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1. Introduction. Let R be a commutative ring with identity 1 and I an
ideal of R such that the residue class ring R/I is finite. Then a sequence
{2 of elements of R is said to be umiformly distributed moduio T (uw.d.
mod I) if and only if (for short: ifl) for every reR
(1.1 lim A(fil‘_{)_ = ._mlwv

hb n N(I)
where A(n, r, I) denotes the number of indices k such that 0 < k <n and
u, = rmodI; N(I) denotes the cardinality of the finite ring R/I. In the case
that R is the ring of integers of an algebraic number field {of finite degree)
N(I) is the absolute norm of the ideal . I J is a maximal ideal the sequence
fu,} is wd. mod 7 if and only if {w,+1} is ud. in the finite field R/I

H. Niederreiter and J.-S. Shive [6], [7] described all w.d. linear recurring
sequences of orders 2, 3, and 4 with elements in finite fields. Uniform
distribution of linear recurring sequences of rational integers has been
studied by several authors {detailed references are given in [6]). R. T. Bumby
[17 was the first Lo obtain a complete characterization of all u.d. recurrences
of second order; in the case of third order linear recurrences {including
second order) M. J, Knight and W. A. Webb [3] established a corresponding
result for uniform distribution modm (i.e. modulo the principal ideal (m) —
provided that m is not divisible by 2, 3, and 5. A complete characterization of
ud. third order linear recurrences of algebraic integers has been obtained
recently {[97], [107). Since this result is rather complicated we formulate it
only for rational integers: '

Tugorem 1. Let {w} be a linear recurring sequence with characteristic
polynomial ¢(x) = x* —ey X2 =0y x—co. Then we have

L {u) is wd modm iff the following conditions hold: _
1. 1w, is wd. mod p" for every prime power divisor p* of m.
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There exists at most one odd prime p dividing m such that
c(x) = (x—a) modp and uy— 2o +0o*ug # Omod p. _

If there exists an odd prime with the properties stated in 2. and if
m is even, then ug 2 uy mod 2 and ¢q 3 Omod 2; if m= 0mod4 in
addition we must have ¢, # —1mod4,

{w} is ud. mod2 iff one of the following three conditions holds:
11. e(x)=x(x—1)* mod?2 and u, # u, mod?2.

1.2. ¢(x) =(x—1)> mod2 and u, =ty mod2, u; % up mod2.
13. e(x) =(x—1)® mod2 and u, # uy mod2.

. {w} is wd. mod4 iff {u} is ud mod2 and one of the Jollowing

conditions holds:

2.1. e(x) = x(x—1)*mod 2, ¢o+cy+¢, =1mod4, ¢ # Lmod 4.

22 c{x) =(x—1)*mod 2, ¢o+cy+cs # 1 mod4, uy = ugmod?2.

23. e{x)=(x—1)*mod 2, co+cy+ey=1modd, u; =ugmodl,
u, # uymodd, ¢; = 1mod4. :

24, c(x)=(x—1mod2 ¢o+cy+e, =1modd, u, # ugmod?2,
Uy # uy # u;mod4, ¢p = 1mod4, ¢; = —1mod4.

25. c(x) =(x—1mod 2, c¢o+cy+c, = 1modd, u; # uymod?2,
0 #F —Tmod4d

. fu} is ud. mod8 if {u} is wd. mod4 and one of the following

conditions holds:

3.1. = 2.1

32. =22

330 23, and co+e;+c, = 1mod8.

34.: 24. and co+cy+c¢o=1mod8, ¢, £ —1mod8.
3.5, =25

If {w is ud. mod8 then {w} is ud. mod2" for every positive

integer h.

Ler p be an odd prime; then {1} is ud. mod p {ff ¢(x) = (x—a)*
x(x—pymodp (for some integers o, § with o % Omod p) and one
of the following conditions holds:

1.1 x 2 Bmodp, u,—(a+f)u, +efuy £ Omod p.

1.2, a = fmodp, u;—2om;, +a?uy =0modp, u, —auy # Omod p.

13 a=fmodp, uy— 20wy +otuy # 0modp, (uy—dau; + ot uy)?

= 4ot ugu, modp and o is not a square modp,

. Let p be an odd prime; then {w} is ud. modp* iff {u,} is wd.

mod p and ene of the following rwo conditions holds (where o and f
have the same meaning as in 1.):

21. If p=3 one of the following conditions must be satisfied:
211, % fmodp, f=0modp, c(x) £ 3amod p?.

21.2 o ¢ fmodp, f# O0modp, cla) # —3axmod p*.
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213. a = pmodp, uy—2au +aluy=0modp, &’ —cya*—c o—
~¢o = Omod p?, 3u® — 2ac, —c; % 3 mod pi.

214 aw=fmodp, u;—2ou, +aluy# Omodp,
t+cg #¢ymodp?, 14+c¢o# —c¢, mod p?.

22 If p+# 3 ene of the following two conditions must be satisfied:

2.2.1, o % fmodp.

222, o = fmodp, uy—2ou, +a’u, = 0mod p.

3.If pis an odd prime and {(w} is wd. modp® then {u,} is ud.
mod p for every positive integer h.

cy ?_é €2 mOdpzs

In the present paper we investigate uniform distribution of recurrences
with elements in an arbitrary Dedekind domain R. Furthermore we show
how to deduce the characterization of u.d. third order linear recurrences in
p-adic integers from Theorem 1. In a final section we generalize a result of
Nagasaka [5] concerning the weak uniform distribution (w.nd.) of a special
sequence to the case of Dedekind domains. A sequence {u,} with elements in
a ring R is said to be w.u.d. mod I iff for every mod [ invertible element re R

Al r, 1) {

2 i = .
(1.2 A 77

where N*(f) denotes the number of invertible elements of the finite ring R/I.

2. Linear recurring sequences in Dedekind domains. Let P be a non-zero
prime ideal of a Dedekind domain R; we assume that R/P is finite. Then
N(P" = N(P)" for every positive integer 4 ([8], Chapter 8, A; the proof given
there only in the case of algebraic integers is valid for arbitrary Dedekind
domains). ‘We denote the characteristic of the finite field R/P by p and
assume p s« 2; the case p == 2 can be treated similarly but is more technical
(for algebraic integers cf. [9], [10]). As in the introduction {u} is an r-th
order linear recurring sequence with characteristic polynomial

e(x) = X g X =

v —0Cp
(i €. Wepp = Cpoo g gy + ... +Cotiy for all k 2 0; it should be remarked that
there may exist characteristic polynomials of smaller order).

Livma 1. Let eq be the multiplicity of x in the factorization of the
characteristic polynomial ¢(x)mod P and let e (i 2 1) be the multiplicities of
the remaining irreducible factors of ¢(x)mod P. We choose t as the smallest
non-negative integer such that p'ze; (i 2 1). If' v denotes the order of the
multiplicative group of the splitting field of ¢(x} over RfP, then (v, p)= 1.
Setting [ = vp' we have (for & = 0)

(1)

ht+2
Jkpht =W kp® (1) mod P

Jor hiz 0, j > max{2e,, 3-2" 1 eg).
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(2.2)  lw} is periodic mod P'*Y (h 2 O} with preperiod 2"eq and period
(length) p*l.

(23) Ife<2(iz1) then

Uppp Ui+ k(uy,—u) modP  for  jzeg

24y Ife<2(iz=1)and p =5, then
Upspy = 4Pl —u) modP?  for 2 2e,.

Proof’ Sece Section 2.2.1 of [9], [10].

In the following we investigate the uniform distribution of {u,} modulo
powers of P. First we want to state iwo elementary properties of uniform
distribution:

(25) If {5} is ud mod] and I < J, then {1} is u.d. modJ.

(2.6) If {u,] i¢ ud. modI, then the period length of {u,} mod is divisible
by N{I).

Remark 1. Il ¢, =1 (= 1) then in Lemma 1 we have [ =v, and by
{2.2) and (2.6) we conclude that {w} is not v.d. mod P, since (v, p) =1 and
N(P) is a power of p.

Lemma 2. Assume N(P)=p and (in the notation of Lemma 1) vy~
—u; s 0mod P for sufficiently large j. Then {u.} is u.d. mod P? provided that
{w) is wd. mod P; if, in addition, p # Omod P? then {w) is ud. mod P" for
all hz0.

Proof. We proceed by induction and assume that {u,} is u.d. mod P**!
for some £ > 0. By (2.2) the sequence {u,} has period-length p**! mod P**2,
and in order to prove uniform distribution mod P**? we have to show that
the number of indices n in a full period of length p** I with 1, = x mod P"*?
is independent of x,

We have pte P"--P*"! since this is trivial for k= 0 and follows from
pe P—P? for h> 0. Then p*(uj,,—u)e P'"* 1 —P**2 and, since i, ~

_ 7+ koMt
=kp"(u;4;—w)mod P'*2 (by (2.1), the congruence u, ., = u;mod P2
implies k =0(P) i e k is divisible by p (all conclusions hold for sufficiently
arge /).

- Since N(P)= p yields
!Ph+1/Ph+24 = IR/-PH-ZI: ,R/Ph+1l — N(Pin-r-Z)/N(Ph+1) — N(P) =p,

this means that for fixed j the clements u W (for k=0,..., p~1) run
hrough the residue cl #2 which Gotre i

throug resicue classes mod P*" ¢ which cotrespond to the residue class
of 1;mod P**1, Thus the number of indices # in a full period of length p"**]
with #, = xmod P**? is equal to the number of indices j in a full period of
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length p"l{mod P"*') with w;=xmodP""!, and the last mumber is

- independent of x by assumption.

(In a condition like p # Omod P? we interprete p as p times the unit
element of R.}

Tueorem 2. Let P be a prime ideal of the Dedekind domain R with
corresponding prime p# 2; ) denotes a linear recurring sequence with
characteristic polynomial c(x). We assume that c(x) splits into linear factors
mod P and that all factors different from x occur with multiplicity at most p
(the multiplicity of x can be arbitrary). If 'u,} is ud. mod P then

L fw} is wd. mod P* iff wpy yp- 1y —1; 2 Omod P? for sufficiently large j.

2. If {1} is ud. mod P? and p % Omod P?, then [u,) is u.d. mod P* for all
hiz0. If p=0modP? then {u} is not ud. mod P>,

Proof. We use the notation of Lemma 1. From e; < p (i = 1) we obtain
I = pv with (p, v) = 1. Since [ must be divisible by N(P) we obtain N(P) = p.
By assumption c(x) splits into lnear factors and so v=N{(P)~1 =p-1.
I ;4 pp—1y—2; % Omod P? then by Lemma 2 {1} is ud. mod P2, Taking h
=0 in (2.1) from u, yp— ) —4; = 0mod P* we derive u;., = u; mod P? (for
all k); hence the residue u;mod P? occurs at jeast p times (for k=0, ...
-, p—1) in a period of length pimod P2 If {u,} were ud. mod P? every
residue mod P? would occur pl/N(P?) = p—1 times in a period of length pl,
however. This proves 1.

The first part of 2. follows from 1. and Lemma 2. Taking k=h=1in
(2.1) we obtain u;,; =u;modP* from p=0modP? (observing u;,,—u;
= Omod P). Since pl is not divisible by N{P)?, {u} is not ud. mod P°.

Remark 2. By Lemma 1 the minimal period of {w} mod P is not
divisible by p if ¢{x) has no multiple factors mod P {except possibly the
factor x). Hence in this case {u;} is not u.d. modP.

Suppose ¢(x) has degree at most 3; then the existence of multiple factors
mod P implies that ¢(x) splits into linear factors mod P, and so in Theorem 2
it is sufficient to assume that {i} is u.d. mod P.

Remark 3. As we saw in the proof the hypotheses of Theorem 2 imply

N({P)=p and [=p(p—1).

The result N (P} = p and the second half of part 2 of Theorem 2 remain
valid if we just assume that ¢(x) splits into irreducible factors mod P with
multiplicities at most p (with the possible exception of the factor x); we do
not necessarily have ! = p(p—1), but | % Omod p°.

Remark 4. The proof of Theorem 2 is essentially taken from [97, [10)]
(cf. Sections 2.2.3 and 2.2.4). In the quoted papers only the case of algebraic
integers is treated, but with minor changes the arguments presented there
hold for arbitrary Dedekind domains; for example instead of assurnding that p
is ramified, we write p = Omod P2. Hence we obtain a classification of all
mod ] ud. third order linear recurring sequences {u,} with elements in a
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Dedekind domain R, provided that 1 is an arbitrary ideal with finite norm
N{I).

The theorems concerning uniform distribution in a ring of aigebraic
integers can be used directly for the investigation of uniform distribution
mod [ in an arbitrary Dedekind domain R if R/ is isomorphic to a residue
class ring of a ring of algebraic integers. We illustrate this for the ring R of p-
adic integers. As is well known every non-zero ideal I is a principal ideal (ph
generated by a power of p, and R/I is isomorphic to 2/p"Z (Z denotes the
ring of rational integers).

Let {u,) be a linear recurring sequence with characteristic polynomial
¢(x) =x"—¢,_ X'~ ... —¢o. We choose rational integers uj, (0 < k < r— 1),
¢; (0<j<r—1) such that the residue classes u,+p"Z, ¢j+p"Z correspond
to the residue classes w,+1, ¢;+1. If we define the lincar recurring sequence
{wm} of rational integers by the initial values u},...,u.—; and the
characteristic polynomial x"—¢/_, x" " '— ... —c}, then for all & the residue
class u+p*Z corresponds to w,+1 and {u]} is wd. modJ if fy) 15 ud.
modp"Z.

For any m<h the clements of R with residue classes modJ
corresponding to residue classes (mod p* Z) of elements of p*Z are just the
elements of p” R. Hence congruences concerning uj, ¢ymod p” (i. . mod p" Z)
may be interpreted as congruences concerning . ¢; mod p" R, In the case
r =73 from Theorem ! we obtain:

Tueorem 3. Let {1} be a third order linear recurring sequence in p-adic
integers. If p # 2 and {w,} is ud. mod p® then {u) is wd. mod p" for ali h = 1,
if p=2 and {u} is ud modp® then {u,) is ud. modp* for all b= 1.

Remark 5. By uniform distribution mod p" we, of course, mean uniform
distribution mod p* R. The conditions for u.d. mod p» mod p? and mod p? (for
p=2) may be seen from Theorem 1, II {(p=2) and I (p= 2); the
congruences have to be interpreted in p-adic integers.

Remark 6. As another example we can apply the above argumentation
to the ring of formal power series over Z/pZ, p prime. Every ideal is of the
form (x') and the residue class ring is isomorphic to R/P if P is a prime
divisor of p in the (p—1)p"**-th cyclotomic fields.

Let R be the ring of algebraic integers of the mth cyclotomic field,
m= p -1 (p prime, f arbitrary). Then pR splits into g = ¢ (m)/f distinct
prime ideals P; of residue class degree f (cf. [8], Chapter 13, 4.B) and (by the
Chinese remainder theorem) R/pR is isomorphic to the g-fold product of the
finite field GF(p/). Hence the above considerations .can be applied to
uniform distribution modulo an ideal with residue class ring isomorphic to
such a product of a finite field. '

Finally we want to remark that not every finite residue class ring of a
commutative ring with unit element is isomorphic to a residue class ring of a
Dedekind domain. It clearly suffices to construct a finite commutative ring R
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with unit element which is not the homomorphic image of a Dedekind
domain. We take R ={(a, a+2b): a,beZ/4Z) with componentwise
operations and make use of the fact that every ideal of a proper residue class
ring of a Dedekind domain is generated by one element (cf. {8], Chapter 7.I).
We consider the ideal I of R generated by (0, 2) and (2, 2). Obviously every
element of T has the form (2a, 2a+2b); since conversely

(b, b)-(0, 2)+{a, a)(2, 2) = (2a, 2a+2b),

every element of this form belongs to I. As I contains elements with non-zero
first and second component, the only possible generator of [ is (2, 2). But
(0, 2) is not a multiple of (2, 2) since (a, 2+2b)+{2, 2) = (24, 20) bas equal
components. Hence I is not generated by one element.

3. A special non-Mpear recurring sequemce. Let m be an integer greater
than 1 and {1}, be a sequence of mod m invertible integers satisfying the
rECUrrence ., = u,+uy *modm (u; ' denotes the inverse modm). In a
recent paper [5] K. Nagasaka proved that such a sequence is w.nd, modm
only if m =3. We give a generalization to arbitrary Dedekind domains.

TreoreM 4. Let I be an ideal of a Dedekind domain R wirh finite norm

NI} > 1 and {u,) &, be a sequence of mod I invertible elements of R satisfying
the recurrence iy, | = au,+bug b mod I with mod I invertible elements a, b of R

(uy denotes a representative of the inverse of u, +I). Then {u} is ward. mod [
Cif and only if I.is a prime ideal with NI'=3 and a=b =1mod L.

In the proof we make use of the following

Lemma 3. Let I be an ideal of a Dedekind domain R with finite norm N{I)
and {w,} be a sequence wu.d. modl. If J is an ideal containing I then {u,} is
w.ied., modJ.

Proof of Lemma 3. We may write =[] P} and J =[] P! with
distinct prime ideals P; of R and «; = f§; = 0. We have to show that the
number of invertible residue classes modl corresponding to an invertible
residue class «-+J is independent of . The residue class x++I corresponds to
a-+-J iff x = amod Pf‘ (for f;# 0); in this case x--1 is invertible iff x is
invertible mod P, for all indices i such that f; = 0 (since invertibility mod Pf ’
with 3, # 0 implies invertibility mod P{* and an element is invertible mod [ iff
it is invertible mod P{' for all indices i). So the number of possible residue
classes of xmod P is N(P)" " for B; # 0 and (N(P)—1)N Py for B,
= 0. By the Chinese remainder theorem the number of solutions for x mod I
is the product of these numbers, hence independent of a.

Proof of Theorem 4. Let {1} be wud. modI. Then for-every mod I
invertible element ¢ there exists an invertible residue class u, +1I such that
G+ buy ' = cmodl, and ac+be! {= o mod f) is again invertible mod I.
Hence the function f defined (modI) by f(s) = as+bs™! mod ! (for mod J
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invertible elements s) induces a bijection on the finite set (R/I*. Since
obviously 7(s) = f(ba"'s™'), we obtain s =ba”'s™! modl. Setting s=1
yields 1 = ba~ ' mod I; hence s* = L mod 1 for all mod/ invertible elements 5.
Since f(1} = a+b = 2amod I implies that 2 is invertible mod/, we conclude
22=1modl, i.e. 3=0mod /.

Let P be a prime divisor of [. By Lemma 3 {u,} is w.ud. mod P, and the
above arguments {applied to P instead of I) show that s* = 1meodP for
s# 0(P) and 3 =0mod P, i. e. the finite field R/P has characteristic 3 and
the multiplicative group has at most two elements. Hence N{P) =3 and {u,]
has period length 2 mod P. If P? divides I, then {i} is wud. mod P?
by Lemma 3. But for ne P—P? we have f(l) =2amodP? and f(1+m)
= a(l+m+a(l —xn) = 2amod P?; since 1 1+nmod P? this is impossible.
Hence 1 is the product of distinct prime factors Py, ..., P,. Since i)
has period length 2 mod P; for all i, {u,} has period length 2 modulo
I=[]P =P, The number of invertible residue classes mod{ is

:js

(N(P)—1) =

i=1
and so we must have m=1,i.e. [isa prime ideal with N(f) = 3, In this case
there are only four possibilities for {u,} modI:

up=1, a=lmodl: {u}=1{1,2,1,2,...) modl,
up=1, a=2modl: [u}=1{1,1,1,1,...} modl,
g =2, a=lmodl: {u}=1{21,2,1,..} modl,
upy=2 a=2modl: {u}=1{2222, ..} modl.

Since just the first and the third sequence are w.ud. mod/, this proves our
theorem.
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