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7. (Conway [1}, p. 121)

2. if 4ix,
_)Bx+lys i 4x—1,
T =930 i 4x-2,

BGx—1)/4 i 4x-3.

(This transformation is 1-1.)
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and is primitive, The stationary vector is [4, 4, }. 4] and 8’ = Z, is the only
ergodic set. Also ‘

=1 f \e(BEd) g 7 3 i 3 3 3 i
11 (?) = (5) @ (a) (‘a) >
Bli,dyes" . .

Hence we expect most trajectories to be unbounded.

In conclusion, we wish to thank R. N. Buttsworth and G. Leigh for
some useful comments,
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Algebraic numbers near the umit circle
by

C. W. Lrovyp-Smith (Belconnen, Australia)

1. Introduction. Let o be an algebraic number of degree n = 2 over the
rationals, with conjugates o = oy, oy, ..., o, In this paper we investigate
conditions on & which imply that & has one or more conjugates on the unit
circle. Our conditions will be expressed in terms of the following two
functions:

(L.1) [o] = max |a,
15j<n

(12) Afe) = [T max {1, |oj}.

. I=t

Also we require the notion of denominator of an algebraic number.

DerFINmmIoN 1, Let P(x) = gx"+a,_ x"" }+...+a,;x+ao be the primitive
minimal polynomial of o over the rationals, where ¢ > 0. Then we say that g
is the denominator of o (cf. Blanksby [3]).

It is clear that ¢ has denpminator 1 if and only if « is an algebraic
integer. )

It is easy to see that there exist positive functions @(n, ) and W (n, q)
such that for all algebraic numbers o of degree n and denominator g,

1) either [¢]< 1 or

(1.3) [a] = 1+ /e (n, @),
2) either A(@) =1 or
(1.4) Al) = L+, ).
There arises the problem of finding the best possible functions ¢ and

satisfying (1.3) and (1.4) respectively. There has been much recent work on
this problem in the case ¢ =1 but very little in the general case.
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Dobrowolski [9] has shown that one can take (1)
3

1 log n
vin =gz (1‘;5515,; " )

for any ¢ satisfying 0 <¢ <1 and 1 > ny = ny(2). As a corollary, he found

that we can take
n logn
n’ l e P - -
elm 1) 2y (log log n)

for any & 0 and » sufficiently large.(')

If « is a non-reciprocal algebraic integer, one can prove cven stronger
results. For instance, Smyth [207 obtained the best possible result A{a) 2 ,
where () is the real root of x*—x—1=0. As a corollry, we  pet
[a] > 1+(log 8,)/n. ‘

The case ¢ = | has been attacked by a number of authors, using a wide
variety of methods. Unfortunately, most of the methods do not appedar to
generalize to algebraic numbers of denominator ¢ > 1. However the tech-
niques of Cassels used in [7] can be extended to handlc arbitrary algebraic
numbers. Smyth’s technique is also capable of extension to algebraic num-
bers of norm +1 (cf. Pathiaux [14], Notari [13], Amara [2]), provided they
are not reciprocal. Chowla [8] has given a result on reciprocal algebraic

numbers which implies that cne can take i (n, q):(qn")""z where ¢ is
effectively computable,

In the general case nothing appears to have been published. We shall
state and prove such results in the following sections of this paper.

2. Discussion of the resnlts, In the sequel, let o denote an algebraic
number of degree n and denominator ¢ >0 (as in Definition 1), Let the
conjugates of o be oy =g, u,, v . Denote the absolute norm of x by
N{o) =0y ..o, Recall that n> I,

It is convenient to divide the results into two classes, according as |N (z)]
21 or IN(@)l < 1. 1n the case IN(z) = 1, there is always a conjugate o, SY,
such that o 2 1. Further, if « is not reciprocal. then [%] > | and so there
exist functions ¢ and y satisfying (1.3) and (1.4) respectively, Also, if « is not
reciprocal, one can adapt a technique used by Smytlh [207, although it is
much oclder, having been used by Pisot [15] and Siegel [19]. ¥ « is

| vt o " i . g

('} The constants }-f: and 2z in these inequalities have recently been slightly improved
to 2z and 4_.” respectively, by V. Rausch, D. Cantor and B Straus, und the Grst one to 978 -
by R. Louboutin (s(.:e R. Louboutin, Sw o mésire de Mabler dun nombre alyébrigie, Comptes
Rendus, t. 296, série I, No. 16 (1983), pp. 707-708,)
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reciprocal, then a technique of Cassels [7] can be applied. In the case |N ()]
< 1, there need not be any conjugates on or outside the unit circle, but if
there arc any such conjugates, we can obtain results of the form {1.3) and
{1.4). :

However the results for N ()] < 1 take a different shape from those for
the case |N(ax) = 1. Hence it is best to treat the two cases separately.

Many of the results given in this paper do not appear to be as strong as
is probably true:

The results for the case [N () > 1 will be expressed in terms of A (x) and
the corresponding results for (o] will be derived as corollaries of those for
A{a). We prove the following resulis.

TueoreM 1. Suppose that |[N{x)l 2 1 and

(2.0 Al) < 1+ 1/(4ng?).

Then o has at least two conjugates on rhe unit circle.
As a consequence of Theorem 1 we get
CoroLLArY 1. Assume that |IN(x)| = 1 and

(2.2) C [l 1+ 14507 Y.

Then o has ar leasr two conjugates on the unit circle.

This corollary extends a theorem of Cassels [7], as slightly improved by
Schinzel [17]. We can also generalize Theorem 1 as follows.

TueoREM 2. Suppose that [N ()| 2 1 and let s be the number of conjugares
of a lying strictly outside the unit circle and suppose s = 1. Let A = 1+nf2s)
and B = nfs. Then we have

(2.3) Afz) > 1+5/5%n'g").

As a consequence of Theorem 2 we get
CorovLary 2. Asswming the hypotheses of Theorem 2 we have

(2.4) [ee] > 1+ 1/(6% n gF).

Further it is possible to give conditions for all the conjugates of « to lie
on the unit circle. Such resulls are of interest because of the following result
of Blanksby and Loxton [5):

An alyebraic number field is a CM-field if' and only if it is generared over
the rationals by an element « such that [a]= 1{x# +1).

Their result in a sense generalizes a theorem of Kronecker for algebraic
integers (see [117). Unfortunately our conditions for [a]=1 appear to be
fairly weak. Thus our next theorem will, in effect, give a condition which
agsures that « is a generator of a CM-field.

TueoreM 3. If |N(2)| = 1 then either Al@) =1 or
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(2.5) Afs) > 14+ 2/(572 n! ol gni2),

Similarly we have
COROLLARY 3. If IN(o)| = 1 then either [a|= 1 or

(2.6) [@]> 1+ 1/(6M2 pt+ni4 grizy,

Similarly the results for the case |N(2)| < 1 will be expressed in terms of

A(a). The corresponding results for [a] are corollaries of those for A (). It is
necessary to assume that n>1 and ¢ > 1.

TaeoREM 4. Suppose that |[N{o)| < 1. Let s be the number of conjugutes
of o lying outside the unit circle, and suppose that sz 1. Let € = unfs,
Then we have

(2.7 Afg) > 148272 € 426).
CorOLLARY 4. Assuming the hypotheses of Theorem 4, we have

(2.8) (@ > 1+ 1/3

2n+1 C ZL)

CoroLLARY 5. If [N(a)f < t then either {2] <1 or |
(2.9) @] > 141/(3 27+ 2 g,

Finally we give a few results for the case where o belongs to a J-field.

We recall that an algebraic number field is called a J-field if either it is
totally real or else it is a totally imaginary quadratic extension of a totally
real field. A non-real J-field is vsually called a CM-field. It is well known
-that a CM-field can also be characterized as a totally imaginary field which
is closed under complex conjugation and is such that complex conjugation
commutes with all its @-monomorphisms into the field of complex numbers.
This alternative characterization of CM-fields will be used in the sequel. See
Blanksby and Loxton [5] for references to the literature.

As the reader might expect, the results for J-fields are much stronger
than the general results previously given. We note if [¥]= 1, then all
conjugates of « lie on the unit circle, We confine our attention to lower
bounds for [u] :

TaeoreM 5. Let o be an algebraic number of denominator g and degree n,

belonging to a J-field. Suppose [w]> 1 and let m be the number of conjugates
o, satisfying the condnmn

fal ™! < eyt <[]

Then

(2.19) - a2 14 1/g%m

with equality -if and only if Em =n and

(2.11) ol = 1+1/g*" - (1 <j<m,
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If, in addition, a is rotally positive, then

[a] > L+ L/g"m
with equality if and only if a=1+1/g.
Remark. It follows from the theorem of Blanksby and Loxton [5] that
il o satisfies (2.10), then Q@(x) is a J-field if and only if 1+1/g*/™ is rational
As a consequence of Theorem 5, we get
CoroLLary 6, Let o and m be as in Theorem 5. Then if m = 2, we have

(2.12) ‘ [aF > 1+1/g,

with equality only in the following cases;
1) If q>1, then a must be a zero of the guadratic gx*—bx~+(q+1),
where b is a rational integer satisfying b* <4q{g+1), or of gx~(g+1).

2) If g =1, then w is an algebraic integer of the form 'y\/i Where v is an
algebraic number sansfymg [¥]= 1; in particular, if « is quadratic, it is either a
zero of x*—2 or of x*—bx+2 where =0, £1 or +2.

Remark. The condition m > 2 of the Corollary is satisfied in any of the
following cases:

(i) « is totally complex,

(i) —a is a conjugate of a,

@) [Nl =1,n>1.

3. Preliminaries. Here we give some lemmas which are required in the
proofs of the results stated. in the previous section. However, a fundamental
result on non-reciprocal algebraic numbers o with |N(2) = 1 will be de-
ferred till the next section. '

The foliowing lemma is basic in what follows.

LemMa 1. Let o be an algebraic number of denominator g and degree n
with comjugates o =0y, 03, ..., %,. Then g times the product of distinct
conjugates of « is an algebraic integer. In particular, qA{a) is an algebraic
integer.

Proof. The first part ‘of the Lemma is proved in Hecke's book [10].
The second part is an immediate consequence of the first part of the
Lemma, = ‘

Next we give an elementary inequality due to Schinzel.

LemMa 2. Let y,, ¥a2,..., v, be real numbers satisfying y; =1 for

1 <j< n Then we have

(a.1) o-n<

j=1

((yyys-..y)t"—1)

with equality if and onrly if y, =y2' = e =P
Proof. See Lemma 3 of Schinzel [18]. One can also use inequality
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3234 in D. S. Mitrinovié, Analytic inequalities, Springer Verlag 1970,
p. 208 putting there ey = y,—1. w
We shall also need some extensions of the work of Cassels [7].
LemMA 3. Let n > 1 be an integer and let p = 1 be a real number. Let 2,
Zgy oe0y 2, be complex numbers satisfying |zl <o for 1 <j<n Thew we have

(3.2) ITlz2~ 1 < mrg®h,
ik
Proof. See Alexander [1]. =
Cassels proved (3.2) under the restriction

cos(n/n} < *flg*—0* + 1).

Lemma 4. Let m = 1 be an integer and let ¢ > 1 be a real number. Let w,
Wi, v, Wy D€ complex numbers satisfyving

(3.3) et wlge (Lgi<m).

Then we have

don (.J

Gy [T Iwwe—Liwywy P =1 wi P we— Ty Ty = 1] ot gm0,
itk

Proof. This is similar to Lemma 3 of Cassels [7], using our Lemma 3
which is valid for all ¢ = 1. The details are given in Lloyd-Smith {12]. =

We shall also need a specialized result analogous to Lemmas 3 and 4,
due to Cassels [7].

Lemma 5. Ler n > 1 be an integer and let 0, 0,, ..
such that 0 <9, € 2n (1 £j< n). Define by

i =0+054+ ... +10,.

.2 U, be real numbers

Let r > 1 be « real number such that
| lcos | < rfr?=r-+1),
Then

N . -
11 re ~1] R K
j=5

with equality only when 0, =0, = ... =0, = 2},
Proof. See Cassels [7]. =

4. A fundamental result om mon-reciprocal algebraic numbers. In this
section we shall give results of the type (1.3} and (1.4) in the case where x is
non-reciprocal and [N (x)] = 1. We shall also see why the condition |N(x) = 1
is necessary. In addition our results will permit the simplification of the
proofs of Theorems 1, 2 and 3 as it will suffice to assume that x is reciprocal.
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Proposrrion L. Let o be a non-reciprocal algebraic number of degree
n> 1 and denominator g, satisfying |N(2) = 1. Then

4.1) i) A =1 +1/44q),
(4.2) (i) [a]> 14+ 1/45ng).

This is not the best result of its kind. For instance, Notari [13] has
shown that, if |N(x)] = 1, then A{x) = ¥,. where W, is the larger zero of
x*—px-1 where _ .

2 _ 169> —8g+5
8q*(8q2—4g+1) .

Still assuming [N ()| = 1, Lloyd-Smith {12] independently obtained

Notari's result by a somewhat different argument simiiar to that in Schinzel

[18] and also obtained the slightly better result A (o) = Wy, where v is the
largest zero of

e >0.

Ax*—Bx*4A =0

(1) J0 ) )
= (1 (oo (1) e

. w

where

Proposition 1 has also been proved by Pathiaux T14].

The proof of Proposition 1 is a straightforward generalization of the
argument in Smyth [20]. It rests on the following lemma concerning analytic
functions.

o .
LemMMA 6. Let f(z)= 3 e.2% be analytic in an open disc' containing

k=G
2l = | and satisfy |f(z) <1 on |z] = 1. Then
led 1—e2  (k=1,2,..).

Proof. This result is due to Wiener but its proof first appeared in Bohr
[6]). Also see Smyth [20]. = '

The proof of Proposition 1 is omitled. See Pathiaux [14], Notari [13]
or Lloyd-Smith [12]. _

It is not known whether it is true that A(x) = 0, if [N (a)| = 1, where 6,
is the real zero of gx*+(q—1)x*—gx—gq. This result, if true, is a natural
generalization of Smyth's result. Also this problem is of interest as it is
connected to the set S of PV numbers and its analogues for algebraic
numbers of denominator ¢. Define $, to be the set of all real algebraic
numbers f > 1 such that f is a zero of an irreducible pelynemial with

4 - Actn Arithmetien XLV.I
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integer coefficients and leading coeflficient ¢ where |[N(f)) = 1 and all con-
jugates of f§ except itself lie inside the unit circle. It is known (see Pisot [15])
that 8, is the least element of S,. The fact that 0; is the least element of §, is
a corollary of Smyth's work, but it was first proved by Siegel [19].

Also Notari [13] has made the following observation:

Let P(z} = qz"4a 2" t+...+a, be the minimal polyromial of w. Let
&= +1 be such that ca, > 0. Then A{w) = 0, if a; # tay..,.

This observation follows readily from the proof of Notari’s resull, cited
just after Proposition 1.

There exist examples which show that the condition |[N(a)] =1 is
necessary for Proposition 1. The first example is due to Prenat [16]. The
polynomial gx* +(g— 1) x> —x%—gx—(q— 1) has a single zero outside the unjt
circle, say . It turns out that

L+ 146q) < 8 < 1+1/4g).

Thus the condition |N ()] = 1 is necessary for the first part of Proposition 1.
We give an example to show that it is possible to have

14+ 1/5¢%) < A@) < 1+ 1/g%

Consider the polynomial H(x) = gx®—gx*—(g—3)x--(g—~1). It turns out
that the discriminant of H{x) is equal to ~2q(32¢*—724-54) which is
negative for positive integers ¢. Hence H (x) has exactly one real zero, say f. It

is casily shown that § lies between —1-+1/g and ~1-+1/g+1/4% In fact,

since ¢ > 1, we have

1 2 1
H("‘S"a-z"“f'—"' 1) <0 << H(g'é'i‘i-"‘;—l).

It is clear that H(x) has a pair of complex conjugate zeros outside the unit
circle. We deduce, after a straightforward calculation, that

14+1/(5¢%) < A(B) < L+ 1/¢%.

Similarly, we can show that the condition |N ()] >
second part of Proposition 1. Prenat’s exdmplc cannot be used for this
purpose. Let f§ be the algebraic number specified in our example above. For
any positive integer m, set o = '™ Then we have

1 142m) 1 1
m < ( 1 +”é’j’) £ exp (“z'nrqz-) <1+ g

and .
m ( | 1/(2m) | 1

>{1+s P

) mg*

Thus our claim is verified, as « is of degree 3m.

1 is necessary for the .
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5. Proof of the results for the case [N (=) 2 1. In this section we give the
proo[s of Theorems 1, 2 and 3 and their corollaries as stated in Section 2.
We commence by reducing the problem to the case where « is reciprocal
(and so |N (@) = 1).

If o is non-reciprocal and [N(x) = 1, Theorems 1, 2 and 3 and their
corollaries follow from Proposition 1. Hence we shall in the remainder of this
section assume that o is reciprocal. It follows that we can assume IN (@)} = 1.

Proof of Theorem 1. Suppose a satisfies (2.1). Since a is reciprocal, n
is even and so we can write n = 2m where m is a positive integer. Also we
can write the conjugates of « in the shape

ﬁl" ﬁl_ls ﬁz, B;ls revy Bm: ﬁr:l

We shall suppose that the theorem is false and ultimately derive a
contradiction. We employ the product

P= T[] lya—1.

ey, #1

It is clear that P is rational. A straightforward application of Lemma 1
shows that P ¢~*"~ 2. Since we are assuming Theorem | to be false, we
can write P =P, P, where

Py =-H ot ;- 1)
i=1 ‘
and

Py = [T1B; B~ 118, B ~1IB7 B~ 11187 Bk -

i#h
By Lemma 4 we get _

Pz < m4mQ8m(m-1) < 2—2nn1nexp (n/(sqz))

Now set ¢ = A{a). It is clear that o has exactly m'conjugates outside the unit
circle, By Lemma 2 we find

. : 1
(5,[) Pl \<_ 2_2"(04{"— 1)".

On the other hand we also find ‘
P 2%
Py " n g exp(ni(54%)

(5.2) P =

- From (5.1} and (5.2) we deduce

=15 2fn? g?)
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and hence that

A(@) = 1+ 1/(4ng?), since n = 2.

This contradicts {2.1). Therefore o has a conjugate on the unit circle. Clearly
it is not real and therefore there is another conjugate of o« on the unit circle.
This completes the proof of Theorem 1. =

Proof of Corollary 1. Suppose we had

[a] < 14+ 1/(5n%g?)
Then

oy ( 1 4 1
L [ O - < o sl I < [N FEPR .
A el < (1 T q* ) exp \Smjﬁ) H 4

where we have used the mequdhty AL+ for 0€5 < 1. The

result follows from Theorem 1.
Proof of Theorem 2, Withou.t loss of generality, we may assume that

=
el <0 +4nzq

Because o is reciprocal, we know that ¢™' < juy < for j=1,2,..., n. Also
n is even. The case n = 2 is a trivial consequence of Theorem 1. Menceforth
we assume n = 4.

Following an idea of Blanksby [4] we employ the product

P= I—_[ |aja;\_"‘"‘|.|

LR

Clearly P is rational and Lemma 1 shows that P =
as a product P = P'P" where

Pr= 1 Iy~ 11, 1T lyd-1.
Iaj]*l {l)‘ﬁlk‘ﬁi
J#k

g~ 2 We may write P

Without loss of generality, we may wrile the conjugates in the form
o =ry exp(i(pj) with 0< ¢, <9, <...< ¢, <2n, where if fay] = 1, then
. Bach factor of P has the foun |Re'"— 1| where ¢ % <« R =< g% A
simple geometric atgument shows that

[Re*~1] < Jo? 1]

The products P* and P” contain, rcspcctlvely, 2s and n*—n—2s terms,
Since s < n/2, it follows that

[at < 1+ 1/(8ng?) <

Oy g =& !

1+ 1/8#).
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Let S={{j, k): oy, s 1, k}. We write P" as

n—1
Pr= 1] &~ <J] P,
.k)eS . =1

where

+

Po= CI1 qg?e™ ™11,
J—h=t{mod ny
{ik)eS
Now P, and P,_, each contain n—s factors while, for 2 <1 <
contains # factors. The factors Py, P,, ..
3. In that lemma we take r = p? and

0. = Q=P if j>k,
! —@,+2n i j<k.

n—2, P,
., P, are estimated using Lemma

For 2t < n—~2, we take = n/n and, by Lemma 5,

P, < IQZ leril/n_ lln_
Similarly we find
. Pi < IQZEM'”""S)— 1|n~s

A straightforward calculation yields

3 2({n—%)
P < (_‘z) _

n

51.[ 2n—s5)
P, < (——Q—) .

L

|Q262n1/n 1| ; IEZW"““H 2 4/n.

Similarly we find

Also we have for n = 4,

This leads to

n—1 .
Znitfn [
STCQ 2n-2s H J‘Qze t” —1, 2(n 2n 51'EQ 2n—2s
p oy et M:ml____m g < anZrn s ) .
n lo® i 1? 4 n

Let ¢ = A(x). Recall that a has exactly s conjugates outside the unit circle.
By Lemma 2, we find that

P < c~2(62/s; 1)2.1 < (szs_ 1)25.
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P 1 n 2n n 2n—12s
P qln " Q2n 4 Sng

A straightforward calculation leads to

Also we have

s
C > 1+—5—B—;A_;1—I-J
This completes the proof of Theorem 2. =
Proof of Corollary 2. Suppose we had

By following the method of proof of Corollary 1, we obtain

s
A <1 +m |
which contradicts Theorem 2. The proof of Corollary 2 is complete. m
Proof of Theorem 3. Assume that A(x) # 1. If s = 2 the result is an
obvious consequence of Theorem 2. Henceforth, assume s = 1. Without loss

of generality we assume that « is the only conjugate lying outside the unit -

. circle, and that « > 1 (since it is necessarily real).
We consider the product

j=1
Lemma 1 shows that P> g™'. For j# 1, we have |a;~ 1! < 2. This gives.
g P < You—1}
and hence

2 )
5n/2 n] + nf4 qntz

o> 14 > 1 since # = 2.

1ty
Thus the proof of Theorem 3 is complete. =

Proof of Corollary 3. This result follows easily by combining
- Corallary 2 with the argument used to complete the proof of Theorem 3. m

6. Proof of the results for the case |N(x)| < 1. In this case, it is not’

necessarily true that o will have any conjugates outside the unit circle at all.
For example, one need only take o to be a zero of gx"—1 with g > 1.

" However, if there are any conjugates of o outside the unit circlg, then they
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are “bounded away™ from the unit circle in the sense implied by Theorem 4
and its corollaries, Also there can-be no conjugates on the unit circle, for
otherwise « would be reciprocal, implying [N (%) = 1.

We shall assume that g > 1 and that o has at least one conjugate
outside the unit circle.

Proof of Theorem 4. Without loss of generality, we may assume that
[] < @ where g = 1+5/(4ng%). As usnal, we employ the product

n

P= T le—1.

Hhk=1
We may write P = P’ P" where
P" = 1—[ IDCJOTk—l|.

"
P= ] lyya~1],
i=1 ik
By Lemma 2 we get
PH s nn Q2n(n—1).

We can write P’ in the shape

« P= H ]ajij"—].‘ ].—,[ Iajij_ll.

ol > 1 bl <1

Letting ¢ = A(x), a straightforward application of Lemma 3 leads to

P < (c*~1)

Using arguments similar to those employed in the proof of Theorem 2, we
find
1

@

We have p?""~ 15 < 2" and a simple calculation yields

e > 1+ 5

nn/s q Inin—1)/s"”

A
A(m) > 1+W.

This completes the proof of Theorem 4. m
Proof of Corcllary 4. Suppose we had

1
[a] < 14"§j§:¢7;gjiﬂ?-

A simple calculation shows that

8

Ao} £ 1+W

contrary to Theorem 4. =
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Proof of Corollary 5. This follows from Corollary 4 and the method
of proof of Theorem 3, noting that [ # 1, otherwise layl =1 for 1 <j<n,
contradicting |N{a) < 1. =

7. Proof of the results for J-fields. The assumption that o belongs to
a J-field allows us to modify. Cassels’ basic idea so as to obtain much
stronger results than in the general case. Let o be any @-monomorphism of
such a field into the field of complex numbers. Then it is easily seen that
la(a)|* = a{|o}?). It follows that the product
(7.1) P =[] (>~

J=1
is rational.

Proof of Theorem 5 Since |—-|>1 Lemma 1 and the comments
above show that P is a non-zero rational number satisfying |P| = ¢~
We have
(7.2) |P|=

H (r%’z_ 1) H

ajf =1 i"’]—l_<‘|¢ﬂ<1

-<‘ ([?IZ__ l)m' _

This yields {2.10) as desired. By (7.2), equality can only hold in (2.10) if m =n
and lo| =[a] for j=1,2,..., n. This yields (2.11).

Now consider the case where « is totally positive, Then we employ the
product

o2 (e =2 =1) T

ol <1 (1=lef*)

i=1
An argument similar to the previous one soon yields the inequality

1
m; 1+W

with equality only if m =n and o; =[a]| for j =1, 2, ..., n. Since g is totally
positive, this implies n=1 and « = t +1/g. Th1s completes the proof of
Theorem 5. &

Proof of Corollary 6. Inequality (2 12) follows immediately from
(2.10) if m= 2. ¥f g > 1 then equality holds in (2.12) only when m = n =2
and || =|az* = 1+1/g. H o is real, it must be a zero of gx*—(g-+1).
If o is complex, it must be a zero of gx*—bx+(q+1) for some integer b
satisfying b* < 4g(g+1). If ¢ = 1 and equality holds in (2.12), then it follows
that Jo*.=2 for 1 <j< n. Setting y—-tx/\/Z we obtain [7]= 1. The final
" remark in part 2) of the corollary is proved in the same way as for the case
g > 1. This' completes the. proof of Corollary 6.
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