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Introduction. Let K be a quartic number field with negative discriminant
and having a quadratic subfield K,. The object of this paper is to give an
effective way of calculating the class number and fundamental units of K at a
time. It is a generalization of our previous paper [6] which treats a cubic
number field with negative discriminant. As in cubic case, the method
depends on the formula of R. Schertz [11] between the class number and the
elliptic unit. The only change is that we consider the relative class number
and relative units with respect to K/K,. A summary of the results has been
given in the note [5, IT], see also the errata at the end of this paper.

A similar method introduced in [S, 1T} is explained fully in a different
paper [8]. The method in [5] is an analogy of G. Gras and M.-N. Gras [1]
which calculates the class number and fundamentat units of an absolutely
abelian real number field. Another generalization of their method is given in
[9] for abelian extensions over imaginary quadratic fields. It is remarkable
that all these algorithms go on by some arithinetic of integers of the ground
ficlds and by computing special values of certain wellknown functions
approximately. This fact stems from the explicitness of the classical theory
developped by Kronecker-Weber and their successors.

In § 1, we quote some necessary results in [7] and show preliminary
lemmas, introducing notations. Theorems 1 and 2, which assure the effective-
ness of the algorithm, are proved in § 2. In § 3, §4 and § 5, the actual
computation is described. § 6 treats another non-galois quartic subficld in the
galois closure ol K/Q. Pure quartic fields Q({'/n) and Q(f/ztm) are
contained in those types of fields we study. Numerical examples are given
in §7.

1. Notations and preliminaries. All number fields we consider are finite
extensions of @ in €. The symbol {a,, ..., o,> implies a subgroup of the
multiplicative group of C generated by its elements ay, ..., a,. The nth root
\"/c_x_ is taken to be positive whenever a. is positive real
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Let K be a quartic number field with discriminant.D < 0 and K, be its
quadratic subfield with discriminant 4, > 0. We consider X in R. According
to [7}, we choose the fundamental units of K as follows. Let H be the
subgroup of relative units in the group E of positive units of K, and take the
generator &; > 1 of the infinite cyclic group H for the first fundamental unit.
Namely, let ‘

(1) &,y =H =1{¢eE| Ngg,()=1}, & >1

As the second fundamental unit, let #, > 1 be the fundamental unit of K,
and take

(2) &2 1€ N2, /812 NI B

Then #,, ¢, are decided uniquely and generate E, see [7], (4-(7) and Remark
I. Let h, h, respectively be the class numbers of K, K,. Then, by Satz (2.3)
and Satz (3.2) of [11],

hihy = (E:<{n, n20)/2.

Here n > 1 is the elliptic unit of K which will be defined by (12) in § 4. Since
ne H, we have

3) n=¢t with B =(H: D)
Therefore it is- obtained by (1), (2) that
(4) h/hz.ﬁ h’ h0/2 With h-o = (E: <61, 712>) = 1 or 2

We assume h,, 7, are known, as they are given in a usual manner, and shall
decide W, hy via the calculation of g,, &, which will be obtained in the form
of their minimal polynomials over Q. The main part of the computation is
that of K, sec §4. An additional investigation is necessary to decide hg,
see § 5.

Relative units have a good feature as follows. Let eeH, &£ > 1, then its
conjugates are given by &*!, exp(+ ./ ~16) with 0 < 6 <x. Therefore K
= Q(e) and the minimal polynomial of ¢ has the form

(5) X*—sX341X2—sX+1 with

Moreover we have

s, te Z.
(6) ai= Ty, () = e+&7" > 2> Ti=2c0s(f) > —2.

. Lemma 1. The coefficient s in (5) is completely decided by the conditions
ais—a)eZ.

And Eheﬁ tin (3) is given by t =2+ a(s—a).
Proof. Since: s =a+T, t=2+aT the lemma 1mmedmtely follows
from (6). :

[s—a| < 2,
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Further let D (g) be the discriminant of & with rebpect to K/Q, thenitisa
non-zero multiple of D.

Lemma 2. The estimation |D| < [D(e)| < 4{(e>+7)° —8%) holds.
Proof. Only the second inequality i1s non-trivial. Define the polynomial
function on R by g(X) = (z— X}*(4—X?), then, by (), we have

D) = (@ ~4) g (T).

In the interval (2, 2), we see g(X) attains its maximum at X = M, where M
is the unique zero of ¢'(X) in (=2, 2). It is easily seen that

oM =3M>—8, —4/3 < M < —8/3a.
Therefore we obtcun
g(M)=4-3" 6(633a4+4536a +1728 — 30 M (da* + 393a” + 864)),
and then
g(M) < 4-375(6330* +45360% + 1728 +(24 — 640~ %) (dor* +3930% + 864)).
Multiplying this by o®—4, we get '
" ID()] < 4-37 (72905 + 107960* — 5753602 — 44544 + 221 184 %).

From this, the lemma follows after an easy calculation.
For any {eE such that K = @(&), let
(7 X —s@ X+t X ~u(d) X +u(0)

be its minimal polynomial over @. In particular, we denote

(8) s=s(e), t=1(e)); & =sle) t'=1(e), ¥ =uley), v =n(e).

Let the nﬁnﬁmal polynomial.of 1 over @ be given by

© XX +te
To compute hy, we need the following two. lemmas.

Lemma 3. Put dy = . /(1> —4c) (s° —4t+8), then dzeN and dy|dy. For ¢
= g N5, we have ,

u(@®=clls—s(@). v(@=1

and

SO = (s dy)2, 1) = Prelr—a).

Proof. Put e=¢; and use the same notation as in (6} Then K,
= @(n;) = Qo) holds, and a, T are the conjugate roots of the irreducible
equation X?—sX +t-2 = 0. Therefore the first statement immediately fol-
Is, t{&) = P+c(t—4), v(§) =1 and
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that s(§) = Trg,,g(anz). Since each a, 7, is the larger one among its con-
jugates, we can compute s(£) directly and obtain the second assertion,
Assume ¢ = —1 in (9), let §=n,(e;—27 ") and put

(10) a=4s—(+2% b=f+af™".

LeMmmA 4. The assumption being as above, we have a, beN and K,
= Q{fi). :
Proof. Put ¢=¢, and use the notation in (6). Then f = #ny(x*—4),
and so Ny, o(f) =@ -4 - T%) =aeN, hence b = Trg,o(f)e N. Suppose
BeZ, then 0<f=@~Tn <4 and a=p>=0 or 1(mod4), while a
= —*({mod 4). Therefore f =2, a=4, 50 s=1,t= —2, thus 2=n0>2,
which is a contradiction. This proves the lemma.

2. An upper bound of 4 and a recursive sequemce
2.1. Let seH, ¢ > 1, then ¢ = ¢" with ne N. The next theorem gives an

easily computable upper bound of n from & and the discriminant D.
TueoreM 1. The assumption being as above, we have

n < B(e): = 2log(e)/log (F(D|/4) +512 7).

Proof. By Lemma 2 above, the result is similarly shown as Theorem 1
of [6].

This theorem enables us to know a finite number of possible values of n
from an approximate value of ¢. Especially, {for the elliptic unit » given by
{12) in § 4, the index k' in (3) is smaller than B(y). Therefore the following
is obvious from {4).

CoroLLaRY 1. The relative class number hih, is smaller than B(n).
2.2. For j, ke Z, define a recursive sequence r, = r,(j, k) (n=1,2,3,..)
by the following:
ry=j, ra=jri—=2k, ry=jro—kr +3j, ry=jra—kry+jry—4,
Ppe=jfrymy — Kbyt ilyes—ry—q (n=35,6,..).
Let feH, &> 1, and neN. Put ¢ = \’/E and ¢ = ¢+¢7 . For every jeZ,

denote by j e Z the nearest one to 2 4o (j—a). Recall the notation in (7} We
may consider only s(-), {-) for units in H on account of (5).

Tugorem 2. The notation being as above, the real number ¢ belongs to H
if and only if there is je Z such that -
1) el <2, U =5, (=2, 227+ +2=t(8).
Moreover s(g) =j, t(e) =J if (11) holds with je Z.

Proof. Assume seH and put j = s(g). Then [j—a| < 2 and j' = t(eg) by
Lemma 1. Writing s{&), 1{£) as polynomials of j, j, we obtain the equalities in
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(11). Conversely, suppose (11) is satisfied by jeZ. Let the roots of the
equation X*—jX3+j X*—jX+1 =0 be A%', p*'. Then A*", u*" are the
conjugates of ¢ by the equalities in (11). So we assume A" = £, and then K
= Q{£) is contained in Q(1). Since A is of degrec at most 4 over @, we
have K = (), therefore le R and ¢= 4/, hence ccH. If e = —4, it is
derived from (6), (11) that 2 > |j—«| = |s{g)+af > 2u~—2 > 2, a contradiction.
This implies that & = A, s(g) =j, t(e) =, thus the proof is complete.

This theorem gives an effective way to judge whether & belongs to H or
not when s(&), (&) are known. During the test we obtain 5{¢), t{g) together
if eeH.

3. Caleulation of a ring class group. To obtain the elliptic unit of K, we
should calculate a ring class subgroup of the imaginary quadratic field F
= (3(./d, D). The results of this section owe very much to F. Halter-Koch
[2], the method is the same as in H. Hasse [3], and the computation goes
similarly as in § 3 of [6], so consult them in detail

Every K we consider is characterized as the maximal real subfield of its
galois closure L = K- F, which is a cyclic quartic ring class field extension
over F with conductor feN , and then D-= —dd, f? holds, where —d is the
discriminant of F. We compute every subgroup U* of the ring class group
R*(f) modulo f in F such that R*(f)/U* is cyclic of order 4 and that the
conductor of U* is exactly f, assuming that d and f are given. We also
compute a class r* such that r* U* is of order 2 in R¥{f)/U*. Note that the
quadratic subextension L, = K, F has the conductor feN, f5|f, over F.

Let I, be the ring of integers of F. To avoid the complexity, we treat
only when [, is principal and f is odd. Then we have

d=23,4,7,8, 11,19, 43, 67 or 163,
f=p1-Pws f2=P1. Py mzm>0

Here py, ..., p,y are distinct prime numbers such that

—d : ‘
P = («;}—) {mod4) for i=1,....,m,
[

—d
where (m) is the Kronecker symbol. In case d=4, we have [,

= +1(mod8). For i =1, .... m', let z; be a primitive ring root. modulo p;, see
Remark 2 of [6], which satisfies z, = n(mod f/p) with neZ, (n,f/p) =1,

and put
k=3 (Pi - (“—_d))
AN

ProrosiTioN 1. The notation being as above, we take x;, =1 or 3 for

i=1,....m—1. Then a subgroup U* of R*(f), corresponding to a cvclic
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quariic ring class field extension L{F with conductor f such that f, is the
conductor of the quadratic subextension L,/F, is represented by the following
principal ideals of F:

I—[(a 2o ) IT G 170,
i=m+1 i=1
where, for i=1, ..., m,
0< X, <4 (i#m), Y <tk i ki even,
0 <k,

0<Y,

< 0<
SX;<2(#m), 0¥ <k  if k odd,
<ik, if d=3, 0< X, +4Y, <k, if d=4.

The class r* represented by z3 I, is of order 2 modulo U*.

Proof. Similarly shown to Proposition 2 of [3].

The field K in question is realized as the maximal real subfield of Land
K, is that of L,. The galois closure of K/Q is L. The discriminant d, of K,
is decided as below. Consider the decomposition df 3 = d, d, such that d, > 0
and —d, <0 are the discriminants of quadratic number fields and that
Jolds)df,. The character y which. corresponds to the guadratic extension
Q(\/(Z .~/ —d4)/F is given by {4.4) of [107]. There is a unique decomposition
as above which satisfies y(z, I,) = ... = y(z,,J;) = — 1, and this determines
the d,. If K, is fixed, in other words, if f; is fixed in addition to d, f,
there are 27~ ' distinct K with the same discriminant D = —dd, f?, each
corresponding to the choice of x, ..., x,-, in Proposition 1.

4. Calenlation of 4, &, and K. We keep the notation in §3. The
representatives of U*, r* U* being given as in Proposition 1, we compute 2y,
Zy (ke U), where the notation is the same as in § 3of [6]. By the elliptic unit
of K, we mean the unit # > 1 defined by

' Im (2,0 11(Z,5)?
{12) = \/ N
1 JImZ) n(z)?

where 7(-) is the Dedekind eta function. Then the formula (4) in § 1 holds as.

we have already seen. Computing a good approximate value of # by Lemma
3 of [5, I] for example, we can decide 5(?1) timy by Lemma 1, recall (5) and
the notation in (7). Such a procedure is actually effective as is explained
in §4 of [6].

The calculation of &; in (1), 5, ¢ in (8) and 4" in (3), from s(n), t(#) and an
approximate value of #, goes completely by the same manner as in § 5 of [6].
. Instead of Theorems 1, 2 there, we now utilize Theorems 1, 2 of this paper
for the effectiveness of our computation. Numerlcal examples in § 7 will
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explain how this algorithm goes. It only uses some arithmetic in Z and can
be translated into a program of electric computers.

As is seen from Lemma 2, the magnitude of n becomes exceedmgly large
unless |D| is small. If the integer part of # has N decimal digits, at Isast 2N +
+2 digits precision is required to decide the coefficients of the minimal
polynomial of #. After we have obtained s(y), t(y), less accuracy for ap-
proximate values of units i5 enough, however. So, it is important to find any
other method, algebraic or else, to decide the minimal polynomial of the
elliptic unit #.

5. Calculation of &5 and hy. The remaining problem is to decide g, in (2)
and h, in {4). We suppose that the minimal polynomial (9) of 5, is known.
Using the notation in (7), (8), we compute §',-¢', v, ¢’ from s, 1, [, c.

To test whether £ =1¢,#%, is a square in K, we need the followmg
proposition. Put ¢ = . /&, v = \/: and o = \/‘+c\/rT

Prorostrion 2. The noration being as above, the real number ¢ is a unit
in E if and only if certain rational integers i, j, k satisfy

(13) fi—oy <2971, s(O=i*=2, t(O=j—2k+2, u(f)=k>—2c.

Moreover, if (13} holds for i, j, ke Z, we have §' =i, ' =j, u' =k, v' =¢ and
ho = 2.

Proof: Assume zekE, then & ce”'n,, v 'exp(+ \/;'10) are its
conjugates over @ with 0 <8 <m. Therefore (13} is shown as in the
proof of Theorem 2. Now take i, j, ke Z which satisfy (13). Then, in the same
way as before, the polynomial g(X) = X*—iX’+jX*—kX+c has a root A
such that K = Q(&) = @(4) and & = + 4. Therefore e€ E is obtained. We also
note that |s(e)—ay} < 29~ ! holds. Suppose & == — A, then i = —s(g), o jouy =i
< 2y7* hence ¢ = —1. While, the integer ay = Try, (¢) is represented as ay
:%(n\/ca —i) with neZ, therefore

Indy +1 < dy™',  |nd, -3 <4yt

If n=0, we obtain ay=—i/2=0, a contradiction. Otherwise, since
ln\/d;'l <4y7), we have dy =5 n=1+1 i=0 namely ay= ;t%‘\/g,
which is also a contradiction. Thus ¢ = A and the proofl ends.

To test whether 71, is a square iIn K, we restrict ourselves to the case
¢ = —1 on actount of Remark 1 of [7].

Proposrrion 3. Assume ¢ = —1 cmd let a, b be given by (10) For \ﬂyz e E,
it is necessary and sufficient that a = a'*, b = b'* —2a’ with ', b’'e Z. And then
S=u=0,t=~Lv=~1and h0=2.

Proof. Let f be-as in Lemma 4. Since K = K, (g, —¢&{ '), the condition
K= Kz(\ﬂ',';) is equivalent to the condition that § is a squate in K,. By

i
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Lemma 4, we can prove that the latter occurs if and only if a = o2, b = b —
—24' by the same method as Theorem 2 or Proposition 2. Other assertions
are frivial

Remark 1. Proposition 2 is a little simpler than Proposition 3 in
[5, II]. The latter, however, indicates a general procedure as in Algorithm 1
of [9] which can be applied to a number field of higher degree. Proposition
3, together with its proof, is a special case of a more general method which
utilizes the Lagrange resolvent. For another example of this method, see
Proposition 4 of [8].

Remark 2. Since K/K, is ramified, either kg or A" is even by (4), so we
get &, # &, 1, if we know k' is odd during the computation of &;. We also sce
thai g, = \/—r;; may occur only when Q(\ﬁ)) = Q(\/—:l), and then a = o
in Proposition 3 is always true. Therefore, by the results of [2], we can
restrict ourselves only in case d = 4d, = 4 (mod 16), f|8, f, =1 and in case
d = d, = 8(mod 16), f = 4, f, = 2, where the notation is the same as in § 3.
These facts are useful in the actual calculation, ‘

All necessary constants in Propositions 2, 3 to decide &, in (2) are
computable by (10) and Lemma 3 after we have obtained s, ¢ in{7), /, ¢ in (9)
and approximate values of &,, #,. Thus ¢, ¢, «, v' and h, are computed in a
finite number of steps, and the calculation of the class number k ends
completely by (4).

6. Another quartic subfield K. The galois closure L of K/Q contains a
totally imaginary non-galois quartic subfield K. Let % and & be its class
number and a fundamental unit. Further let &, and —d, respectively be the

class number and the discriminant of its quadratic subfield K, = Q(\/ﬁ).
Then it easily follows, by the Brauer—Kuroda theorem, from a character
relation of the galois group of L/Q that

thEﬂNmz (e2)]) - ﬁ|log (|€012)'
hylog(n,) hylog(ey)
Since [fo|® = Npx(E)e H by (1), this implies
| K = 2hfho hy = R(H: 5| )/hs
by (2), {4). Applying Proposition S of [7] to this, we obtain
| (H: |20l *>) = 2/Fo

with _
(14) o ={<0, &) <o, Ey)) =1 or 2,

where ¢ is a generator of the group of 2-nd power roots of 1 in K,. So
it follows -that

(15)

g = Nmz(81),

hihy = K Rof2 = hhofh, ho,
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and thus the computation of f is reduced to that of hﬁz, hy. We assume R, is
knO\_zvn by a usgal manner. To decide Ry, it is enough to see whether £ or
0¢; 1s a square in K, and that is accomplished by the same technique as in
§4, §5.

Let s, t be as in (7), then & has its minimal polynomial
(16) X (=D X4 (P~ 24 Y X (-2 X +1,

When d; = 4, taking ¢ = +./—1 suitably, we have

X4 JaX? (2 =2~ X2+ faX +1

as Fhe minimal polynomial of g&,. Here a is given by (10} and ﬁeN holds
as in Remark 2. Assume &, =¢* with e K, and let the minimal polynomial
of & be

(17} XX +jX2—kX +1

with L J, keZ. Then . /ef'exp(+./—16) are the conjugates of
& with 0 <@ < n, so we easily sec that |

(18) k=i

Convgrsely, if (18) holds with i, j, ke Z, a zero, say & of (17) satisfies &2 = &y
t{xeretore R = Q(&)) = Q(s) as before. We can show that —E) is a square in
K if and only if e

(19) k= —i

hold with i, J, keZ, and then (17) gives the minimal polynomial of a
fundamental unit of K. In case d, =4, we consider

(19) 7 =240, K =2-/a, ik=t+2, j=s

in place of (19), in order to test whether ¢& is a square in K or not. On
account of (14), we can state as follows.

Prorosrrion 4. The notation being as above, the index hy = 2 holds if and
only if certain i, j, ke Z satisfy (18) or (19) (satisfy (18) or (197 in case d, = 4),
and then (17) is the minimal polynomial over Q of a fundamental unit of K.
Otherwise by =1 and (16) is the minimal polynomial over Q of a fundamental
unit of K, :

Thus we complete the computation of £ by (15). We add a relation
between h and i derived from Proposition 5 of [7] and (L5) above, in the
end. ‘

CoroLLary 2. If &, = \/rj?fz_ in (2), we have hy=hy =2 and con-
sequently hihy, = hh,. _ :

Remark 3. Since K/K, is abelian and K,/Q is quadratic, we see that
R/R, is a ramified exiension by the fact that K is not galois over @. So we

=241 42, je=s+2,

it =25t =2, j=s-2,
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get i, =2 if k' is odd by using (15) similarly as in Remark 2, and then the
conclusion in Corollary 2 is also valid. In such a case, the integer h/h, = hfh,
is odd.

7. Examples

7.1. We use the notation in § 3 and § 6. The fields K and K are pure if
" and only if d = 4. Then K = Q(¥/n), K = Q(\f 4n), where n = AB2C? with
pairwise relatively prime A, B, Ce N, which is decided by computing the

quartic power residue symbol in Hagse [4]. When the conduclor [ of

IL/F is odd, we give them exactly Let ¥y, ..., V€ Z 50 that

4

and put

=f1| 1 l<m (—l)i—lxl...xf_lyiﬁylfmod"i)}.

Then we have

A :Hpi:

ies

1(mod 8),
—1{mod 8).

]

C—pi, Bm{f/fz € f,

i S
Of course A and C may be replaced with each other.
7.2. Recall the notation in (7), (8), (9). We mean by

X3 +FX2—aX +1

the minimal polynomial of a certain fundamental unit of K in §6. The
symbols h, hy, ho, 1, By, hy and K are as in § 1 and § 6.

(i) Let d =3 in § 3. We first give an example when L/F has an even
conductor. Assume f =16, f;, =8, then d, =24, D = —2'' 3% There is a
_unique K with the discriminant D and the elliptic unit is given by

8w —1+4w 344w e
S ). o

Compute it approximately, and we see # ~ 37.569300442. We use Lemma 1
now. Then 36 < s(n) < 39 follows. Next put a = n+5" ", then 2+a{36—a) ~
- 5799999909, 2+4(37 —a) ~ — 2040408117, 2+ (38 —a) ~ 17.19183675, 2+
+0t(39 —a) ~ 54.78775467, therefore s{n) =36 and () = —58. By Theorem 1,
we get ' < B(n) ~3.1,80 K <3 Let n=2, £ =y in Theorem 2. Then (j, /)
={(5, —6), (6, 0), (7, 6) or (8, 13). Caleulating the recursive sequences in (11),
we-see that \/— ¢ H, so K is odd. Slmllarly we obtain that I is not d1V1SJble
by 3. Hence

J‘;l:

g =1, §=236, tmm58,. h"=.1.
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We mention that hy =1, [ =10, ¢ =1 and #, = 5+2_\/6. Therefore
h0=2, hzl, &g == &1 Kz,

by Remark 2, and s($) = 372, 1{€) = 38, u({) = — 12 (£ =&, u,) by Lemma 3.
By the inequality and the first two equalities in (13), we should have §' = 20,
' =(20"~372)/2 = 14, v’ = (14*+2-38)/40 = 4, on account of Proposition
2. Indeed the last equality in (13) is satisfied, too, ie. 4*—28 = —12. Thus

§=20, (=14, u' =4, v=1,

Either Corollary 2 or Remark 3 says that

;;O«v----z5 H= I,
since d, = 8, I, = 1. We actually see 2s+1+2 = 16 = 42, 50
F=4, T=238, ii=4

by Proposition 4.

(i)} As an example of Proposition 1, let d = 7, f =f, = 3. Then d, = 21,
D =377 and K is uniquely decided. In this case, we see 1 ~ 2.3692054048
and obtain
ho=1, t= -3,

& =1, S=1:

only by Lemma 1 and Theorem 1. As in (i), we get

homQ:. £ = JE L Mz

since hy =1. As =5, ¢=1 and 5, =4(5+./21), we have X*—13X%+
+18X?+8X —1 as the minimal polynomial of s; n, by Lemma 3. In
Proposition 2, we may test only for i = 4, 5. In the same way as above, we
obtain

h=1,

=5 t=6 w=2v=1.
Since d, =3, fi, = 1, Proposition 4 shows easily that
Fo=2, k=1, GL@=(,31).

(ili} We treat the case as in Remark 2. Let d =8, f =4, f, = 2. Then
d; =8, D=2 and K is unique. We know h, =1, n, =1+./2, I =2,
¢= —1,d, =4 and k, = 1. Utilizing the approximate value 5 ~ 4.611581784,
it is shown that

W=1, (0= —2, hy=2 h=1.

By (10), we have a = 64 = 82, b ~ 47,99999988, hence b = 50. Putting o' = b’
= 8§ in Préposition 3, we find .

=(0, —2,0, ~1),

£y = Hz, (.S", r,! ula.vl)
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which again proves hq = 2. For K, considering (19°) now, we get
Fo=2 k=1

{iv) In case the class number of F = @(,/d, D) is not 1, we have the
following example. Let d =39, [ = L. Namely,l let K be the maximal real

subfield of the absolute class field of Q(./~—39). Then n ~ 1.722083804. So
we see that

F=T=1=4,

h’=]., h0=2,
aind that
s, ) =(1.—1), (1w v)=(2, =2, -3, -1, GrmH=1,-1,-1).

7.3. For pure quartic fields K = Q({%—ﬂ and K = Q((‘%—Aln), ngN, a
few numerical results are given in the table below. We mention that
£, % /1, in (2) as in Remark 2 and that ¢, 1, ', v’ are obtained by Lemma
3 when g, =¢g,#4,, hy = 1. The method in 7.1 is applied to decide »n for f
=15. :

Table 1
Sln K |s th!ls, ¢ o o1 h|his F oi&|k
6| 12| 2 2, O 1 10, 12, =2, i 1 1 [=2 & —-2| 1t
71 21 4, —1[ 2 13, 13, -4, [ 2 3, 6 ERIN|
8 211 112, 6| 2 4, =6, 4, —-11 1 2 4, 10, —4| 1
10 51 2 6, 6 1 8, —1, 2 171 2 2, 4, —=2|1
12 31 2 (14, 24| 1 46, 36, 10, 11 1 22,150, 22| 1
15 15401 2 4, —9( 2 8 9 2 1] 4 2 1, 6 1| 4
15 60 2 |64, 66| 1 (496, 126, 16, 1| 2 | 2 | 14 66, 14| 4

An approximate value of # utilized in each case above is listed in the
following table. The integer part of the upper bound B(y) of I, the

coefficients s(y), t(n) and an approximate value of 2+u(s(#)—w), where
1

g =n-+5 °, are also contained there.
Table 2

fin m LBm) | sty | rin) 2+a(s(n)--o)

6| 12 5274510563 3 4 -6 ~5,999999990
7128 4419480363 - 3 4 -1 —0.999999985
8 2 11.57042700 4 12 6 6.000000187
1wl s 2537700210 2 24 —34 - 33,99999979
12 3 146.7393188 5 148 186 186.0000463
15 | 540 3246112731 2 34 51 50.99999993
151 60 3964.967221 5 3964 | —3834 [ —3833.999769

icm
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Errata for [5, 1]

page line lor read

117 5 positive units positive relative units

118 38 2+ a{o—3) 24a(s—a)
120 5 generates is of order 2 in
2 Uk S
References

[1] G. Gras and M.-N. Gras, Calenl du nombre de clusses et des unités des extensions
abéliennes réelles de @, Bull. Soc. Math, France 2° série 101 (1977}, pp. 97-129.

{2] F. Halter-Koch, Arithmetische Theorie der Normalkdrper von 2-Potenzgrad mit

' Diedergruppe, J. Number Theory 3 (1971), pp. 412-443.

(31 H. Hasse, Arithmerische Theorie der kubischen Zahikdrper auf klassenkérpertheorverischer
Grundlage, Math. Z. 31 (1930), pp. 565-582.

[4] -~ Berichr fiber neuere Uniersuchungen und Probleme aus dev Theorie der algebraischen
Zahlkérper, Wirzburg, Wien, 1970,

[51 K. Nakamula, Class number calculation and ellipric unit, I, 1, I1I, Proc. Japan Acad.
57A (1981), pp. 7781, 117120, 363-366.

(6] -~ Class munber culculation of ¢ cubic field from the elliptic unit, . Reine Angew. Math.
331 (1982), pp. 114-123,

[71 — A construction of the groups of units of some mumber fields from certain subgroups,
Tokyo J. Math, 5 (1982), pp. 85-106.

[8] — Class number caleulation of o sextic field from the elliptic unit, Acta Arith,, this
volume, pp. 229-247.

[9] — Caleulation of the class numbers and fundamenial units of abelian extensions over

imaginary quadratic fields from approximate values of elliptic units, to appear in J. Math.
Soc. Japan 37 (2} (1985). .
[10] R. Schertz, L-Reien in Imagindr-quadratischen Zahlkdrpern und ithre Anwendung auf
Klassenzahlprobleme bei biquadratischen Zahlkorpern (I, J. Reine Angew. Math. 270
{1975 pp. 195 212
[11] ~ Die Klassenzahl der Teilksrper abelscher Erweiterungen imagindr-quadratischer Zahl-
korper II, ibid. 296 (1977), pp. 58-79.

DEPARTMENT OF MATHEMATICS, TOKYQ METROPOLITAN UNIVERSITY
2-1-1 Fukazawa, Setagayn, Tokyo, 158 Jupan

Reeeived on 6.12.1983 (E386)



