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Some extension and classification theorems for maps
of movable spaces

by

Slawomir Nowak (Warszawa)

Abstract. Suppose that ¥ is an (n—1)-connected CW complex, We establish, cohomological
criteria for extendability of a map f1 4 — ¥ onto X, where 4 is a closed subset of X, in the cases
where X, 4 or (X, A) are movable.

We classify also the homotopy classes from a movable space X to Y if X satisfies certain
cohomological conditions.

In the last section we prove that there exists a CE map f: X' — ¥ (where X is a compactum)
which raises the topological dimension iff there are a natural number n and a CE map -~z
such that the shape of Z is non-trivial.

H. Hopf proved two theorems about maps of finite dimensional compacta
into the n-dimensional sphere S". The first theorem (the Hopf classification theo-
rem) permits to classify the homotopy classes of maps of an n-dimensional com-
pactum X into S" and the second (the Hopf extension theorem) reduces the problem
of extending a map f: 4 — S" from a closed subset 4 of an (n+1)-dimensional
compactum X to an algebraic problem.

These results have been extended to larger classes of spaces and polyhedra.
In particular, it is known that S* may be replaced by any (n—1)-connected
polyhedron Y and that whenever Y is an Eilenberg-MacLane space K(G,n), the
hypothesis concerning the dimension of X is redundand in both theorems.

The main purpose of the present note is to generalize these classical theorems
to the case of paracompact spaces satisfying some special conditions concerning
the shape only.

As an immediate consequence we get in particular that, in the case of movable
paracompact spaces, one may replace the hypothesis of finite dimensionality by
that of acyclity of X and A4 in almost all dimensions (in the sense of the Cech
cohomology theory).

We constructed an example which shows that the assumptions of movability
and acyclicity are essential.

Since one can characterize the dimension in terms of extension of maps into
spheres, our theorems give us a pretext for proving some tacts concerning CE maps
which raise the dimension.
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Among other things, we prove that if there exists a CE map f: I" — Y with
dim Y > n, then there exists a CE map g: I" — Z such that the shape of Z is non-
trivial.

Numereous papers in shape theory ([By,,], [B-H], [Ko], [L]) deal with the
problem of extension of a fundamental sequence and the problem of classification
of fundamental classes to (n—1)-shape connected FANR-set Y. Since every
FANR set Y has the shape of a polyhedron, we infer that these questions reduce
themselves to our investigations.

In order to prove our theorem we have to develop some special techniques.
Among other things we introduce the notion of the deformation dimension with
respect to a class of CW complexes (compare [N-S]) and we study the properties
of this notion.

If % is a category, we denote by % also the class of objects of %. This will not
cause confusion because the meaning of the symbols will be clear from the context.

In this paper we denote by Pol (resp. HPol) the category whose objects are
polyhedra (resp. all spaces having the homotopy type of a polyhedron) and whose
morphisms are maps (resp. homotopy classes of maps).

We shall consider the categories Pol?> and HPol. The objects of Pol® are
po-lyhedral pairs and the morphisms are maps of pairs. The objects of HPol? are
pairs which have the homotopy type of a polyhedral pair and the morphisms are
homotopy classes of maps of pairs.

. % and & will denote the classes of all CW complexes and all connected and
simply connected polyhedra, respectively. ‘

If % is a subclass of %", we denote by %2 the class of all pairs (P, Q), where
Q is a subcomplex of P and both are members of %.

We shall only use the Cech cohomology groups (see [M-S]).

1. The deformation dimension of a pair with respect to a class of pairs of CW
complexe.s. Suppose that % is a subclass of ¥ consisting of at least one element
(}.’, Q) with P # @. To every pair (X, A) with X s & we assign the deformation
fz’zmension of (X, A) with respect to % (denoted by def((X, 4); %)), which is an
Integer > —1 or co and which equals to the minimum » such that any map
J1 (X, 4) > (P, Q)e % is homotopic to one whose image is in the st Qupm
(we assume PCY = @),

. Similarly one can introduce the notion of the deformation dimension of @ topo-
logfcal space X # & with respect to a subclass @ of % (denoted by def(X; ¥))
which contains at least one CW complex P 3 @, Obviously,. def(X; %)
= def((X, @); %), where %' denotes the class of all pairs (P, @) with P;‘Cf

. (1.1) Remark. It is known ([Sp] p. 57) that if 4 is a closed subset of X and
B.IS a subset of ¥ such that (X, A4) has the HEP (Homotopy Extension Property)
with respect to B and (X< [0, 1], X x {0, 1} U Ax]0, 1]) has the HEP with respect
to Y, then 2 map f: (X, 4) — (Y, B) is homotopic (as'a map of pairs) to a map
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which sends all of X to B iff it is homotopic relative to A to such a map. It follows
that if 4 is a closed subset of X and if X and % satisfy one of the following con-
ditions - .

(8) X is a metrizable space and % <Pol®;

(b) X is a compact Hausdorff space and ¥=%">;

(¢) X is a paracompact space and % contains only pairs of compact CW
complexes;
then in the definition of def(X, 4;%) we may additionally assume that fis homotopic
relative to 4 to a map g: X —» P with g(X)cQ u P,

(1.2) THEOREM. Suppose that (X, A) and (¥, B) are pairs of topological spaces
with X # @ # Y and € is a subclass of #W* and Sh(X, A) < Sh(Y, B). Then
def(X, 4; %) < def(Y, B; ¥).

Proof. Let (P, Q) e % and def(Y, B; %) < n. Assume also that p: (X, 4) —
— (¥, B) and q: (¥, B) > (X, 4) are shape morphisms such that g o p = Sh(id(x, 4))
and that f: (X, 4) - (P, Q) €% is 2 map. Then there exists a map g: (¥, B) ~
- (P™ U Q, Q) such that Sh(f).q = Sh(j). Sh(g), where j: ®® v 0,0~
- (P, Q) is the inclusion.

Observe that Sh(f) = Sh(f) s g o p = Sh(j) Sh(g) o p and that there is a map
fliX, 4 - (P™ U Q, Q) satisfying the equality Sh(f”) = Sh(g) . p.

Hence jf*~f and the proof is finished.

2. Auxiliary theorems. Now we prove the following

(2.1) ProposITION. Let 4 # @ be a closed subset of a paracompact space X
and let (P, Q) € &* be a pair with Q # @. If (X, A4) has the HEP with respect to &,
def(4d; #) < o and def(X; {P}) < oo, then def((X, 4); {(P, Q)}) < co. If we
assume additionally that def(X; &) < oo, then def((X, A); %) < co. .

Proof. Let n » max (2, def(X; {P}), def(4; &)+ 1) and let f: (X, 4) — (P, Q)
be a map. Using the properties of a resolution and an expansion of (X, 4) (see
[M-S]), we can find a map g: (X, 4) » (W, V) e W 2 and cellular maps f": (W, V) —
- (P, Q) and f"': W— Py =Q U P® such that f~f’g as maps from (X, 4) to
(P, Q) and f'ci f" as maps from W to P, where i: P — P is the inclusion.

Since f' and if" are cellular, we may assume that f'~if" as maps from
(W, W) to (P, Po) e &% and we can find a map f"': W—F, satisfying the
condition

2.2) i e el e,

We may also assume that W, Ve &, Indeed, if W and ¥ are not members
of &, then we can replace W and V' by CW complexes obtained from W and ¥
by ad joining 1-cells which join all components of W and all components of ¥ and
*atiaching‘2—dimensiona1 simplicial cells to the 1-skeletons of W and V in such
a way that the resulting spaces are simply connected. It is clear that f7, f’’ and the
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homotopy joining relative to W®=1 the maps f’ and if’" are extendable over W
and ¥ thus modified.

Since (W, V)e &?* and def(d; &) < n—1, we see that there exists gevg’:
X, 4) » (W, V) with

2.3) g A)cveDepeh),

From (2.2) and (2.3) we get that f’g = f"g’ and f"g"~if""'g’ as maps from (X, 4)
to (P, Q) and if""'g'(X)=f"""(W)<=P,. The proof is finished.

In [N-S] S. Spiez and the author of this paper have proved the following
theorem.

(2.4) THEOREM. Suppose that (P, Q) € HPol* and Q is connected and simply
connected. If A is a closed subset of a paracompact space X such that the pair (X, A)
satisfies one of the following conditions:

(@) def(X, 4; &%) < o0, )

(b) def(4; &) < w0, X is movable and (X, A) has the HEP with respect to P,

(©) (X, A) is a movable pair,
and that HY(X, 4; ©(P, Q) = 0 for every n = 2,3, ..., then any map f: (X, 4) —
- (P, Q) is homotopic to a map g: (X, 4) = (P, @) with g(X)= Q.

We denote by ¢(X, 4) the maximum (finite or infinite) of all integers n such
that there is an abelian group G with H"(X, 4; G) 5 0.

As an immediate consequence of (2.1) and (2.4) we get the following

(2.5) COROLLARY. Suppose that A is a closed subset of X, where X is a compact
Hausdorff space or X is metrizable. Suppose also that the pair (X, A) satisfies one
of the following conditions:

(@) X and A are movable with ¢(4) < oo,

(b) def(X; &) < 0 and def(4; &) < co.

If HY(X, A; m(P, Q)) = O for every n = 2, where (P, Q) € HPol* and Q is simply
connected and connected, then any map f: (X, 4) - (P, Q) is homotopic to a map
g: (X, 4) = (P, 0) with g(X)= Q.

3. The Hopf Extension Theorem. We begin with the following simple lemma.

(3.1) Lemma. Suppose that Y e W' is (n—1)-connected, where n = 2. Suppose
also that A is a closed subset of X and X and ¥ satisfy one of the following conditions

(a) X is metrizable and Y e Pol,

(b) X is a compact Hausdorff space,

(©) X is a paracompact space and Y is compact.
Then Y is a subspace of the Eilenberg-MacLane space ¥= K(m(¥),n)e W such
that the inclusion i¥ — ¥ is an (n-+1)-equivalence, the groups n,(Y) and ,...(¥, 1)
are isomorphic for m 2n+1, the pair (X, A) has the HEP with respect to Y and ¥ and
the pair (X x[0,1], Xx{0,1} U A%[0, 1]) has the HEP with respect to ¥.
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For every (n—1)-connected CW complex ¥, we denote by %"(Y) the charac-
teristic element of ¥ ([Hu] p. 193 or [Sp] p. 425).

One checks easily that the inclusion i: ¥ — ¥ induces a canonical isomorphism
i*: H(; n(0)) = HN¥; n(¥)) ~ HY(Y; n,(Y)) and that i*G"(T)) = "(Y).

Let 4 be a closed subset of a paracompact space X. An element of the group
H™A4; G) is said to be extendable over X ([Hu] p. 192) iff it is contained in the
image of the homomorphism i*: H*X, G) - H"(4; G) which is induced by the
inclusion mapi: 4 — X.

If 4 is a closed subset of X and the pair (X, 4) has the HEP with respect to
an (n—1)-connected CW complex Y with vanishing homotopy groups in dimensions
greater than 7, then a map f: 4 ~ Y is extendable over X iff f*(x"(Y)) is extendable
over X. The same situation is in the case where (X, 4), ¥ and ¥ satisfy the conditions
in the assertion of Lemma (3.1) and every map from (X, 4) to (¥, ¥) is homotopic
to a map with values in ¥ (compare Remark (1.1)).

Combining -this fact with Proposition (2.1), Theorem (2.4), Corollary (2.5)
and Lemma (3.1) we get

(3.2) THEOREM. Assume thatn > 2, Y€ W is (n—1)-connected and A is a closed
subset of a paracompact space X such that H"(X, A; m,_y(¥)) =0 for every
m = n+2 and the pair (X, A) and Y satisfy one of the conditions (a), (b) and (c) of
Lemma (3.1) and (X, A) satisfies one of the following conditions:

) (X, A) is movable,

(i) X is movable and def(4; &) < w0,

(iif) def(X, 4; &%) < 0,

(iv) X is metrizable or X is a compact Hausdorff space with def(X; &) < o
and def(4; &) < oo (in particular, X and A are movable with ¢(X) < w and
¢(4) < o0).

Then a map f: A —~ Y is extendable over X iff f*(x"(Y)) is extendable over X.

(3.3) ExaMpLE. There are a movable metric continuum X, its movable sub-
continuum A,, a map f: 4, — S such that ¢(X,, 4o) < 0 and f is not extendable
over X,.

D. S. Kahn described ([Ka]) an inverse sequence K = {K,, g3**} of compact
members of & such that K = lim invK is a-non-movable ([H-S]) acyclic continuum
and there exists a map f;: K; — S° such that the composition ' = f3g,: KX — S*
is an essential map (g,: K — K; denotes the projection).

Let {k,}2; €K< P K, and (X,.x,) = \/ (K;, k). Setting
n=1 i=1

xekK;, 1<i<n

nily o _ )% for
Pn (X) - { ntli xEK,,+1

qn for

we get a map pitl: (Xye1 Koar) = (X5, K,) (we identify K, with the space
{x} x {x} % oo x{xy-1} %K, for n=1,2,..).
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Let 7,: X, — X,+; be a map defined by the formula

r(x) = x = for every xek, 1<i<n.

’ Observe that
(3.4) , Py idy,

Let (Aq, K) = lim inv{(X,, K;), i "'} and B be the cone over K. Using (3.4)
one can verify that 4, is a movable continuum. Obviously X, = A, U B is movable
continuum (X, has the same shape as an ANR bouquet X,/B: [G] p. 171), the
map f= fipy: Ao — S? is essential and is an extension of f: K — S3.

Since f and ' are essential and X is contractible in X, to a point, we infer that
f is not extensible over X,. The proof is finished.

4. The Hopf Classification Theorem. In this section for every (n— 1)-connected

CW complex Y we denote by ¥ the Eilenberg-MacLane space K(n,(Y), 1), which

_is obtained by attaching cells of dimension 2 n+2 to ¥. The inclusion map

i1 Y — ¥ isan (n+1)-equivalence, the groups (¥, ¥) and m,(¥) are isomorphic
for m 2 n+1 and ™= ¥™ for m < n+1.

(4.1) Lemma. Assume that X is a paracompact space, Then the pair
Xx[0,1], Xx{0,1})
is movable if X is movable and
def((X % [0, 1], X % {0, 1}); 9%) < o0 if def(X; &) < 0.

Proof. Suppose that p = {p,}: X = {X,, pf, A} = X e pro-Pol is a resolution.
Tt is easy to see that the morphism p><1d[0 11 = {Paxidpo,11}: X %[0, 1] — X' x [O 1]
= {X,x[0, 1], puxxd[o 1 A} satisfies the conditions (B.1) and (B.2) of [M -S]
(see [M-S] p. 76) and is a resolution ([M-S] p. 79, Theorem 5). It follows (see
[M=S] p. 87, Theorem 9) that :

pxidio. sy (Fx10, 13, Xx {0, 1}) — (Xx[0, 1], ¥x {0, 1}) e proPol®

‘be a map. Then there exxsts O € A anda cellular map [ ’ ( . %[0, 1] X, x {0 1}) -
— (P, Q) such that f' o (p,, xid[q.1)) is homotoplc to f. Smcc P and Q are simply
connected, /' is homotopic to g: (X, % [0, 11, X, x {0, 1}) — (P, Q) with g (Xt
= {qo}, where g, € Q.
Let ¥ be the wnion of the cone over XS and X,,. Then the composition
F'" =jf" of the inclusion map j: X — ¥ and the map f’ is homotopic to a map
h X = Y with h(X)= Y™ and

hxidp,p: (Xx[0, 11, X x {0, 1})—>(Y><[0 11, Yx{O 1})
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is homotopic to a map

e (X% [0, 11, X% {0, 1}) » (¥x [0, 1], ¥x{0, 1})

with (X x [0, 1})=(¥x [0, 1)+,

It is clear that there exists a cellular map §: (¥'x[0,1],- ¥x{0,1}) —» (P Q)
which is an extension of g.

Then f is homotopic to the composition gr and gr(X x[0, 1)c Q U PP*+1,

The proof is finished. ’

We now prove the following

(4.2) THEOREM. Suppose that Y is an(n— 1)-connected CW complex (where n>2)
and that X is a paracompact space with H™(X; m,(Y)) = 0 = H"*Y(X; =,(Y)) for
every m = n+1 satisfying one of the following conditions

(a) X is movable,

(b) def(X; &) < 0.
Then the set of the homotopy classes of the maps from X to Y is in one-to-one corre-

‘spondence with the group H™(X; m(¥)) under the map [f] - f*(x"(Y)).

Proof. It is well known that for every paracompact space X (without any
restrictions concerning the deformation dimension) the assertion of Theorem (4.2)
bolds when we replace ¥ by Y. Our assumptions guarantee that every homotopy
class from X to ¥ can be represented by a map with values in ¥ and that every
homotopy in Y joining maps with values in ¥ can be represented by a2 homotopy
in ¥ (see Theorem (2.4) and Lemma (4.1)). The proof is finished.

5. Final remarks and applications. The following two problems are equivalent
to the Cell-like Mapping Problem and to the Cohomological Dimension Problem
([P] pp. 294, 297, 301).

(5.1) ProBLEM. Do there exist a finite-dimensional compactum X and a CE
map f+ X — Y which is not a shape equivalence?

(5.2) PrOBLEM. Do there exist a natural number n and a CE map f: I" - Y
which raises dimension (i.e. dim Y > n)?

In [P] the following problem is also formulated ([P], p. 295).

(5.3) ProBLEM. Do there exist a non-contractible compactum Y, a natural
number n and a CE map f: I" - Y?

We shall show that (5.3) is also equivalent to the Cell-like Mappmg Problem
and to the following

(5.4) ProBLEM. Do there exist a natural number n, a compactum Y with a non-
trivial shape and a CE map f: I" - Y?

Precisely, we have the following )

(5.5) THEOREM.. For every natural number n the following three statements are
equivalent:

(a,) n > dimY for every CE map f: I"— Y,
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(b)) Sh(Y) = Sh({p}) for every CE map f: I" = Y.

(c.) YeAR for every CE map f: I" - Y.

The implications (a,) = (c,), (c.) = (a,) and (c,) = (b,) are well known (see
[P]) or trivial. The implication (b,) = (a,) is a consequence of the following

(5.6) Lemma, Suppose that f: X — Y is a CE map, where dimY > dimX
= n < oo. Then for every m > n there exist a CE map g: X ~ Z and an essential
map h: Z — S™.

Proof. Since dim Y = co ([Sh] p. 382), we infer that for every m = n+1 there
exist a closed subset B of Y and a map h,: B — S™ which cannot be extended over ¥,

Consider the decomposition space Z of the uper semicontinuous decomposition
of X into the single points of X\f~*(B) and the sets /() with y  B.

Then the quotient map g: X — Z is a CE map. Since the inequality dim (Z\B)
<n implies def((Z, B): #*) < n, we get that hy: B — S” has an extension h: Z— S"
(see Theorem (3.2)). Since h, is an essential map, we infer that & is essential, The
proof is finished.

It is known ([Sh] p. 382) that if ¥ ANR or Y is finite-dimensional, then ¥
cannot be the image of a CE map f: I" — Y which raises the dimension.

We say that a compactum Y belongs to # .4 iff for every closed subset B
of ¥ and for every open subset U= B of Y there exists a movable space (not neces-
sarily compact) V=Y such that Be V< U,

If Ye ANR, then Ye #A.

(5.7) PropOSITION. If f: X = Y is @ CE map such that dimX < oo and X
and Y € # M are compacta, then dimX = dim Y.

Proof, Let n = dimX and suppose that dim ¥ > n. This means that there
exist a compactum Bc Y and an essential map f; B — S™, where m >n, since
Y e #.#, we see that there exist a movable space V<= Y, B< ¥ and an extension
f': V- 8™ of f which is an essential map. On the other hand, f cannot be essential,
since ¢(V) < dimX =n < m and ¥V is movable (sec Theorem (4.2)).
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