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1. Introduction. Let @ be the field of rational numbers, Z the ring of
rational integers and I = Q(\/B) an imaginary quadratic number field with
discriminant D. For a natural number f, we denote by K, the ring class field
over X with conductor f, by O, the order in X with conductor f (0, means
the maximal order in Z) and by CI(K//Z} the ring ideal class group modulo f
in Z, ie. the group of the equivalent classes of proper O-ideals in X by the
usual equivalence relation. We denote by o CI(K/Z) — Gal(K//Z) the
isomorphism from CI(K,/Z) to the galois group of K, over X via Artin’s
reciprocity law. For any intermediate field K of K /2 with conductor f, we
define C1(K/K) to be the subgroup of CI(K /%) whose image by ¢ is equal
to the galois group of K over K, and CI(K/ZX) to be the factor group of
ClK/Z) by CI{K//K). ‘

Let C be a class in CH{K;/Z) and let a, be an O -ideal in C™1. Let o be
an element in I such that (a; 0,)* ={(x) as an O,-ideal, where h is the class
number of . We define dx,(C) by

5 ()= a2 (A0
¢, (C) = ( ; (Of)) .

Herein 4{ ) means the usual lattice function expressed by using the
Dedekind eta-function as follows:

12 z4
atm = ()" n(22)

where m = [wy, @, 18 a 2-dimensional complex lattice with Z-basis
foy, w3}, Im(wy/w,) > 0. 6 (C) depends only on the class C, not on the
choice of a,;, and is a unit in K. As is well known,

5KI(C)“‘CI) =5KI(CC1)/5KI(C1) for any C, C| in Cl(K,/Z).
For each ¢ in CI{K/Z) we define d(c) as the relative norm of & AC) wrl.
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K /K, where C is a class in CI(K /%) contained in ¢. Of course Ok (c) depends
only on ¢ and is a unit in K,
For typographical reasons, we shall sometimes write

8x(C) = 8,(C},

if K=K,.

For each K, we denote by hg, Ey, iy and wy respectively the class
number of K, the group of all units in K, the torsion part of Egx and the
number of elements in gx. (When K = £, the subscript K is omitted from
these notations) Let Ay be the subgroup of Ex generated by pg and the
Sg(c)'s. Then the following index formula holds (cf. [7]):

(Exs 4x) = (120051 (T ()

K x

where y ranges over all non-principal characters associated with the exten-
sion K/Z, and for each yx, a(y) is given by

o KK ( )
a(y) 7 ;; - H N
F=I "

“Herein f, means the conductor of x, f; ranges over all pos1t1ve divisors of f

such that f,|f;, p ranges over all prime ideals (O,-ideals) in Z containing fi

and Np denotes the absolute norm of p. We note here that a(y) is

another expression of [[G(p o, ¥)-in the paper of Schertz [6], and a(y) = 1
r»

for any y if f =L

Recently Kersey proved a refined index formula for the unramified case
as follows ([2]; we referred it to [3], ch. 9):

TuroreM 1. In the case where f = 1, there exists a subgroup &y of Eg
such that &x**" < Ay, for which the following index formula holds:

(Ex; £0) = [K; £1°%,
~ The most important ‘part of Kersey’s proof is the proof of Proposition 1
(8 3) in the case where f == 1. He proved it by making use of the distribulion
of the Siegel function and many complicated tools including the quadratic
relation of Klein forms ([3], ch. 12).

Our main purpose in this note is to give another simple proofl for
Proposition 1. Our proof is based only on the classical facts in the theory of
complex multiplication, and can be accomplished also in the case where
[ 5 1. Moreover by following the same procedures as those of Kersey, we
have the following: '
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Tueorem 2. There exisis a subgroup &g of Eyx such that £3*" < dg, for
which the following index formula holds:

RN TP AN
(Ex; 60)="[K; 2](1:[ (a(x)z)) o

where e =2 or 1 according to whether wy is divisible by 8 or not.

Remark 1. In the cases where D = —3, —4 the assertion of Theorem
1 is trivial, and hence Theorem 2 is a generalization of Theorem 1.

2. Lemimas and termimologies. In this section we shall provide several
leomas. Lemmas 1 and 2 are classical facts in the theory of modular
functions, and Lemmas 3 and 4 are fundamental results in the theory of
complex multiplication.

Let the notations be the same as im Section 1. Let x(r) and j(7)
respectively be the Dedekind eta-function and j-function in the theory of
modular functions as usual We dencte by Q(X, Y) the field of rational
functions on X and Y with Q-coefficients.

Lemma 1 (Weber [8]). Let s be a natural number prime to 6. Then

2 2 for s =1(mod3),
(1GNP .
(n(ﬂ) eQ(j(), j{st)) with n= {3 for s = 1(mod 4),

6  otherwise.

Lemma 2 (Newman [4]). Let s be a natural number and {r,} a family of
Jrational integers, whose indices n are positive divisors of s, satisfying the
Jollowing corditions:

(1) r, =0,

(2 Y (n—1)r, = 0(mod 24),

3y (%—s)r,, = 0(mod 24) and

(&) [[n™ is a square of a rational integer.

n(z

By Satz (3,4) in [5], the statement in Lemma 1 can be translated into
the statement on the special value (1(sw)/n (w)), where w is a number in X
such that Im(w) > 0. In order to translate the function-theoretic result such
as in Lemma 2 into the result on the special value of the same function,
we need the following consideration:

Then g(1) = H(ﬂ—((ﬁ?—)rn is contained in Q(j(z), j(st)).

s . . . la b
Let the primitive matrix of determinant s mean the matrix l: d:, such
C .
that

a,b,c,deZ, (a,b,c,d)=1 and ad—bc=s.
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a b at+b —
For a primitive matrix § = we denote by S(z). Two primitive
¢ dj - ct+d

matrices §; and S, of the same determinant will be called eguivalent if and
only if there exists 2 unimedular matrix M such that §, = MS5,. As is well
known, jist) is algebraic over @(j(r)) and ils irreducible polynomial over
Q(j(7) is given by

L{X, j(@) = [[(X-i{8(@)),

N

where § ranges over a complete representative system of the inequivalent
primitive matrices of determinant s. Now for any complcx number « such
that Im(w) > 0 and for any function g (<) in Q(j(z), j(sv)), the value g(w) is
contained in Q(j(c), j(sw)) whenever I;(j(sw), (w)) ¢ 0, where Ij(j{st), j(r))
means the differential quotient of I,(X, j{r)) at X = j{s7) ([1]): A necessary
and sufficient condition for I{(j(s@), j{w)) # 0 is that se is not modular
equivalent to S{w) for any primitive matrix § of determinant s such that § is

ot q .VaIEHt tO -

Lemma 3. Let C be a class in CH{K/Z), and let f#1 when D= -3 or
—4, Then for any prime number g,
(1) SACK" = (O CIT DN, 1, (3,,(CY)
(2 SO =8 (CYC Ny (85O ff g~0*in X and g ff.
(3) 5f(C)qH = qf,'f(éqf(é)) i q Nf] in Z_and qrf.
@ 8,0y =351 O Nagy (00 (O)) I alf.

Herein C, (resp. Cj) is the class in CHK/Z) which contains the O-ideal
qn 0y (resp qmof) C is any one class in CI(K/Z) such that o(C) is an

extension of & (C) to Gal(K /), C is the class in CI(K - ,/Z) such that ¢(C)
is the restriction of o(C) io Gal(K ,_1/2) and Ny, means the norm map
from K, to K.

W g~auin X oand g kf.

Proof. A proof can be accomplished, using the following identity:
(o)
()

where {o;, 2} is a Z-basis of a complex lattice, and § ranges a complete
representative system of the inequivalent primitive matrices of determinant g.

Lemma 4. For any C, C, in CIK/Z), ,(CH' 7O is in EE*,
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Proof. From the definition, we have

24 A(ad) \'
@Wﬁ““(M@J’

where ay is an O-ideal in Cy! and « is an element in £ such that (a, 0,)
=(a) as a principal 0,-ideal. By a result of Deuring ([1], p. 41), 4 (a})/4(0/)
is contained in K7*

Let %, be ihe multiplicative group of the fractional ideals in X' relatively
prime to f. (Hereinafter ideal means O;-ideal} Let M be the subgroup of 2,
associated with the extension K/Z and CI(K/Z)* the factor group of W, by
. Of course CI{K/Z)~ CI(K/X)* and an explicit correspondence between
CI(K/2) and C1(K/Z)* has been given in [1]. For each class ¢ in C{K/ZX), we
denote by c* the class in CI(K/Z)* which corresponds to ¢. Now since 2 (p)
is an abelian extension over @, X (uy)/Q is an cxtension of type (2, 2, ..)) (cf.
[1]), and hence wy must be at most a divisor of 24. Moreover for any ideal a

‘in Z prime to wf, the value of the absolute norm Na(mod wy) depends only

on the class ¢* to which a belongs.

DErFINITION. An ideal ain X will be said to be K-admissible if it is prime
to wf and satisfies the following conditions:

If wg=2, then Na= l(mod 24},
If wy =4, then

N = {1 (mod 24)

for 2= Q(/—4),

1 or 7(mod 24) otherwise.
" If wg =6, then :
_ {1(mod 24) for Z=@Q(/—3)
1 or 17(mod24) otherwise.

if wy =8, then

N 1 or 13(mod 24)
T 11,7, 13 or 19(mod24)

If wy =12, then
1 or 17{mod 24)
N {

for X = Q(/—4),

otherwise.

for 2 = Q(./—4),
for 2 =0Q(./ -3,

otherwise,

1 or 7T(mod24)
1, 7,17 or 23(mod24)

If wg = 24, then

for &= Q(/-4),
for =0(/-3)

otherwise.

1,7, 13 or 19(mod 24)

1,5, 13 or 17(mod 24}
Na {
1,5,7,11, 13,17, 19 or 23{mod 24)
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For any K-admissible ideal o the value of Na{mod 24) depends only on the
class ¢* to which o belongs. In each class of CI{K/Z)* there are infinitely
many K-admissible prime ideals of degree 1. We define a homomorphism
I CUK/Z)—(Z/24Z)* by l{c) = Namod 24, where ¢ is a K-admissible ideal
in the associated class c*. Plainly the kernel of | contains Cl(K/Z)%

Remark 2. Our definition of K-admissibility is essentially equal to that
of Kersey, but has been slightly modified.

3. Proof of main result. Let the notations be the same as in Sections 1
and 2. In this section we shall prove the following:

Prorosimion 1. Let ¢, and ¢, be any two classes in CI(K/Z) and n the
least positive rational integer such that

n(l{cy) - 1){lcz)— 1) = 0 (mod 24).

( 5!{(6'102) ‘)HEE?{M

Then

S (e1) Ok (ca)

Proof. Tt suffices to prove this only for the case where K = K, Since

" in the cases where (D, f) =(=3, 1), (=3, 2}, (—3, 3}, {—4, 1) or {(—4, 2) the

assertion is trivial, we shall exclude these cases throughout this proof.
Let p, and p, be K -admissible prime ideals of degree 1 in C*~* and

C3~ ! respectively, and let p; = Np; (i =1, 2). Then n is determined by the

congruence n(p, — 1){(p;~1) = 0 (mod 24). Let v be a rational integer such that

I:P \/l_)+v .\/I—)-}-'v

1:

2 2

=p, and [pz, ]= p;. Indeed v is determined by the

congruence v? = D(mod 4p, p»). For our later arguments, we will choose vas

. D .
v} = D(mod 4p3 p?). Plainly |:1, f \/;+v] = 0y, and the following three O,
ideals |

[p1=f\/b+vJ’ [p-'!*-f\/ﬁnlﬂvJ and [P1P2>.f‘"@'§ixJ

2 2
represent the classes €T, €' and (C, Cy)7 ! respectively ([17). From the

definition we have
] (f‘{\/B +v)) . (f'(\/l.—) +v)) 24h
2

d,(C, Cy) 2p, pa

S(Ca,(Ch) n(f(\/ﬁ+v})n(f(\/5.+v))

2p, 2p, _
' DA+ ' '
where w&f\z/;pz‘ Let #(p1, p2, v} = n(p p2 W) @)/ (py @)1 (p2w). By

-using Lemma 1, it can be easily confirmed that.

SRV n®:, P2, V7K.

24k

- (ﬂfﬂ?ﬁ.ﬁi’lﬂ.ﬂfi’l
nip, @n(p, w))
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We shall show in three steps that n(p, p,, v)" is in K.

Step 1: First we assume that I, ,. {j(p, p2 @), j(w)) 5 0. (This assump-
tion will be considered in the next step.)

DI’ n=1, ie. (pp—p;~ 1D =0 (mod24), by Lemma 2 and the

‘assumption that I, ,. (i(py pa@), j(w))# 0, we have

11{p1 pr @) (n (P4 w))' ! (n (p; )

-1
1w\ ) ,,(w)) & Qli(@), j{prp. @)).

/D+
Since w and p,p,e are basis gquotients of Lplpl,flba_ﬁJ and

[L.f\/ﬁ*"

2
the ring class field K, over Z. Hence #(p;, p3, v) is in Kj.
(i) In the cases where (p,, p,) = (11, 17) or (11, 19){mod 24}, using the
same method as in (i) we have

1{p; p2 ) (n(m w))“‘ nipy@
() niw) n{w)

J respectively, each of the values j(w) and j (p, p,®) generates

e 0(i(w), jip1 p2 ).

Since

1(p2 m))“z 1(py p2w) (n(m w))‘“1 1(p2 w)
1 () 1n(w) 7 () n{w)

#{p(, p2, ¥ is contained in K, (by Lemma 1).
(iii) In the remaining cases, using the same method as in (i) we have

W(Pu P2, V) = (

1(py p2 @) n(py ) (n(pz )
nw)  nle) \ nlo)
Thus for the similar reason to one in (ii), #{py. pa, V)" is in K; .
Step 2: A complete system of the inequivalent primitive matrices of
determinant p, p, can be taken as follows:

)m e Qfj(w), j{p. p2®))-

[g Z] tad=p;py, 0<b <d and (a,b,d) = L.

Tt is at least necessary for j(p, p.w) = j(S {w)) that S(w) is a basis quotient of
a proper O -ideal. Now there are the following three possibilities that §(w) is
a basis quotient of a proper O, -ideal: .

p; O P2 0] |:1 0 ]
S, = s Sy = and S§; = .
' [O p;»:i : i;() Ps } 0 pypa

(Note that v has been chosen as v? = D(mod4p; p3)) Indeed S, {w), S;(w)

\/EHT’ {pz,f\/ﬁw]’ and

2 2

and S;(w) are basis quotients of [pl, f
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D+v
l:plpb f\/;

three classes C2, €2 or C?C} are equal to the umit class Cp in
Cl(K,/Z), it always holds that I;lpz(](p1 pa0), j(w)) #0 and hence
(8,(Cy C8,(C1)8,(C3)}" is contained in K3

Also in the cases where at least one of C7, C3 nad C} (3 is equal to Cq,
whenever there exists a class B in CI(K /X)) whose order is equal to an odd
W’K =W,

prime numher or to
8 jor
16 for wgs#w,

the same consideration as above can be applied, and it can be shown
that {8;(C, C)f8,(C)3,(C)}" is contained in K3*". Indeed for any

12
J respectively. Therefore in the cases where none of the

i{i=1,2,..) we have
(3.) (M)ﬂmi} _ 5,(Ci B 8,(C,C, BB
. (Sffcl)bf(cz) 5I(C1 Bi)af (CZ Bl) 5]'(C1 Cz sz) 1

and when the order of B is equal to an odd prime number g such that ¢ = 3,
it is always possible to choose a suitable i so that none of the following
(CBY2, (C,B), (C,Cy B2 (C,CyBY)? are equal to Cy, and [(B) = L.
Hence (8,(C; C3)/8,(C1)8(Cy)}™®) and also {3,(C, C,)/8;(Cy)8,(C
contained in K7**. When the order of B is equal to 3, 8 or 16, if C} = C?
= C,y, then the same consideration as above can be applied, and even il
Ct# Cy or C3 # Cq, we are able to obtain the same conclusion by tedious
checking of all possible cases where at least one of (C, B)% (C;B),

(C, C, BY* and (C, C, B*)? is equal to C,. Therein if C, is a class of order 6
or of order 8, and if C} = Cy or C}C} = CO, we should use the 1dent1ty ;

(_éf(cl Cy) )"“-“1) 4,(C3Cy)
07(C1)8,(Cy) a,(C, )t>r(C2 Cy)
and Lemma 4.

_ Step 3: If there no longer emsts a GldbS B in CI(K/Z) such as in Step

2, we may use the norm relation (Lemma 3). Indeed if D+ —4 and —8, D is
divisible by an odd prime nuinber g. Here f is not divisible by g, because
CI(K /X) does not. contain any class of odd prime order. We let ¢ ~ q* in £.
Then by {2) of Lemma 3, we have '

63 (_MCI_C:') -)"‘“”
| 5

5,(Cr)o,(C ' '
_ ( 0,(C, Cy) )M(C“) N ( qf (C, 6 )n '
\8,(C1)6,(Cy) i f(éi) 3qs (C2)

5f(C2)1 a(Cl)

»)}" are
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Herein C,, €; and C, are the same as in Lemma 3. By the formula (3.1) the
left-hand side of the equation (3.3) is contained in K7*". Since there exists a
class B of order ¢ in CI(K,,/2), 16,,(C; C, )/5qf( qf(f )}" is contained in
K2, and hence [6,(C; Ca)/6,(C1)6,(C\" is also contained in K™

Now we know the following facts:

(I} When D= —4 and { is divisible by an odd prime number other. than
13,7, 17, 31} or by 32, then there exists a class B in C1{K /) whose order is
dz'visible by an odd prime number or by 16. Especially when (D, f) =(—4, 17)

# (—4, 31), then wg =w =4, and there exists a class B of order 8§ in
Cl([x /E)

(I} When D = —8 and [ is divisible by an odd prime number other than
13,7} or by 16, then there exists a class B in C1(K ;/X) whose order is divisible
by an odd prime number or by 16. Especially when (D, f)={-8,7), then
we =w=2 and CI(K/X) is a cyclic group of order 8. :

Therefore for the complete proof of Proposition 1 we have only to check
the finite number of cases listed up in Table L. In Table I, TYPE indicates
the type of abelian group CI(K,/Z). It is not so difficult to verify that the
assertion of Proposition 1 is true for all cases in Table I, but this is very
tedious. We shall here omit the precise verification and point out only a few
essential facts.

Verification for all cases except for the three cases where D, fy=
(=4, 12), (-8, 6) and (—8, 12) can be carried out only by using the tools
employed in Steps 1 and 2. Verification for the cases where (D, f) =(—4, 12)
and (—8, 12} can be done by using (3) of Lemma 3. Verification for the case
where (D, f) = (—8, 6) can be done by numerical computations. Therein we

may use the following representative Og-ideals:

[,6./-21, [2.3./-2+1], f3,2-2} and [6,./—2+1]
Table I

D.f) TYPE | wx W (D, 1) TYPE | wy w
(—4, 4 @ 8 4 (—4, 28) 82 | 8 4
{(—4, 8 (4 8 4 {—4, 56) (8, 4) 8 4
{(—4, 16) (8) 8 4 (4, 112) (8, 8) 8 4
{4, 3) (2) 12 4 (-8 2 2 . 8 2
(—4, 6 e 12 4 (—8 4 4 8 2
(—4, 12) 4, 2 24 4 (-8, 8) (8) 8 2

C (=4, 24 4, 4 24 4 (—8,3) (2} 6 2
(—4, 48) (4, 8) 24 4 (=8, 6) 2,2 24 2
(~4, 7 4 4 4 (%12 | @249 24 2
(—4, 14) (8) 4 4 (-8, 24) (2,8 | 24 2

Remark 3. In the unramified case, wg is at most a divisor of 12, and

wy > 2 if and only if D= —3 or —4 Hence for any pair (¢;, ¢;) of the
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cl.as:s?s in CUK/Z), n(I{c;)—1)(l(c;)~1) is divisible by 24 if and only if it is
divisible by wwy, and hence Proposition 1 is a generalization of Kersey's
result ([3], ch. 11).

Let Ag(cy) be the subgroup of Ay generated by p and all units of the

following form:
( dplcs ¢) )"
dg(c) Ok (cz)

with a rational integer n such that n(I(cl)—i)(I(cz)wl) =0 (mod 24). Then
by Proposition 1, 4g{¢c,) is contained.in ug EZ*'. Let n, be the least positive
rational integer such that no(l(c,)—1)(I(cy)—~1) = 0 (mod 24) for any pair
{c;, ¢3) of the classes in CI(K/Z). As can be easily confirmed, n, =1, 2, 3 or
6, and ny = $(wx/w) or (wg/w) according to whether wy is divisible by 8 or
not. Moreover by following a procedure similar to one of Kersey ([3], ch. 9,
5), we have (dg; dx(co)) = no[K; X7, and hence Theorem 2.
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Uber eine Vermutung von Choi, Erdés und Nathanson

von

JoacHIM ZOLLNER (Mainz)

Sei N die Menge der natiirlichen Zahlen und N, = Nu {0}. Seien k
und NeN. Eine Menge 4 € Ny mit Oe A heiit Abschnittsbasis der Ordnung
h fir N, falls jedes ne[1, N]n N darstelibar ist als Summe von k Elementen
aus A.

Nach einem bekannten Satz von Lagrange ist jede natiirliche Zahl
darstellbar als Summe von vier Quadraten ganzer Zahlen. Daher ist fiir jedes
NeN die Menge A = [a®|aeN,, a® < N} Abschnittsbasis der Ordnung 4
fir N und es gilt |4} < N34 1.

Choi, Erdss und Nathanson [1] haben Abschnittsbasen A der Ordnung
4 fur jedes NeN konstruiert, die ebenfalls nur aus Quadraten bestehen und
fiir die gilt |4] < (2/log2) N'"*log N. Andererseits folgt aus kombinatorischen
Griinden fiir eine Abschnittsbasis der Ordnung 4, daB [4] > N 14 Eine in [1]
formulierte Vermutung lautet nun:

Zu jedem 23>0 und N> N(e) existiert eine Abschnittsbasis A
der Ordnung 4 fiir N, die nur aus Quadraten besteht und fir die gilt
IAE < N(1/4)+r

Diese Aussage ist offensichtlich dquivalent mit

Satz 1. Zu jedem £ > 0 und jedem Ne N existiert eine Abschnittsbasis A
der Ordnung 4 fir N, die nur aqus Quadraten besteht und fir die gilt
|4l < ¢y N8 mit einem ¢; = ¢y (g) > 0.

Dieser Satz soll im folgenden bewiesen werden. Im Beweis, der in weiten
Teilen dem in [17 folgt, wird an entscheidender Stelle folgendes Exgebnis von
Erdds und Nathanson [2] verwendet:

Zu jedem & > O existiert eine Menge B, von Quadraten so daB Jede
natiirliche Zahl n 4(814+7); 5 telNg darstellbar ist als Summe von
hichstens drei Quadraten aus B, und daB gilt

B,(x) < CXM™*  fir ein C = C(g) > 0.(}

Mit einer kleinen Erginzung versehen, iibernchmen wir dies als

{1} Fiir eine Menge M = N, und xe R bedeutet M (x) = |M [1, x]|.



