =0

with a sealar function ¢: D <« R*"!'—R! without any explicit reference
to the path % and a parametrization of it. Because of the first order
property (2.13) the function ¢ must involve first derivatives of H as
is the case for

(4.3) p(u) 1= det {J (u))

proposed in [10]. Applying Newton’s method to the system (4.1), (4.3)
we get an algorithm that requires V, ¢ () and, therefore, the computation
of all second derivatives of H and of all minors of J(%). Hence, as men-
tioned in [10], this strategy can only be recommended for small ».

An essential reduction of work is possible by following an idea de-
seribed in [1]. There only the first part (4.1) is linearized at u* yielding

(4.4) H(u®)+H' (w*) (u —u*) = 0.
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If w* is pear % then H'(w") has full rank, and (4.4) has a straight line
(4.5) u =u¥Lsf L ¥, leR:

as solution where v* is a solution of the homogeneous system, say, of
unit norm

(4.6) H'(u)o* =0, |o¥| =1, :

and s* is a solution of the inhomogeneous.system, say, the minimum
norm solution §* = —H'(u*)*H (u*) defined by

(4.7) H(w")+H' (u*)s* =0, (©5Ts* =0,

Note that +* is the tangent direction of the translated path {u e R™!:
H(u) = H(%")} at v*, see Fig. 6.

{u: H(ul=H(u"J}

Tig. 6

Now (4.b) is substituted into (4.2) leading to the scalar equation
(4.8) @ (u* 4 s¥ 4 o) = 0

to be solved for A. In order to avoid the computation of dp/0A and, hence,
of second derivatives one step of the secant method with the nodes 4 = 0
and A = y,, u, # 0 being an appropriate discretization stepsize, is applied
1o (4.8). This gives

@ (u® + ")
bk 4-sF + ) — p (uF + 5%)

/11‘.:-—_- — M
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as expression for 2, defining the next iterate
kbt o= k% 2,0k,

see Fig. 6. The computation of A, requires the evaluation of ¢ at two.
points and, hence, two Jacobians H’.

In the following a somewhat modified algorithm is proposed in which
the number of additional function evaluations is reduced to that of 4
values of H, gee [16] for a detailed treatment. The basis is again the system
(4.1), (4.2) but with

(49) (P(u, 9") = (3ﬂ+1)Tv(u’ ,r) — (6"+1)TB(u, ’I‘)—le"’"'l — 0

from (3.15) a8 bordering equation where r € E(w, 9) i8 fixed for the mo-
ment. One step of Newton’s method applied to (4.1), (4.9) gives u = w*+!
as solution of the linear (n-+41,n--1)-system consisting of (4.4) and the
linearized equation (4.9),

(4.10) o (u¥, #) LV, (%, r)T (u—u¥) = 0.

Now (4.4), (4.10) is not treated as an (n+1, n+1)-system with the matrix
B(u*, P,(u* 1)) but solved in two steps. The first one consists of solving
(4.4) as described by (4.5), (4.6), (4.7). In the second step (4.5) is sub-
stituted into (4.10) yielding a linear equation for A that has the solution

(", 7) + 7, p(u, r)¥ s

4.11 A =z = —
(4.11) k P, ok, r)To*

Considering (3.17) and the fact that v(%¥, ) is a multiple of o* we get

R it il et
(4.12) by 1= (1) T3 ’

H'Hkkk' ankk
g = B(u",r)“[ w )Mj, g = B(u",r)‘l[ (u )vv]-

0 0
From (4.12) it is seen that H' (u*) is only used in the form
(4.13) H'" (uF)po*, p:=s¥ ok

The terms (4.13) can be considered as limits of certain second order divided
differences. Because of the different sizes of s* and v* (|ig*|| = O (lju*— @ll}
is kmall whereas [v¥] = 1) the arguments of H"'(4*) are assumed to be
normed which is no regtriction since H'* is bilinear. Therefore, for v, d ¢ R"",
ldll = vl =1, the term H"'(u)dv can be approximated by

(4.14) q(u, v, d, u)
t= [H (% + uv) —H (% -+ pv — ud) +H (4 — ud) — H (u)]/p?
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with a discretization stepsize u # 0 and an error
VE" () vd — g (1w, 0, d, p)]| < C |l

if H" is Lipschitz continuous.
Using the approximation (4.14) for estimating the vectors #* and
2* in (4.12) we get the basic step of the new direct algorithm.

4.1. Basic step

Step 0: Let «* e R™?, r*e R"*! with |r*| =1, and u, € RY, p;, # 0>
be given.

Step 1: Determine v* and s* according to (4.6), (4.7).

Step 2: Set '
a :=if ¢ 52 0 then [s%|q(u¥, v¥, s*/[|s*|l, uz) else O,
b 1= g(uF, oF, 0%, ).

k

Step 3: Compute y*, z* as solutions of the linear equations

% K
B(u*, ¥y = [a:)]’ B(uk, r*)z = [I;J

Step 4: Set

(en+1)’1' (’Dk _ yk)
(e""‘l)Tz"\ ’

Zk::

w = bt A 0F = D R ).

There are many ways to extend the basic step to a reasonable turning
point algorithm, see [16]. In the following a version is described in which
Step 1 is implemented in a similar manner as Step 1 in 3.1, compare (P,)
again.

4.2. Direct Newton-like algorithm (DNA)
Step 0: Choose u° € R**! (not necessarily with H(u®) = 0), #* € R*+?
with |79 = 1, set k:= 0.
Step 1.1: Compute 9* and § as solutions of the linear systems
H (4%)
O ’
set o% 1= 5%/|| 0%, 8" 1 = & —[(v*)TF*] 0",
Step 1.2: If o, := sqrt{|[H (u*)|2+ |(¢"*")" 02} = 0, stop.
Steps 2, 3,4: As Steps 2, 3,4 of 4.1.

Step 5: Choose r*t! e R**! with [+**'| =1 and (#**1)To* > 0, set
k:=k+1, and go to Step 1.

B(uw*, r™)§ = "', B, r*)§ = —[
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Note that the four linear systems to be solved in Step 1.1 and
Step 3 have all the same matrix B(u* v*) so that only one LR-factor-
ization is needed.

Of course, the chome of 7**! in Step 8 should be made as in (3.20),
(3.21), or (3. 22) with 7* there being replaced by #*+1,

The convergence of 4.2 iy described by the following theorem.

Note, first, that the system (4.1), (4.9) has the regular solution 7%
uniformly for all r e B(w, 7) 8o that Newton-like convergence is to he
expected,

4.3. TunoREM. Let H: D «¢ R""'—R" satisfy assumption (TP) and
have a Lipschitz continuous second derivative. Then algorithm 4.2 combined
with the rules (3.20), (3.21), or (3.22) for the choice of r**' is well-defined
and terminates after a finite number of steps at @, or else it is infinite and
converges toward u provided that ||u®— %, |r*— 2|, and the discrelization
stepsizes |u,| are sufficiently small. The speed of convergence is desoribed
by the inequality

(4.15) et — Tl| < Ol — T (i — B+ [}
The estimate (4.15) implies the Q-superlinear convergence im case of
limy, =0,
and if p s chosen according to

el < Bo, B> 0 fized,
say, as

(4.16) Wi 2= min{e, W]+ &4, 03}, & 1=107%, & 1= 1075,
then the comvergence is Q-guadratic.

Note, at this point, that the system (4.1), (4.9) can be written in
the equivalent form

H{u) =0,
Ty =1,

(4.17)
H'(w)yv =0,

(cn-l-l)T,v — 0’

where v : = v (%, 7). For the choicer = ¢/ (je {1,..., n+1}), (4.17) reduces
to a system of dimension 2n for the unknown va-rmbles (Upy eony Uppny Vryons

s 15 Vyg1y -+ 0y V). Such a reduced system has been uaed in [21] and
selved by applying Newton’s method. In this form second derivatives
are to be evaluated or approximated using # Jacobians H’, and a linear
system of dimension 2# is to be solved per step. On the other hand in
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the basic step 4.1 the vector v occurring linearly is eliminated in advance
yielding (4.1), (4.9), and after that Newton’s method is applied. This
approach corresponds to the idea of the so-called “variable projection
methods” used for solving nonlinear least squares problems whose variables
separate, see, e.g., [B].

Note, further, that in the definition of ¢ in (4.9) the vector r is only
used to make v as a solution of H'(u)» = 0 unique and not too small.
Of course also other conditions with the same effect as

(4.18) ol =1, #To>0
or, as proposed in [17],
(4.19) o]l =1, det(B(u,v))> 0

could be used but the condition »Tv» =1 seems to be somewhat simpler
gince it is linear in ».

5. Numerical examples -

The methods described in this paper have been implemented and used
for the solution of a number of academic and real life problems. In all
cases the methods were able to follow the solution path and to indicate
and calculate the turning points with high accuracy and low costs. In
order to illustrate the performance of the algorithms we consider the
trigger circuit shown in Fig. 7. If the diodes are modeled by an expo-

I {1+
390 SIZ o, 100
, o
w
51.0 1
+
vdl

0.20
25.5 13.0 (_l)
Y
U[( =5 n) 0
I 062 - D,

Fig. 7

nential and the operational amplifier by an arctan then the following
nonlinear system results:
Uy — Uy Uy — Uy Uy -+ U,

10000 39 + 1’

Hl:=

Uy — U, o — U
H,: = 210 s+ 239 1'—|—5.6'10—B'(6XP(25“2)—1)1

-

41 — Banach Center t. XIII
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. %3—%4 'Ma—'ll;l

H,:
3 25.5 10000 ’
%, — U %
Hyi=—pe gy T
Us — Uyg —8
H, := E + g — 1, +5.6- 107" - (exp (25%;) —1),
Wy — U Uy — U W, — 7.60 arctan (1962 (4, — u
H6:= 6 5_|_6 2+6 ( (3 1))-

13 10 0.201

The quantities #,,..., %, are voltages, especially, 4, = U; is the input
voltage and % = U, is the output voltage of the trigger. The circuit
is characterized by its transfer characteristic curve defined as the pro-
jection of the solution path on the (g, u,)-plane. This curve has two
turning points #® (from the left) and #® (from the right) and looks
like the curve of Fig. 3. The turning points as well ag the initial points
used by 3.1 and generated by a path following algorithm are given in
table 1.

Table 1
) a(l) u—1 uP w2 w1 ud
Uy 0.235777668 0.2341 0.2356 0.049366971 0.0481 (.0880
Uy 0.662968764 0.6603 0.6627 0.647368409 0.5460 0.5728
Uy 0.237597699 0.2355 0.2374 0.049447207 0.0482 0.6915
Uy 0.237602341 0.2356 0.2374 0.049447411 0.0482 0.69156
Uy 0.620832106 0.8153 0.6202 0.129201309 0.1268 0.1807
g 9.608906879 0.04564 0.54b63 1.166019152 1.1357 1.8307
7 0.322866124 0.3233 0.3228 0.601853012 0.6018 0.5898

The results for algorithm 3.1 with r* : = v* and the different stepsize
rules are summarized in Table 2 using the following abbreviations:

NS — Number of steps to be performed in order to satisty |(e"+!)Tv¥|
< 107°
NC — Number of corrector steps,

NH — Number of evaluations of H,

NH’ — Number of evaluations of H'.

For each stepsize rule there arc two numbers in the columns, the
left one for the Newton corrector (3.7) and the right one for the modified
Newton corrector (3.23), respectively. In both cases we used the criterion
BH (w**)] < 10~% as termination rule for the corrector iteration.

It is seen from Table 2 that the stepsize rules (CIP) and (LIP2)
perform a little better than (QIP) and (LIP1) on this example. Further
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Table 2
Alg. 3.1 | (QIP) (CIP) (LIP1) (LIP2)
NS 6 7 5 5 | 6 ¢ 4 5
() NC 7 9 3 6 65 10 1 5
NH 13 16 8 11 11 16 5 10
NH’ 15 10 10 7 13 8 7 7
NS 6 4 6 6 6 5 b6
a2 NC 6 8 5 b 6 8 b 5
NH 12 14 g 10 12 14 10 10
NH' 14 8 17 14 8 12 7

tests have shown, however, that the differences between (CIP), (LIP1),
and (LIP2) seem to be not essential whereas the use of the modified
Newton corrector brings a significant reduction of costs, in general.

In order to give an impression of the behaviour of the gingle iterations
the results for (LIP2) are described more detailed in Table 3. The num-
bers in the columns refer to the turning points ¥ and #®, respectively.

Table 3
Algorithm 3.1 with stepsize rule (LIP2)
Newton corrector (3.7)

k [(en+1)Tok| |det J (uk)] LH (%)) | ¢ | NH | NBE
—1 1.7—-01 7.3—03 | 3.74-01 8.8+01 ; 8.3—-10 2,1 —12 11
0 2.1—-01 64—-01 | 2.3+01 93401 | 7.7—11 5.3—11 11
1 19—-056 32—03 | 27—-03 42-01 | 13—-1287—-12 12| 23|23
2 8.3—08 2.1—-05 | 1.2—06 44—02 | 36—13 1.2—-13 | 0 2 13 13
3 1.0—-12 44--07 | 1.4—10 9.0—-04 | 3.6—-13 2,6—13 {0 1 12 12
4 22—-14 69—-10 | 3.0—14 1.4—-06 ! 3.6—-13 2.6—13 {00 ([ 11 11
b 2.0-14 4.2—11 2.6—-138 0 1 1
Moditied Newton corrector (3.23) '

-1 17-01 7.3—03 | 8.74-01 8.84+01 | 8.3—10 2.1—12 11
0 2.1-01 6.4—01 | 2.34-01 9.3401 | 7.7—11 5.3 —11 11
1 1.4—-04 1.9—-03 | 2.0—-02 41—-01"| 8.1—128.7—12 | 32 | 4 3 11
2 47-06 2.2—-05 | 6.6—-04 44—-02 ) 21-121.3—-12 (12| 2 3 11
3 22-08 4.4—07 | 3.1—07 89—-04 | 2.6—11 2,1—12 | 1 ] 22 11
4 5.3—11 93—-10/1.1—-1016—06 | 1.7—-111.6—-12 |00 | 11 |11
5 8.2—13 3.6—13 | 6.3—-1272—-09 | 1.6—111.6—-12 |00 | 11 11

The direct method 4.2 has been realized with 7* : = v*~! and u, according
to (4.16). The results for the initial points

u® : = (0.20, 0.60, 0.20, 0.20, 0.60, 9.50, 0.30)T 7

for

and

u® : = (0.08, 0.50, 0.05, 0.0, 0.15, 1.30, 0.50)* for @
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are listed in Table 4 in the same manner as in Table 3. To conclude thig
paper let us remark that the indirect algorithms appear to be especially
useful if the turning points as well as the entire solution path are of in-
terest because of the possibility of changing from the path tracing strat-
egy to the turning point strategy only by changing the stepsize rules,
If, however, only the turning points and the dependence of them on fur-
ther quantities involved as additional parameters in H are of interest
then the direct methods appear to be advantageous. Remark that in
this case continnation techniques with respect to one of such an addi-
tional parameter can be applied to compute curves of turning points
but this problem is out of the scope of this paper.

Table 4

Algorithm 4.2

[ |(en+1)Toky L E (uk)])

0 21—-01 7.0—-01 2.2401 28401
1 4.0—-02 4.2 —03 1.9—-901 1.7 —-01
2 5.9—03 2.2 —-04 8.1—-03 1.8 —-02
3 7.1—-058 1.1 —06 8.6—-05 1.1 —-04
4 2,4 -08 1.3-09 65.8—08 3.0—09
b 2.1—-11 9.8—13 2.2—11 1.9-—-13
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