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Introduction. Let K be a sextic field which contains a real quadratic
subfield K, and a not totally real cubic subfield K. The object of this paper
is to give an effective way of calculating the class number and fundamental
units of K at a time. Together with [4], it generalizes our previous result in
[2] which treats K itself. The method depends on the class number formula
of R. Schertz [6] related to the elliptic unit. The main part of the compu-
tation is that of the relative class number and relative units of K with respect
to K, and Kj. A summary of the results has been given in [1, IIf], see also
the errata at thé end of this paper.

As the [eatures of our algorithm are explained in the papers [2], [4],
[5], they are not repeated here. The idea used in the algorithm is typically
seen in the proofs of Theorem 2 of [2], Theorem 2 and Proposition 2 of [4],
and in Proposition 7 of [5]. In the case we are going to investigate in this
paper, it is necessary for growth of efficiency of the method to do some
technical consideration, so the descrlpuon may become more detailed than in
general case.

In § 1, we quote some results in [3] and show preliminary lemmas,

~ introducing notations. Theorems 1 and 2, which assure the effectiveness of

the computation, are proved in § 2. The actual calculation will be explained
in§3,§4, §5 In § 6, another non-galois sextic subfield of the galois closure
of K/ is studied. Pure sextic ficlds Q(\ﬁ/;i) and Q% —27n) are contained in
those types of fields we consider, Numerical examples are given in § 7.

1. Notations and preliminaries. All number fields we consider are finite
extcusiont; of @ in C. A subgroup of the multiplicative group of € generated
by x(, ..., a, is denoted by <oc1, . Oﬁn>~ The nth root \’/o? s always positive
when « iz positive real.

Let K, be a quadratic number field with discriminant dz >0 and K; be
a cubic number field with discriminant —d; < 0. Then the composite field K
=K,7K; is a non-galois sextic field with positive discriminant D. We ~
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consider K is contained in R. According to [3], we choose the fundamental
units &, &,, 83 of K as follows. Let E be the group of positive units of K and
H be its subgroup which consists of relative units with respect to K, and K.
As the first fundamental unit, take the generator ¢; > 1 of the infinite cyclic
group H. Namely, we let

(1 (61> =H = ek Nx,tx:,:(ﬁ) = Ny, (&) = 1, & > L.

Further let i, > 1 be the fundamental unit of K; for / =2, 3. Then, as the
second and the third fundamental units, we can take

1 3/0 o FL 3/ 0 \
(2) 82 €48 N2 8L NS w\/’hr: gg > 1,

(3) 836‘{81 773, -\/81 n:;}, (‘53 = 1

As is shown in (12}-(17) and Remark 3 of [3], these &, &,, &3 are uniquely
decided and generate E. Let h, hy, hy respectively be the class numbers of K,
K,, K;. Then, by (4.28) of [6],

hhy by = (E: {7, 12, 13 0)/6

" holds with the elliptic unit 4 > [, which will be defined by (12) in § 3. Since #
belongs to H, we have

{4) n=2¢"  with W =(H: ).
Therefore it is obtained by (1)-(3) that
‘(5) hihy by =R g6 with  hy=(E: (s, ny, 130 =1,2,3 or 6.

We may assume hy, h; and #,, 113 are known as they are computed in the
usual manner and by the resuit in [2]. We shall decide &, h, via the
determination of the &, &, &, which will be given in the form of their
minimal polynomials over .

For esH, > 1, the conjugates are s*!, /cflcxp(i\/:ml'ﬂ) with
0 <@ < m, so its minimal polynomial has the form

{6) XXX —uX 1 X2 - sX +1, ue=s242s— 242

with s rel.

Moreover, we see that

{7y —-2<T:i=2cos() <2 <upre= \/c—w}-\/;:;l <Pi=ot—2=gtp!
_ =TIKIKJ(£)'
LemMa 1. The coefficient s in (6) is completely decided by the conditions
s—fl <2, pls+2—-P+a 2s+2’eZ.
And then t in (6) is given by t = B(s+2—f)+a~ 2 (s+2)%— 25— 1.
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Proof. Since s = f+aT t = f(1+aT)+T?+1, the lemma immediately
follows from (6).

Further let D(g) be the discriminant of ¢ with respect to K/ Then it is a
non-zero multiple of D.

Lemma 2. The estimation D < D(g) < 16((e+9)7 —290) holds.

Proof. To see the second inequality, we put g(X) = (2 —a— X)? x
(2 — X)? (e + X}(4— X?) as in the proof of Lemma 2 in [4]. Then it follows

~ from (7) that :

VB == (B-2g(T).

We see g(X)<g(M) if |X| <2, where M is decided by the condition
g'(M) =0 ({M] < 2) and satisfies

—~(B?+9B—14)aM = 4F> + 8B —(B?+3B + 14) M2 —(3f — )M + 4M*,
. —1 <M< — 201,
Utilizing the equality, we can transform g(M) after a tedious calculation

mmto the form

6
g(M) = Ag— ¥ A (—aM)+BME,
=

t

Here the positive numbers Ay, ..., Ag, B are given by the following
expressions with y = a?: '

Ap =4y° +8y*—28y°,
A = 80p3 27292,
Ay =y 42y —3992 4188y,
A = 27— 207>+ T4y — 108,
A, = 6y—33+4dy 1,
As =2—14y7 1 +40y7 2,
Ag=1-2y7"145)"2-20p7 %,
B =8y—7—2aM"'(3y*—12y48).
Since —2aM ™! <y, we get B < 3y*—12y2+16y—7. Therefore

6
gM) < Ag— 3 P A+ 127+ 16y -7
i=1

= 495+ 4y* —209v° 4+ 848y7 — 1424y + 1225 - 128y~ ?
— 1600y ™% — 128073, '

4 ~ Al Arithmelica XLY 3
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and hence

(B~2)g (M) < 495 — 129° —225y* + 1684y — 4816y + 6921y — 4900

Multiplying this by e—¢™1, we -easily obtain the expected inequality in the

lemma.
For any £eF such that K = @(£), let

(8) Xo-s(O) X+t X* —u(Q) X 4o X~ w(§) X +x(8)

be its minimal polynomial over Q. In parti_cular, we denote
si=s(8), f=t), w=ulg)

(%)

w=uvle), we=wE, x=x(),

for i =1, 2, 3. Note that s, =w,, t; = v, t; = $7+25, —21;+2 and x, = |
by (6). The minimal polynomials of #, and n, are respectively denoted by

(10) X2 —IX+c and X —ypXZP4zX-—I.

Lemma 3. (i) Put dy = /(P —4c)(s]+4s, ~4t,), then dye N and dy|ds.
For & =z n,, the coefficients in (8) are given by

SO =w@) =y +dy), 1O = ow(@) = s, +elt, —25,)—I5(&),
u(€) = Ptcl(uy —s, +1,—5)—cs,s(0),  x(&) =c.

For ¢ =g, 137", we may only replace | by cl and dy by —cdy in the above.

(i) Put B=c¢,+e7 " and let
w=3p =25 f-st+4t,—12, A=372—2zn5 ' —z2+4y,
then ui >0 and \/J¢Z. For y. = fni', pur the rational integers
Vi =Trgyalys), 2z =uoﬂi‘|‘3’i(y+““7’¥)=

where 1 = u, 25, = Ngq,0(f). Then it follows that

Yo =y-+3ls— Bz —n3 ki /A
for a unique appropriate choice of the sign and that
Vo =9 - B —na) = =y )my
For ¢ =g #n;, rﬁe coefficients in (8) are given by
s@=ys, )=y -2tz wl=y., v@=
u(@) =uo+(yz—1)s; —yy-~zy,, x{&=1.

Proof. Put ¢ =¢, and use the notation in (7). Observe that K, == Qns)

‘= Qe+ Ty/e~*). Then the first statement of (i) follows since &' + T\/ﬂ: Lare
the zeros of X =8, X+t ~s;. Other assertions in (i) are shown by (10)

2—"2y+2-=s
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like Lemma 3 of [4]. To prove (ii), let ¢ be the argument of the imaginary
conjugate of 57! which is taken so that

= =y 508 = Bz~ 13 Y+ (B —2) (4~ T3, sin ().

Since K3 =Q(n3')=Q(f) and p is the real zero of X3®—g5 X%+

(t1—3)X to. we see, on account of (10), that x={f—2)(4— T"*)>0
A = 41, si0*(p) > 0, and that the discriminants D3(B), Ds(ns 'y of B, it
given by

#(tsi =30 +9)" = =Dy, AA+22--3y) = Dy (53 ).

We notice that these are the defining equations of » and A. If we suppose
that n:= . /xleZ, then

Dy (A) 4> = —n?((sT— 31, + 9 A+ 03P,
therefore Dy (55 ') = m® with m = $(z*—3y) by the uniqueness of the defining

equation of 4, hence (A-+m)(A* +3mA+m?) = 0, which is a contradiction. ThlS
implies that \/~ ¢Z, so one and only one of

7-+hs1 =B —n3 N1t ud
belongs to Z and coincides with y_. Other assertions in (ii) are checked by
direct calculation.

Remark [. The above lemma gives a way to compute the minimal
polynomials of &, #f', & #; from those of &, 1,, 13. For & = ¢, 15, we need
good approximate values of both § and #y. The following relations are
also useful:

VeZdsi 2.+ =3y, = upmi —(3u, =38, —s, 1)) ny,
where my, =n_ =y, n, =m._ =z, It is shown that y_ are primitive elements
of K3, so another method similar to that in § 4 of [2] may be used to decide
Yy Zx-
2. An upper bound of 4’ and a recursive seguence. _
21, Let geH, ¢>1, then e=2¢! with neN. As it is easy to- see
D = 53237 the following estimate of the index » is always meaningful.
Turorem 1. The notarion being us above, the following holds:

log (¢)/log (\//D/16 -+ 290 —(9/7)).

Proof. If we notice that K = Q(z). the estimation is derived from
Lemma 2 in the same way as Theorem 1 of [2].

For the elliptic unit #, we get &' < B(») by (4), so the relative class
number is estimated as below by (5).

Corortary 1. The inequality hih, hy < B(y) holds.

n<Bg)=

LI
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2.2, For i, jeZ, put k=i2+2i—2j+2 and define a recursive sequence
r,=r,i, /) (n=1,2,3,..) by the following:
Fyo=0, ry =irg—2f, ry = irp—jry+3k, ry=iry —jry+kry —4j,
1‘5 = i?'4~jr3+kr2-j1‘1+5i, r6 = irs ""jr4+k."3 ~jr‘2+i1‘1 "‘6,

Fp = gy =g T Ky =ty F il s —Tpg (B = 7,8,9,..).

let £eH, £€>1, neN and put ¢ = \”/;S o= \ﬂ:+\ﬂ:"", B=sdet.
~ For ie Z, denote by i the nearest element of Z to Bli+2—p) +a 2 (i+2~
—2i—1. We may consider only s(-) and ¢(-) in (8) for units in H on account
of (6).

TueoreM 2. The notation being as above, the real number ¢ is a unit in H
if and only if a certain ieZ satisfies that

li—B| < 2a,
i, 1) =5(8), (i —i=3, rali, )+ —i) = (&) —s(E)—3.

Moreover 5{g) =1 and t{g) =i if (11) holds with ic Z.

Proof. Similar to that of Theorem 2 in [2] or [4] by virtue of
Lemma L.

Remark 2. We have a finite number of possible values of i which may
satisfy (11), so we can test effectively whether £ is a nth root in K or not.
The number of possibilities, however, increases as ¢ becomes large. This
differs from the cubic case [2] or the quartic case [4].

(11)

3. Cakeulation of a ring class group. To obtain the elliptic unit of K, we
compute a ring class group of an imaginary quadratic field. The principle of
this section is the same as in § 3 of [2].

Let F=Q(./—d;), Ry =0Q(/—dyds) and —d, —d, respectively be
their discriminants. Then d,d, = df dy = dff with f;, f;eN. Let f be the
least common multiple of f, and fy, then D =dd,d, f* holds. For n =2, 3,
let U¥ be a subgroup of index n in the ring class group R*(f) modulo fin F
such that its conductor is exactly f,. Put U* = U¥ ~U% and let L be the
cyclic sextic class field over F corresponding to U¥, Every K we consider is
realized as the maximal real subfield of such an L. The class group U* and a
class r*e R*(f), r*¢ U%, r*¢ U}, are obiained syStematically by the exact
sequence {4) of [2], assuming that o and [ are given. It will be complicated to
write down the general result exactly, so a special case is given below explicitly.

Suppose the ring I, of integers of F is principal and f = f, =f3, then

d=13,4,7,8, 11,19, 43, 67 or 163;
f=fi=fi=pi . bm  (f,6)=1.
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Here m > 0 and py, ..., p, are distinct prime numbers such that

p= (—_—‘—i) (mod3) (i=1,...,m),

i

—dy
where (——) is the Kronecker symbol. For i=1, ..., m, put

o io-2)

and let z; be a primitive ring root modulo p;, see Remark 2 of [2], such that
20+, (z f)=1, with the additional condition zf(1+./~3).
eQ+pl, if d=3 Take x;=1 or Sfor i=1,..., m—1 In case d =3, we
further assume
kl _xl k2+x1 x:z k3_‘ v +("""1)m_1 xl .... xm_1 km = 0(1110d3).
Prorosirion 1. For every choice of Xy, ..., Xp-y, the following principal
ideals of F represent U* satisfying the conditions above:

m-1

. X oY
H (Z?'Z:'H) lnzi tI,
i=1

i=1
where

0< X, <6(=1,..,m=1), O0<Y<k(=1..m),
X,_1+6Y, <2k, ifd=3, Y,<ik, ifd=4

The class r* represented by z, I, generates R*(f) together with U*.
Proof. Similar to Proposition 2 of [2].

The representatives of r* and U* being obtained as integral ideals of F
prime to f, the elliptic unit 4 of K is given by

‘ APl A(r k) _ 2
{12) n= ’EJ TARACH Ak) = JIm(ZJn(Z>  (keR(f)).

Here the notation is the same as in § 3 of [2]

4. Caleulation of n, ¢, and 4. For # in (12), we Cﬂn}'l compute s(n), £(n)
in (8) by Lemma 1 from a good approximate value of # as in § 4 of [2],

:and then the minimal polynomial of n is obtained by (6). The compu-

tation of ¢, in (1), s, t; in (9) and &' in (4) goes mostly in the same. manner
as in § 5 of [2]. The effectiveness of the calculation is mow assured by
Theorems 1 and 2 above. Although we need many steps of computation, see
Remark 2, it is possible to write this algorithm in a program of clectric
computers. Indeed, numerical examples in § 7 are computed by a BASIC
program applied to a pocket computer. The example in §7.1 will show fully
how the computation actually goes. o
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5, Calculation of ¢,, ¢; and hy. After we have obtained ¢, /', we should
decide ¢,, &5 in (2), (3) and kg in (5). More precisely, we should compute the
integers in (9) for n =2, 3, from sy, fy, L ¢, x, ¥y in (9), (10}

ProposirioN 2. Put & =g nf' and let ¢=Y¢ a=e+ce™l, B
= e /e \4+ce” !\ Je,. Then it is necessary and sufficient for s E that certain

i, J. ke Z satisfy .
li—of <2ipl, [—p—ali—a) <2,
s(&) = =3m, t(&)—c =j(?~3ni--3)+3mn,
#(E) = k(k*—3i%—3¢j® +9¢) + 6n(j +¢),
where m=i(j+e)—k, n=m—ci; and then 5, =wy =1, t; =ty =j+¢ U,
=k, xy=1c and 3|h,.

Proof. Since K = Q(£), all the assertions are proved in the same way
as Propesition 2 of [4].

ProPOSITION 3. Put & =g, 13, oc—\/—ﬁ—\/;: , y—\/ng, &= /& s
=8+2 and let y,, z, be as in Lemma 3 (ii). Then the condition that cekE
is equivalent to the existence of i, Je Z such that

li—oy <2 fsqu™ty7 1,

Zy 2y +25qz = jE—2spi.

: +2y =27,
(13) Y2y 4]

When (13) is satisfied by i jeZ, put (I, 7)=(3n,37% if (i,} so)
=(ny, n*z, n') with n=1 or 2, otherwise take i, j'c Z, which are uniquely
decided by the following condition:

W—ay ™t <2 /spa™y, J =sealy+ay T {if—ay™h).

Then 2\ ho and the coefficients in (9) of &, are given by

§3 =1, ty =j+y¥, Wy =, Ua =j’+2,

Us—Sp = (Soz+ 22~y +jy+f)i, x3=1.
Proof. Put f =g +e&7 !, then X?—pn; X +9} is the minimal poly-

nomial of ¢ over K;. Therefore, in the same way as before, the condition
that ee E is equwalem to the existence of integers A, u of K, such that finy

= 122y, u* = 3, and so to the condition that oy = \/([i:ln'l) 1y & K4 since y
should be positive. Under these equivalent conditions, the mlmmal poly-
_ nomlal of & over K3 is

X2 —ap X +1.

Now we apply the same technique to judge whether (84 2)n; is a square or

icm
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not in K,. Note that K, = Q((f+2)n;) holds. Because, if not so, the
minimal polynomial of f+2 is written in two ways, namely

X3 —(so+4) X2+ (dso+ 1+ 1) X —s5% = X3 —zk X2+ pk? X~k

with k:=(8+2)n; >4, hence 16 = k{k*—z?k+8z), a contradiction. Since
the minimal polynomial of (f+2)y, is equal to

X (e + ) X2 4 (2, —2v_ +2502) X ~ 52,

we see that oy belongs to K, or equivalently ¢ belongs to E, if and only if
(13) holds with rational integers /, j. Assume (13) is satisfied by i, je Z. Then
the minimal polynomial of ay is given by

X3 iX?4jX —s4,

and ay~?! also belongs to K. If we put
i'="Trgolay™ "), J = 80 Trxgele™" ),
then ay~! is a real zero of

X3 i X 4] X —s,.
When n:=ay ' elV, considering the minimal polynomials of ay and f+-2
similarly as above, we get
i J, sa) =(ny,n?z, n?), 16 =n?(n*—y*n?+8y),
therefore n = 1 or 2, and then {7, j) = (3n, 3n?). Otherwise 7, j’ is decided by

- the condition in the proposition. It is now easy to compute the minimal

polynomial of &5 =&, and the proof ends.
Remark 3. For £ =g, 5;, we have another equwaient condition to
o= \/E in (3), and that can be shown like Proposition 2. Precisely, the

solubility of the following simultancous diophantine equations with variables
s, t, u, v, wis the equivalent condition:

s =852, (&) =r*—-2su+2v,

w(&) =wr—2v, o =v*=2wu+2r, u(}=u>+2sw—2t0—2.

This has more possibilities of generalization, though the minimal pelynomial
of ~.\/f may be obtained. In Proposition 3, the case ay™! =1 or 2 surely
occurs, see § 7.2 (i), at most 10 possible ﬁelds exist, however. The conditions
in Propositions 2 and 3 seem to be complicated. But they are arranged to
increase efficiency to go on the numerical computation, see § 7.1.

Let —djy be the discriminant: of #y, then
27d3 =m?—4n® with m=2y3-9yz+27, n=y*-3z,

Put ¢=2y, and a=./27d;(*—4c), then we have a refinement of
Proposition 1 in [1, IIT] as follows. o
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ProrosiTioN 4. If e E, then s, =ty =v, =w, =0, u; = I, x; = ¢, 3| hy
and K, = Q. /3d,), i.e. acN. Under the condition that ac N, the case tc¢ E
occurs if and only if

B —3cnb=L(m+a) or (mmc)=(F"1Lb41)

holds with a certain be Z.

Proof. When seE, the discriminant of s4+ce™* is —27(*—4¢), hence
the firsi statement is proved easily. Suppose that ae ¥ and let f§ = 0 be the
larger root of the irreducible equation X*—mX +n® =0, then K, = Q(f)
and K = K;(f). The equation X*—(3#;—y)X+n =0 has distinct positive
roots, so let & be the larger one. Then, since (313 —y)* —3n(3n; —y) = m, we
see o® = f, therefore K3(B) = K3 (). As x is at most quadratic over K, this
shows that oe K. Consequently K = K, (x) because a¢ K,. As is easily seen,
this implies that K = K, () holds if and only il 1, or ¢fin; ' is a cube in K.
When fr;'eZ, we bave (m, n, ¢) =(b*1, b%, 1) and Bn;'=b* with b Z.
Otherwise fn, or c¢fin; ' respectively is a root of the irreducible eguation

—3(m+a) X +en =0,

whose root is a cube in. K, if and only if $(im+a) = b —3cnb with be Z

as before. Thus we complete the proof.

Remark 4. The original proof of this proposition comes from the fact
that the galois closure L of K/Q contains  =3(~1 —|—\/:—§), ie.
O/ —dydy) = Q(\/jg), and that o is the Lagrange resolvent relative to #;
and {. Proposition 3 of [4] is also shown by the same idea. .

By these propositions above, we can completely determine ¢,, ¢4, kg, and
thus the class number k is obtained together by (5) provided h,, h; are

known. All necessary informations to go on this algorithm are obtained from
Lemma 3.

Remark 5. As to (5), we have 6| hg b (hy, ha, 3) by Satz {3.3) of [7] and
6| hy i unless K, = Q(\/Efi;) by the remark there. Using the notation in § 3,
we can verify that ¢, = \3/11_; may occur only when F = Q(\/ —3d,) and fis a
power of 3. In other words, we may test whether », is a cube or not in X
only in case d = 3d,, 419, /5 = 1 or in case 3d = d,, [319, f = 3. These facts
are useful to make our calculation more efficient.

6. Another sextic subfield K The galois closure L = K(\/ —dy) contains
a totally imaginary non-galois sextic subfield K = K (\/ —d, da and its
quadratic subfield £, = Q(./—d, dy) with discriminant —d,. As in Remark
3 and (13) of [3], we can take a relative fundamental unit &, of K/K;, ie. a
unit which generates together with roots of unity the subgroup of units of K
whose absolute values are equal to 1, as the first fundamental unit of K.

icm

Class number calculation of u sextic field 239

Then & := Ny z(e3) becomes the second fundamental unit of K by Corollary
to Proposition 6 of [3], where £; is any imaginary conjugate of ; in (3). Let
B, B, be the class pumbers of K, K, respectively. Then the following class
number relation is derived from a character relation of the galois group of
L/Q by using the Braver—Kuroda theorem:

fh log (NK/KZ (32)) _ E|10g (NE/K3 (53)) log (|36|2)J
halogln,) hylog (NK/K3 (e3))log(ey)

Here &5 is a conjugate of §, such that g, ¢ XK. Since lzg]*e H by (1) and since
Ny (63) Nggxey (83) = 1, this implies that

(2, ho) W' h3/2 = 3h/(3, hy) hy = H(

H: {5 ))/h,
on account of (2), (5). Applying Proposition 6 of [3] to the above, we get
(H: 8> )) = 3/hq

with

(14) ho=({o. B>, &) =1 or 3, & = Nyg(ey),

where ] is an imaginary conjugate of &, and g =4(—1+ \/——'5) if d; =3,
otherwise ¢ = 1. Hence we have

(15) Bihy hy = (2, ho) I Rof6 == g BJ(3, ho) By hy.

Thus the computation of & is reduced to that of %,, which is easily known,

and of Ay, which is determined by testing whether 7, is a cube in K modulo

{g> or not so, sec (14). :
Under the notation in (9), we determine the. minimal polynomial

(16) ’ X6"‘§0X5+F0X4Wﬁ0X3+FDX2—S~0X+1

of a relative fundamental unit &, and the index k.
Prorosrion 5. If a certain ie Z satisfies

an (i35, —9) =1, +55, +9,

then i},_% and Fp =1, t0~1+sl+3 iy =it—25,—4. In case d, =3, if
certpin i, je Z satisfy

(17 P2 — i =5 +3, 9i2j—(i+j)3=t1+531+9,
then By =13 and

fy = dij—i?—j? =1,

Sy =2i—j, To=5+3—i+2,

" Otherwise iy =1 and

~

So=t1~8—3, Ffo=s1=3st;4+3u+t;—sy, iy =755+25—2F
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Proof. By the definition, the minimal polynomial of #; over K, is given
by X?-axX®+aX—1 with

QH_&:Q-“Sl—?’, aiz=9%“33'1r1+3u1+3‘

Therefore, for weK,, > =1, the unit & is a root of the irreducible
polynomial X3 —waX?+wx X ~1 over K,. This implies that @, = -3 with
ceK if and only if

o = [ —3pt 38, wo =y —3hyé+35%

hold with cerlain integers 8, y, 6 of K,, and then X?—fX?4+yX —§ is the
minimal polynomial of such an & over K;. By Lemma 2 of [3], we observe
that & = e, y = wp and B = s, +3 should hold then. Hence g == 3 occurs if
and only if o-+3s,+6 = @f> with certain f, we K, such that ff = s, +3, @
=1: and X*—fX?*+0fX—o is the minimal polynomial of a relative
fundamental unit £, over K, then. Otherwise X*>—aX*+&X 1 is that of &
=7,. The proposition is now easily shown as an interpretation of this fact.

Proposition 5 completes the computation of i on account of (15). It is

an easy matter to see that the mjnimal polynomial

(18) X6 5 XS+ X4 ity X348, X2~ X +1

3 =1

of the second fundamental unit & above is given by
Ty = f3—W3— Yo, f3 = va+(s3+20) 50— W3 (t3 — Vo),

(19) iy = 83wy —tz+1lo—5o—3,
Wy = 13— 83— Zo, T = {3+ (W3 + Yo) So— 93 (V3 — Zo).

Here, when hy =1, _

(200 yo=y*—22, zq=122=2y, §g=s51—2,42, {lo=1t3=25u +2,

and, when hy =3, ' '

So =8 +2,

(21) J’O:}G ZOEZ,, Fomfl.

Proposition 6 of [3] and (15) above prove an analogous resull to
Corollary 2 of [4].

CoroLLARY 2. If o= Yeynst in (2), we have By =(hy, 3} =13, s0
hihy by = Rfhy by, , ‘

Remark 6 By Satz (3.3) of [7], it is known that fi, hy | A. This is also
utilized to go on the actual calculation together with Remark 5. In par-
ticnlar, if &' is prime to 6, the conclusion in Corollary 2 is valid unless
d, =3, and then the integer ‘hth, hy = B/R, by is prime to 6.

7. Examples. We keep the notation in § 1 and § 6 for the class numbers
and the indices of groups of units. Recall the symbols in (8)-(10), (16) and

icm
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(18) for units. When the meaning is clear, we simply denote 5 = s(5), t =1(Q),
w=u(f), v=v(), w=w() and x = x(§) for feE.

7.1, This example is given to describe our algorithm clearly. Let d = 3,
S =10 1n § 3, then R*(10) is cyclic of order 6 and K is uniguely decided
as the maximal real subfield of the ring class field modulo 10 over
F= Q(\/"—“t’;). The ring ideals

22+0Z, 6Z+aZ, S8Z+(at+2)Z, 14Z+(2+6) 2

represent the class group of ring ideals modulo 10, where x = 10 \/——3 . We
also see that fo =35, f3 =10, d; = 5, dy =300, d, = 15, D = 450000 and

K=0Q(J80, K,=0Q(/3 Ks=0Q(¥10).

Computing # in (12) approximately, see Lemma 3 of [1, I] for example, we
get

N ~ 9.649476639.

Let ¢ =% in Lemma 1, then 3 < s(n) < 16. Computing

S =(+2-p+({+22"2-2—1 (i=3,4,... 16
approximately, see Table 1, we find that 8, is the nearest to Z, and hence
smr=16, tm=75  u(y = 140.

Table 1

i & i ) i 8 i &

3] —31.23049638 | 7] —1545336292 11| 2304645433 15|  64.26895538
41 —4254146462 | 8| —60836602(9 [12]  33.09682799  {16]  74.99999599
5| ~33.68226513 | 9 3456210229 {13|  43,31736938

6 - 24.65289789  |10| 1316624841 14 53.70807851

Since B(n) ~ 21.072, Theorem 1 claims that & < 21 in (4). We start the
divisibility test of A'. In Theorem 2, let & = n, n = 2. Then, by the inequality in
(11), we may calculate the recursive sequence for (i, i) = (—~1, —7), (0, —5),
(L, —3), (2, 0), (3, 3), (4, 6), (5, 10), (6, 14), (7, 19), {8, 24). Among these, only
1 (8, 24) coincides with s(n), -but ry(24—8—3, r3(8, 24)+24-8) # 1 (1) ~
~5(n)—3. Therefore \/neéH and 2t K. Next let £ =5, n =23 in Theorem 2.
Then it is verified that {11} holds for (i, i) =(1, 0), and then \%—TEH, R
i=H/3eZ, s(Im =1, t(Jn)=0 follow. Put now ¢ =3y and repeat the
same procedure for n =3, 5, 7, and we sec that h" is prime to 3, 5, 7, so h"
=1 since h” <7.024. Consequently

Wo=3, &= (st u)=(1,05)
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We know that n, =%(1+\/§), (t,ey=(1, —1) and, b3_’ L2], that
13 ~ 23.30224192, (y, z) = (23, —7). Since dy =3 in Lemma 3 (i), it {ollows
that
. (37 0: 5503 31 _""1) for gmgl Y3,
(S, fou, v, w, X) = (2,5’ 0, ___7.5’2,_1) for f=317’f;1-
By an approximate computation in Lemma 3 (i), we see that
3/ ~ 1048236833,

=4 S ~ 0999999999,
and thus (py, z4, y—, z.) = (61, 27, 1, 27) is obtained. Therefore
(s, 1, u, v, w, x) =(61,570,245,30,1,1) for ¢{=¢n;.

P +’1F(51“ﬁ)(3“7?§1){

Putting & = ¢, 17, in Propos'ition 2, the first inequality shows ¢¢ E. For ¢
=¢, 55", only i = | satisfies the first inequality, which is impossible by the
first equality, however. Since d, 5 3, we have shown that

3 f{/h0= £y = &1 2, (Sza fz, g, Uz, Wy, xz) = (31 01 57 07 3: _“

by virtue of Proposition 4. In Proposition 3, we may check the condition
only for i =10, 11 by the inequality in (13), and (i, j) = (11, 7) actually
satisfies (13). And then (¥, /) =(1.7), hence '

. 2| hO: £3 = “ 51 1139 (S3= t3$ u3a 1;31 W3, x3) = (115 30: 155 0: 11 1)

This result is an expected one by Remark 5. Of course, these integers satisly
the equations in Remark 3.
Since we know k; = ks =1, we have computed by (5) that

h=hhy=1, hy=2,
For the totally imaginary fields .

| R = 0(J/=360.  R.=Q(/~13)

thel insolubility of (17) is clear. Therefore Proposition 5 tells us that
ho=1, (S0, To, flg) =(—4, 15, —20),
and (15) shows that
F=Fyhy =2

since i, = 2. Moreover, from (19) and (21), follows
: (5a, Ty, T, By, Wa) = (6, 5, —10, 25, —4).

7.2. (i) In the same way as above, for

K =0(5756), K,=0Q(/21), K;=0(Y28),
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we can compute from the approximate value n ~ 23.90624455 that s() = 20,

i) = —69, u(n) = 580 and that

h’=3, (Sl,tl,u1)=(—-1, —6, 13).

Utilizing #, = 3(5+./21), (1, ¢} = (5, 1), 53 ~ 5.227871412, (v, z) = (5, —1), we
obtain by Lemma. 3 (i), Propositions 2, 4 that

3’!’]10* (‘.;2! t2$ qu UZ: WZ: x2) = (81 _697 148, _69: 8: 1)!

and by Lemma 3 (ii) that (y,, z,., y_, z.) = (17, 3, 5, 27). We find that (i, j)
= (5, —1) satisfies (13), so, putting i’ = = 3, obtain by Proposition 3 that

2[}]0, (53, Ia, “3,1.73, Ws, X3)=(5, 4, _1, 4, 3, 1)

This is an example of the case ay 'eZ pointed out in Remark 3.
Consequently

h=hyhy=3, hy=2; hy=1, J=3.
For K = Q(\S/—_ZS), K, = Q(\/—_7), the results of computation are
(Fon Tor o) =(—8, 15, 20), (s, Fa, s, B, Wa) = (—4, 9, 6, 3, —2),
F=hhy =3, hy=1; k=L

(i) Let K == Q(\VS—), then 5 ~ 161.1852493 and B(y) ~ 23.078. In this
case, for every prime p & 23, the divisibility test fails. Namely, from Lemma
1, Theorems 1 and 2, it follows that

Wo=1, (81, t;, us) = (141, —3090, 26345).
As is expected by Remark' 5, indeed we have
h«0=6,. h=h2h3=1.

More precisely, the conditions in Proposition 2 are satisfied by (i, j, k)
=(3, 1, 35) for £ =g, n;", and those in Proposition 3 hold for (i, J, 7, j'
= (141, —93, 21, 147), hence we have

($2 tg, g, U3, Wa, X2) = (3, 0,35, 0,3, —1),

(8, ta, U3, U3, W3, X3) = (141, 30, 65, 150, 21, 1).

For K = Q(\'y ~135), it follows from Remark 6 or Corollary 2 that
‘ Fo=3, F=hhy=2.
Really (17} is satisfied by i =6 and
(8o, To» o) =(06, 150, —250)
by Proposition 5. By (19) and (21), we obtain
(33, Ta, ila, B3, Wa) = (—114, 22695, —340, —105, 6).
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(iiiy Let K, :Q(\/g) and K; be the maximal real subfield of the.
absolute class field of F = Q(/—23), ie. d, =5, d5 =23. Then D = 66125
and K = K, K; is the field with the smallest discriminant among those we
consider. In the same way, we obtain # ~ 760.7114218, B(n) ~ 245.593 and
(s(m, t(m), u(m) = (806, 35215, 580820). Since the conditions in Theorem 2
hold for & =18, n=2 with (i, ') =(38, 319), we have h':=}'/2¢Z. The
indivisibility of A" by any prime less than B (\/17) ~ 122.796 is verified then.
Thus we have

Wo=2, (s, t;,uy)=(38, 319, 884).
Since (13) is not satisfed by any i, je Z, we see that
ho =3, h=hyhy=1.
Other results are computed similarly as follows:
(52, La, Us, Uy, Wy, Xa) = (4, 6,3, —6,4, —1),
(53, t3, U3, U3, wa, X3) = (28, —200, 798, —103, 14, 1).
ho=3, h=hyhy=2,
(8, To, o) = (—17, 34, —31),
(33, T3, iy, Ty, Wwy) = (—306, 27417, 33998, 15550, —132).
(iv) Let K be the maximal real subfield of the absolute class field of
F= Q(\/m). Then we get
K=1, (s, ,u)=(1,—6,17).

Since d, =29, dy =87, we should test whether 5, is a cube in K by
Proposition 4. Actually, we see m =61, n=7, d3 = 87, @ = 261 under the
notation there, so # =1 satisfies the equation for minus case, therefore

(82, 13, Uz, 03, Wy x3) = (0, 0,5, 0,0, —1).
Other results computed are as follows:
(83, f3, 3, U3, W3, X3) = (4, 3,0, -3, —1, 1),
| ho=6, h=hyh, =
Fo=3 R=lyhy =1,

(§0= EO’ I’TO) = (2> 67 7)1 (§39 FS: ﬁ:sa 532 W3) = (2: 7a ""16, 14, ""“"6)
The equation (17) is satisfied by i =/ =2 in this case.
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7.3. In the following, we give a few numerical results for fields with
small discriminants. Table 2 contains some pure sextic fields K = 0 ﬁ/u and
K = Q| \/m27n Table 3 contains K and K whose galois closure Lis an
unramified cyclic sextic extension over F = Q(\/—d ) with 4 < 500. Since

by = STH28 2042, (0y, W, X)) =(cly, S5, 0), X =1,
are always true, they are not listed in the tables. The class numbers and the
fundamental units of K, are computed by the method in [2].

Errata for [1, ]

page ling for read
364 22 2s—r+2) 2(s—1-+1)
3 £(] () ~s{d-3

33 r3(s, +1y—3 3§, 1)+t
363 27 iy s il ymy or i is
366 3 of it

3 Pl i rf
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Table 2,

m EN i B 53 ty Uy ¢ 53 fs Uy U3 Wj
60 1 0]3 3 0 51 -1 11 30 15 0 !
108 42 37511 0 3 16 1 iz 15 38 21 6
7561 —1 —6}3 8| ~69 148 1 5 4 -1 2 3
54 141 —3090{ 1 3 0 35 | ~1 | 141 | 30 65 | 150 21
171 142 27351 1 10 2 12 | 1] 346 | 1392 1346 | 474 40
5131 138 27511 1 32 300 550 1 42 | —82 134 10 | —10
2700 2 —-93| 16 —45 80 1 12 il —22 1 2
2160 | 1666 53015| 1 4 35 280 1] 196 | 215 1630 51 ~14
189 | 1581 {—111810| 1| 15| ~90 155 14138 60 1658 | 282 24
1188 '28 1913 [ 908 [17615] 100340 1292 13821 [ 2510 | 521 | ~38

Table 3

d sy ry K| s, ts Uy ¢ 5y ty T g W3
87 1 -6 1 0 0 5 -1 4 3 0 -3 —1
104 | ~1 -4 1] -1 2 1 -1 5 6 3 4 3
116 | -1 8§11 3 2 t -1 5 2 -5 0 3
152 2 -5 |1 0 2 2 -1 6 -1 —4 7| -2
212 5 -2 |1 2 -6 0 -1 11 12 1 41 -5
231 22 —193 | 1 4 14 25 1 L6 41 28 | w2
231 | —1 -9 |1 7 3 65 1 3 L ~7 -1 3
231 25 162 |1 0 0 9 1 u 15 24 15 4
244 1 ~14 |1 7 3 34 -1 15 40 25 0| -t
247 | 22 —65 {1 -2 | -2 13 -1 14 3o 28 1 0
255 22 63 (1 4 2 -3 -1 10 { —24 12 9| —4
255 1 -3 (1 3 3 7 -1 5 0 -3 6fi —2
255 45 458 |1 0 0 G -1 14 | —43 38 51 -7
327 | 81 —486 |1 0 0 261 —1 | 25| -85 52 29 4
335 86 —65 |1 0 ~10 i9 -1 20 16 82 —-21 | —4
339 10 -78 {1 0 0 1552 -} 26 60 54 30 4
356 ) 110 | 2561 |1 56 | 285 912 -1 1 .74 | =53 76 75 2
411 22 6|1 0 O 3488 -1 r 45 0 33 11
424 + 19 96 |1 2 8 0 ~-171 45 [ 190 207 B8 L5
436 7 -8 |1 20 | 106 212 -1 39 124 —49 42111
440 | 23 124 |1 3 2 5 —1 41 58| -6l a0 -1
440 | 266 3 —9893 |1 24 -3 60 —1 | 170 | 475 452 91 [ --22
440 2 -37 71 4 2 2 -1 30 71 - 68 -1 6
451 30 —401 (1| 14 46 | —~44 —1 B’ -8 2 38 0
472 0 -2 13 4| —6 to -1 32 220 4 | ~14f -4
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ho | he | s | 0| % o T | R ||| & T iy vy | W,
2|1 ~4 15 =201 22 6 5 —10f 25| -4
61|11 | 6| 3| =52(3 |1 [1 6 345 362 123 12
21|33 -8 15 2001 (13 ~4 9 6] —3| -2
6111 6 150 | ~250{ 3 | 2 |2 |~114| 22605 —340] - 105 6
61| 1|1 | ~11| 134 ] 1673 | 2|21 380| 41274 150421 1800 74
61 ]33 25 | 186 | 30503 [ 1|3 —86] 6000 W04} 222 —34
20t~ 135000t 1)1} ~14 45 w0t 15| ~4
62|12 ~1d4|1655 [-3140] 3 | 2 {21 206| 317945 52970112875 | — 184
6| 1|33~ [1506] 20183 |13 24 | 227082 | - 111742118960 138
2000 0] ~51 26 235031003 |—~148] 3603 | ~8428] 3755 116
ho | by | | o T Gy [R 1B, B 7 f i, iy Wy
61 |1|1 2 6 71311 2 7 —16 14 6
61|11 0 21 —2i3 |11} -2 7 4 1] =2
6|11 [1 2 4 2130111 =6 i | —5| -2
611 |1 {1| =1 40 =731 |1] -8 31 -20| 15| —4
611 f1] -4 4 2l 3011 2 39 —68| 27| -6
6l1 11 L] 26| —47| 311 |1 38 356 ~280 | 13| ~16
611 |1 1 3 =1 3fp1|1] =7 12 g —6| -2
g1 11 81 30 431311 6 164 152] 49 8
61111 0 4 -6[3 1|1 4 43 —-601 43| —10
61111 9| M 333 |1t 32 265 —120{ 76| -10
6l L Lt ]| =7 18 1{3|2(2| -2 24] —16] 32| -6
61|t ]1] —~1 3] =573 |2{2! -6 20 —16! 13] -4
612112 10| 56 o[ 3|t 1]| —44 617 268 8 —14
611111 61 9 | 15503 |1 {1} —98 ] 2480 —524 1 269 4
611|141 171106 | 1133|111 16§ 1699 —318 | 416 | —40
611|111 2| 18 21311 21 374 ~43 | M| -7
611 1|1 14 127 | ~283 |1 | 1| =98} 9787 | —26041 25t —10
61|11t 5 30 Al 1|1 -2 802 3861 62 6
1R [ 1| —~4] 18| <2631 /(1 46 559 5401 199 22
61111 6| 16 s3] -6 323 —400 ! 163 | ~10
611 1L —4| 22| ~34|3|2|2]-34 653 1161 103 14
6111 14 | 283 {340 3 | 4 | 4 | 404 | 50035 | 14356 | 1483 | 04
61212 3 8 311 ]| —~28 191 24 | 47] ~i6
6l 1]~ 22 STE3 | L |1 | —44] 154 —438 | 80| —10
200 (01| =5 16] ~15]1[3]3 7 8 ~153 | 230 19
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