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The Lagrange spectrum L i3 the set of the inverses of the values of
Perron’s modular function, This function is defined by

M (%) = lim inf n min {{jnx—g|: ¢ is an integer)

where o is irrational and n varies over all positive integers (see [10]). A gap
of the Lagrange spectrum is an open interval (a, b) such that a and b are in L
and the intersection of L with (g, b) is empty.

In [2], T. W. Cusick showed that L is closed. Here, the following results
are proved: Let (@, b) be a gap of the Lagrange spectrum. Then there is an
irrational number o having a continued fraction expansion determined by
four finite sequences of integers such that M(¢) = 1/a. Moreover, a reduced
real' binary indefinitc guadratic form f(x, y) = Ax*+ Bxy+Cy* with roots
that are quadratic surds is constructed, such that ./B*—4A4C/a is the
smallest value numerically represented by f. a is the sum of the roots of f. .
The lengths of the periods and preperiods of the continued fraction expan-
sion of these roots are bounded by

2 [a][(ln((b = @)/ 2)la(2/(1 + VEN+ 3,

There is no statement made on irrationals or forms related to the right
endpoint b, Here we are not concerned with the Markov (Markofl) spectrum,
which is the set of the inverses of the arithmetic minima of real indefinite
binary quadratic forms, Similar results for the Markov spectrum are given in
41 |

In their often quoted essay on quadratic irrationals in the lower
Lagrange spectrum (see [3]), Nancy Davis and John Kinney state for both
spectra that the endpoints of a gap not exceeding \/l_i are the sum of
quadratic irrationals, Here, new tools are used that permit an extension
beyond \/ 12 for left endpoints of gaps.

Let A= ..., a_q, g, 41, be a doubly infinite sequence of positive
integers. A is called eventually periodic on both sides if there are integers i, k-
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such that a;, @;.,, ... and @, a4, ... are periodic. For any doubly infinite
sequence A, we define the sequence A = ..., &y, dp, &y, ... by & = a_, for
all k. Let B, = ..., b%,, b®, b, ... where k and b are positive integers, We
say that the sequences B, B,, ... converge to A and write lim B, = A if for
all positive integers n there is an m such that b® = g; for all k 2 m and all
integers i with |{| <n Let {ay, a3, @;, ...] denote the regular simple con-
tinued fraction allocated to the sequence of infegers aq, dy.... Let M,(A)
=[a, ar, - JFH0, o g, 0= 2, .. ] Tor each integer k, M(A) = sup M, (4)
and L{A4) = lim sup M,(4).

The set of all L{A) is the Laprange spectrum (see [107). The set of all -

M(A) is the Markov spectrum (see [12]).
The subsequent lemrna is classical (see [117]).
LemMa 1. Ler n, ay, a4y, ..., by, by, ... be positive inregers and ¢, =

((1+./5%2) 21 Then

ILag, ay, ... ]—[ags @y, -, dn, by, by, ] <5,

The following lemmas are essential for our proof. Lemma 2 is related to
the compactness theorem for the Markov spectrum (see [13], Theorem 19,
(3], Lemma 3, [12]). Lemma 2 implies that the Lagrange spectrum is a
subset of the Markov spectrum. This fact is well known (see [2]).

LeMma 2. Let a be u finite element of the Lagrange spectrum. Then there
are doubly infinite- sequences of integers A, B with the following properties:

oy L(B) = M(A) = Mo(4) = 4,

there is an increasing sequence of integers ny, ny, na, ... such that

, ..., 5%, B0 0 _ g
where _
2 ' B =b, . foralli,k,
3) ' lim M, (B) =a.

Proof Since a is in the Lagrdnge spectrum, ‘there is a sequence
by, by, bl,... such that lim sup M, (B) = a. Hence, there is a
sequence M. My, ... such that lim M, (B) = a. Without loss of generality the
sequence m,, m,, ... is increasing for otherw1se we can consider B, Since 4 is
finite, B is bounded Therefore, it can be shown by induction, that for all
integers i, there is a subsequence N; = nf® ng, ... of My, My, ... Wilh the
property that b} = bl  for all k, and that N, is a subsequence of the
sequences N and N Thus (2) holds with n =nl® and A
..., doq, dy, a4y, ..., Where g, = b +x Since ny, vy, ... 08 a subsequence of
my, my, ..., property (3) holds Lemma 1 and (2} imply that lLim M, . (B)
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= My(A). This and (3) show that Mo(4) = a. Lemma 1 and (2) imply that
for all integers k there is a strictly increasing sequence of idtegers s (k),
sa(k), ... and a sequence d;, §,, ... with lim 8, = 0 such that

My (4) < M, (B)+6;, for all i,

Therefore,

Y

M (4) < lim sup M,y <a  for all k.

Thus M(A) < a

Lemma 3. Let aq, 4y, ay,... be a sequence of integers hounded by an
integer s. Let n be an integer and u = 2s*". Let ay = [ay, a4, ...] for all k. If
the numbers og, 0y,-..., oy are pairwise distinct, then there are positive integers
I, j, r with the subsequent properties:
{4 r>2n,

(5) [ao, dy, -..] < [ao, Ay ooy dyy aj., aj+1, ey aj"i“i” C(]

Jor all positive numbers o = 1,

(6) a_f'H( el N ﬁ)r k =0, 1, i 2n~—1.

Proof. Let Ay = (ty, days - s Geraqa—1) for all k. By the pigeon hole
principie, there are pairwise distinct nonnegative integers k,, k;, k3 < u such
that 4, = A, = A,,. Without loss of generality we may assume that o

<y, < oy,. This implies that
(7 [ag. @1, ...] <[ag, ¢4, ...

where i=k,—1, and j=4k, if i i odd and j=k; if i is even. Let
o* = [ag, ay, ..., &, @, @iq, -..] and & = «*—oy. By (7) and Lemma 1, there
is an integer r > 2r such that

® aia aju aj+1= "']3

0 = [dlgy «oos Uy gy Gja i vy Gjayy €] <0 for all a2 L.

Thus, (5) holds. ‘

TreowveM 1. Let (a, b) be a gap of the Lagrange spectrum, Then there is a
sequence A, eventyally periodic on both sides, such that M(A) = My(A) = a.
The lengths of the periods and preperiods of A are bounded by '

2 [‘a][(ln((b - ayf2))in{2f( 1+ vENT+ 3

. Remark. Replacing the term (h—a)/2 by b—a in the above formula
produces a bound that is valid for the Markov spectrum (see [4]).
Proof, Let 4 and B be sequences existing according to Lemma 2. Let n
be a positive integer such that ¢, < (b—a)/2 € ¢,.,. We choose n, of Lemma
2 such that
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®) M, (B) <b—2, for all k>n,,

We now show, that two of the numbers «q, 24, ..., o, as defined in Lemma
3, where u = 2[a]?", are equal. To this end, we assume the contrary and try
to find a contradiction. Since a, < M, (4) < a for all k, Lemma 3 is appli-
cable with s = [a]. By (2) there is an ¢ such that
(9) ﬁ-j, Cij+;, ey a.j_H. == b"g+.j’ b"g+j+l’ . b"g"’,i"‘f'
According to Lemma 3, there is an m > 0 such that
(10) &, <min{[ag, @1, .0y Gy @ Grags cors Gjueps €15 C25 100 )i

¢ < a for all k}—Tlag, ay,...].
By (2) there is an h such that n,—m > n,+j and
(11) bn;,-—mv bnh——m+1s

Let p=m,—n,—j+i+1 and define A* = .., a*,, a¥, af, ... by

s bnh—}_s bnha (RN bnh+i+2n gy Oty ooy o op

a:)ka aik) ey aj—l
=gy Ap, ey Gy aj: aj+L: (ERY aj+r': bng+j+r+1: bn§+j+r+2: AR bnh—l
and .
af =a},, for all k.
(10), (11) and Lemma 1 imply
(12) a =My (A) < My(4%).

By (6), (9) and (11), a,-*ﬂmb,,gﬂﬁwl for k=1,2,..., p+2n Hence, by
Lemma 1, for all k there is an s, >n, such that

(13) _ M {4*) < M, (B)+2s, <b.

The last inequality is due to (8). Since A* is purely periodic, (12} and (13)
imply a < L(A*) < b. This contradiction shows that our assumption does not
hold. Hence, &, = a;,, where 0 <k, < ky < u. This implies that o, Iy, ... 18
eventually periodic with bounds on the periods and preperiods as indicated
(note that a > 1 (see [10]}). The sequences 4, B satisfy (1), (2), {3) with the
. decreasing sequence ny, n,, ... Applying the above argument to A and B
implies that @, a_,, ... is eventually periodic as well. '

A second type of special sequence with Lagrange valué a can be found
which-is proposed to be called ‘almost periodic’:

_.DEFINITION. Let ny, ny, ... and my, my,... be increasing scquenées'
of integers. Let B, D, P, Q be finite sequences of integers. Let P*® = P and
Q¥ =g for all k and P, = P, p@ __ p") and 0, = o1, Q@ .. gk,
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A doubly infinite sequence of integers is called almost periodic if it has the
form
vany Ba Pmlv Da le, B: ‘POt D: QO: Bs Pl: D: Ql':

It is denoted by (B, P, D, Q).
TueoreM 2. Let (a, b) be a gap of the Lagrange spectrum. Then there is
an almost periodic sequence of positive integers C such that L(C) = M(C) = a.
Proof. Choose 4, B according to Lemma 2. We may assume that there
is an ¢ >0 such that

(14} M, (By < b~z for all k >ny.

By Theorem 1 there are positive integers r, 5, p, g such that

IIIII -y as+q.
The bars label the periodically repeated sections of A. Let n be a positive
integer such that ‘

(15) 2, <e.

By (2) there are positive integers ¢, h, d, d, ..., d; such that

(16) By Byats ooos bayes

=dg, A1y -+ oy Oytpgo dla dz, LR ] dia a—r-—npr aﬂr—np*-.l: siay By

For each k, let

Ck =2 flgy iy «-vs a‘s+(\k[+n)qs dla dla sy dia a‘—r"(|k|+n)p: a—r—-(|k{+n)p-—la R

and let ), be the lengths of C,. Define C=...,¢c.{, ¢o, cll”{ by
C=...,'C_.1, Co, CJ.!"' and COﬂCO, Cla"'!_clo-—l' Let my, = Z li' if
i=0

-1
k>0 and my = ~ Y & if k<0. Then lim M, (C) = M,(4) = a and

i=k

(17 a< L(C).

Now we want to show that M(C)<a To this end we assume that
M, (C)>a for some m. Choose t, v such ‘that m <m<m, and
2 08X {Epymmpr Emyom) < (M,,(C)~-a)/2. Then the sequence E=...,e.y, e,
€1y ene With €y, Byt sty le,-'l _Elnd. emv'vmt-hk.: € fO[‘
all k satisfies |

o =y = Cmp Coybds

. (18) a < memf-ﬂ (E)

For eaéh k there is an s, > n, such that M, (E) < M, (B)+2¢,. Hence, (14)

and {15) give M,(E) <b. By (18), a < L{E) < b. This contradiction shows
that our assumption does not bold. Thus, (17) implies M(C}) = L(C) = a.
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On sign-changes in the remainder-term of the
prime-number formula, If
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J. Kaczorowskl (Poznan)

L. In the first paper of this series [3] we have proved that the differences
(1.1) d3(x) =y (x}p~x= ) A@n)-

nxx
and
(1.2) Ay =Hx~lix= T ~ixtiny— | 2
‘ e B mz1 M logu
0

which are the remainder-lerms in the prime-number formula change sign at
least '

AN log T

(1.3) P

times, in the interval [2, T}, T> T,, where 74 == 14.13... denotes here the
imaginary part of the “lowest” zero of the Riemann zeta funetion. T, stands
for a positive, effectively computable numerical constant,

We have two other remainders in the prime-number theorem: the most
intensively studied in the literature

(1.4) A =nx)-lix=Y I-lix

pEx
and also

(1.5) Adq(x) = $(x)—x = Y log p~x.

P& x
As in [3] let us denote by V(T), 1 </ <
of d;(x) in [2, T, T2

Let
(e : ! = sup Reg

dey=0

LY
where {(s) is the Riemann zetafunction.

4, the number of sign-changes
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