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Uniquely edge extendible graphs
by

David Burns (Big Rapids, Mich), S.F. Kapoor (Kalmazoo, Mich.) and
P. A. Ostrand (Santa Barbara, Cal)

Abstract. A graph G is uniquely edge extendible if G+e is isomorphic with G+f for every
pair e, f of edges in its complement G. It is shown that a graph G is uniquely edge extendible if
and only if G is edge-symmetric. This result is extended to multiple edge additions and structural
characterizations are obtained.

A nonempty graph G is edge-reconstructible if G can be uniquely determined
(up to isomorphism) by its subgraphs G—e, e € E(G). One of the foremost unsolved
problems in graph theory is to settle the following conjecture.

Conjecture, Every graphs of size at least 4 is edge-reconstructible.

Early workers on this problem (see [1]) quickly realized that several well-
known classes of graphs including all regular graphs of size at least 3 and all trees
of size at least 4 are edge-reconstructible. Our interest was generated by a more
obscure class of edge-reconstructible graphs. Consider the graph G and its edge e as
in Figure 1. This graph is easily seen to be edge-reconstructible since the graph
H = G—e would be available to us in our reconstruction work and H-e
= H+e, & G for any two edges ey, and ¢, in E(H).

H=G-e

Fig. 1

We fix our attention now on H and study those graphs J for which the set
{J+ele e E(D)} bas cardinality one.

More formally, we say & graph J is uniquely edge extendible if J+ey & J+e,
for any two edges ¢, and e, in E(7). In this work, C, (for integers n > 3) denotes
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-the cycle graph with vertex set {v, v,, ..., v,} and edge set
{vwieqli=1,2,..,n (modn)}.

The wheel W, is that graph obtained from C, by adding a new vertex w and edges v,w
fori=1,2,..,n If G, and G, are graphs, then G = G, U G, is the graph with
vertex set V(G,) u V(G,) and edge set E(G,) U E(G,). The symbol nkK,, denotes
the union of » graphs, each isomorphic with the complete graph K. Finally, the
star K(1,n) is that graph with vertices {v,,v,,...,v,, w} and edges wv, for
i=1,2,..,n Other notation and terminology follow that in [i]. The graphs
Wa, Ws, Cy, Cs, K, UK, K(1,n), 2K, as well as the graph G of Figure | are
uniquely edge extendible. It is immediate that if J is any graph containing an
edge e such that J—e is uniquely edge extendible, then J is edge-reconstructible,

A few additional concepts are needed to study uniquely edge extendible graphs.
A graph of order p will be called irreducible if p = 1 or the graph contains no
vertices of degree p—1. If n: V(G) — V(H) is an isomorphism between the non-
empty graphs G and H, then #: E(G) — E(H) will denote the induced edge-isomor-
phism. We will let &/(G) [respectively &/*(G)] denote the group of automorphisms
[respectively induced edge-automorphisms] of a graph G. A graph H is edge-sym-
metric if for any pair of edges e, and ¢, of H there exists « € #*(G) such that a(e,)
= e,. Barlier work on edge-symmetric graphs appears in [2]~[6]. Finally, we let @
denote the set of degrees of the vertices of G and call a graph G biregular if |Dg| = 2.
The following lemma will be helpful.

LEMMA 1. If G is irreducible and uniquely edge extendible, then exactly one of
the following is true:

@) G is trivial (i.e., G = K;);
(i) G is regular and not complete;
(iii) G is biregular and for every edge xy e E(G), deggx # deggy.

Proof. Let G be both irreducible and uniquely edge extendible. If G is com-
plete, then G must be trivial. Assume then, that G is not complete. Then there exist
vertices u and v in G such that w e E(G). We consider two cases.

Case 1. Assume that deggu = deggzv = n. In this case the number n+1 ocours
as a degree in G+uv twice more than it does in G. Now let x be an arbitrary vertex
of G. Since G is irreducible and nontrivial, there exists a vertex w of G such that
wx € E(G). Then, since G+uv = G+wx, the number 2+ 1 occurs as a degree twice
more in G+wx than it does in G. It follows that degyx = n. Thus G is regular
and not complete.

Case 2. Assume that m = deggu < deggv = n. In this case the numbers
m+1 and:n+1 each occur as a degree once more in G+uv than they do in G.
Let x be an arbitrary vertex of G. As is Case 1, there exists a vertex w in G such

frhat wx € E(G) and, by the same reasoning as in Case 1, deggx must be either m
or n and deggw # deggx. M
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Our main result for uniquely edge extendible graphs may now be presented
for the class of irreducible graphs.

TrEOREM 1. Let G be an irreducible graph. Then G is uniquely edge extendible
if and only if G is edge-symmetric.

Proof. First note that if G is complete, then G = K, which is uniquely edge
extendible, and G is edge-symmetric. Assume then, that G is an irreducible graph
which is not complete, the complement of which is edge-symmetric. Let e; and e,
be edges of G. We know that there exists an induced edge-automorphism % € &7*(G)
such that #(e,) = e, and where, say, # is induced by the automorphism =: ¥(G)—
- V(G). Since & (G) = o (G), the map = is also an automorphism of G. Moreover,
since % (e,) = e,, it follows that = is an isomorphism of G +e; with G+e, so that
G is uniquely edge extendible.

Converscly, assume that G is an irreducible uniquely edge extendible graph
which is not complete. Using Lemma 1 we need only consider two cases; G 'is
regular or G is biregular.

Case 1. Assume that G is regular of degree n. Let e, and e, be edges of G
where e; = uyp; for i=1,2. By assumption, there exists an isomorphism
o: V(G+e)) = V(G+ey). For i =1,2 note that u; and v; are the only vertices
of G+ e, of degree n+ 1. Therefore, o maps {u;, v;} onto {u,, v,} and « is an auto-
morphism of G and hence, also of G. Thus « induces the edge-automorphism &
e o *(G) where 8(e;) = e, so that G is edge-symmetric.

Case 2. Assume that G is biregular with @; = {a,b} and ¢ < b. Let ¢; and e,
be edges of G where e, = u;v, for i = 1,2. Since G is uniquely edge extendible,
there exists an isomorphism n: V(G+e() = V(G+e,). Let

V, = {ve V(G)|degev = a} and V, = {ve V(G)|degev = b}.

Since G is irreducible and nontrivial, there are edges missing at each of its vertices:
By Lemma 1, (V) and {¥;) are complete and we may assume that u;€ V, and
v;e ¥V, for i = 1,2. We now consider two subcases to complete the proof.

Subcase 2A. Assume that b > a+1. Here, for i = 1,2, u; is the only vertex
of G-+e¢, of degree a+1 and v; is the only vertex of G+e; of degree b-}-.l, Hence
7 maps the set {uy,v;} onto the set {uy, v,} and the same reasoning as in Case 1
may be employed to show that G is edge-symmetric.

Subcase 2B. Assume that b = a+1. In this situation, for 7=1,2 let H;
= G-+e, and note that v; is the only vertex of H, with degree a-+2. H‘ence.n(vi)
= v, Let n(u,) = we V(G+e,). Then we ¥y v {u,} ~{v,}. Now u; is adqacent
to every vertex of degree a in H, because (¥,) is complete; hence w must be adjacent
to every vertex in the set ¥,—{u,} in the graph Hy. . .

If w # uy, then w,e V,~{p,}. Since G is irreducible and (V,,_) is complete,
deggw ='b = p—2, where p is the orgcr of G. S0 a = p—S, apd it follows that
G =~ mK(l, 2) where m = p/3. Thus G is edge-symmetric.
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If w = u,, then = maps {u,, v;} onto {u,, v,}, and the same reasoning as in
Case 1 may be employed again to conclude that G is edge-symmetric. B

Let G and H be graphs where G = H+K,. By this notation we mean that
G is obtained from H by adding a new vertex w and edges {wv] ve V(G)}. It is
straight forward to establish the following facts:

(i) G is uniquely edge extendible if and only if H is uniquely edge extendible.

(i) G is edge-symmetric if and only if H is edge-symmetric.

Since 2 graph G fails to be irreducible if and only if G = H-+-K, for some
graph H, a repeated use of the above facts and Theorem 1 yield the following
result:

COROLLARY 1. A graph G is uniquely edge extendible if and only if G is edge-
symmeltric.

Our intent now is to generalize uniquely edge extendible and edge-symmetric
graphs, establish generalized forms of Theorem 1, and structurally characterize the
graphs so defined.

Let k be'a positive integer. A graph G is k-edge-symmetric if |E(G)| = k+1
and for any pair 4, B of sets of edges of G with |4] = |B| = k, there exists
o & &/*(G) such that « maps the set 4 onto the set B. Note that if G is a graph with
at least two edges, then G is 1-edge-symmetric if and only if G is edge-symmetric.

For a positive integer k, a graph G is uniquely k edge extendible if |EG) = k+1
and for any pair 4, B of sets of edges of G with |4} = |B| = k, the graphs G+4
and G+B are isomorphic. Note that if G is a graph with |E(G)| > 2, then G is
uniquely 1 edge extendible if and only if G is uniquely edge extendible.

For example, the graphs nK, and K(l,n) are k-edge-symmetric for each
2<k<n—-1 and the graphs K,,, and K; U K, are uniquely k edge extendible
for each 2 < k < n—1. The main thrust ot our remaining work here is to show
that, except tor a couple of isolated graphs of small order, these are the only
examples.

We note that if G and H are graphs with G = H+K,, then E(G) = E(H)
and, for each 2 < k < |E(G)|—1, G is uniquely k edge extendible if and only if
H is uniquely k& edge extendible. It follows that the presence in a graph G of one
or more vertices of degree |V(G)|—~1 cannot influence the answer to the question
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of whether or not G is uniquely k edge extendible. Therefore, it suffices to study
irreducible uniquely k edge extendible graphs, since all others can be obtained
from the irreducible ones by joining additional vertices. In a similar fashion, vertices
of degree 0 do not affect k-edge-symmetry so that in the study of k-edge-symmetric
graphs, we may restrict our attention to graphs which have no isolated vertices.

LeMMA 2. Let G be a graph of size ¢ > 2 and let k be an integer satisfying
1 £ k € g—1. Then G is k-edge-symmetric if and only if G is (q—k)-edge-symmetric.

Proof, Assume that G is a k-edge-symmetric graph of size ¢ > 2 and let k&
be an integer satisfying 1 < k <g-—1. Since k > 1, we have g > (g—k)+1 so
that G has enough edges to be (g—k)-edge-symmetric. Let 4 and B be sets of edges
of G with |A4| = |B| = g—k. Let C = E(G)—4 and D = E(G)—B. Then |C]
= |D| = k, so there exists a € &/*(G) such that @ maps C onto D. It follows that
o maps 4 = E(G)—C onto B = E(G)—D. Hence G is (¢—k)-edge-symmetric.
The converse is proved similarly. &

Since a graph of size ¢ > 2 is edge-symmetric if and only if it is (g—1)-edge-
symmetric we will for the most part limit our attention to k-edge-symmetric graphs
of size ¢ where 2 < k < g—2, because a complete classification of edge-symmetric
graphs is not yet known (see [3]). Moreover, we are working toward the result
that with suitable restrictions on k, a graph G is uniquely k edge extendible if and
only if G is k-edge-symmetric. Thus we also limit our study of uniquely k edge
extendible graphs mainly to those graphs G ior which G is of size § where 2 < &
< §—2. This does not seriously restrict the scope of our study since the only other
case permitted by the definition is that of k = §—1 and that case is covered clom-
pletely by the observation that every graph is uniquely (@—1) edge extendible.

Our next result shows that, subject to these restrictions, an irreducible graph G
which is uniquely k edge extendible must take one of just two possible forms, which
surprisingly are independent of the value of k.

Lemma 3. Let G be an irreducible graph whose complement is of size § > 4 and
let k be an integer satisfying 2 < k< §—2. If G is uniquely k edge extendible, then
for n = § either G & K,y or G 2 K, UK,

Proof. Let G be a graph and k an integer satisfying the hypotheses of the
lemma, and assume that G is uniquely k edge extendible. We consider two cases
according as E(G) is or is not an independent set of edges in G.

Case 1. No two edges of G are adjacent. In this case G is regular of degree 1
so for n =3,G = nkK, and G = K,(3)-

Case 2. G has a pair of adjacent edges. Let e;, /; be edges of G that are incident
with a common vertex v. Let e and f be two arbitrary edges of G and suppose that e
and f are independent. Since 7 > k+2 we can find a set CcE@G)~fey, f1-e,f}
with [C] = k—2. Let 4= CuU{e,, f;} and B = Cu {e,f}. Then G+4 an-d
G+B have different degree sequences contradicting the hypothesis that G is
uniquely k edge extendible. Thus no two edges of G are independent. Since G is
"
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of order § 3> 4 it follows that G is the star K(l,n) with n =7, and that G
2K UK, B
The proof of our next result is sufficiently elementary that we omit it.
LEMMA 4. Let n and k be positive integers with n = k+1. The graphs nK, and
K(1,n) are k-edge-symmetric.
The next result ties together our two new classes of graphs.

LeMMa 5. Let G be a k-edge-symmetric graph for some k z 2. Then G is uniquely
k edge extendible. -

Proof. Let G be k-edge-symmetris for some k > 2. Then [E(G)| = k+1.
Let 4, B be subsets of E(G) with |4] = |B| = k. Then there exists n € o (G) such
that # maps 4 onto B, where # € &*(G) is induced by 7. Since = is also an auto-
morphism of G, « is an isomorphism of G+.4 wish G+ B. Thus G is uniquely k edge
extendible. B )

Lemmas 3, 4, and 5 constitute the proof of our main result.

TuEOREM 2. Let G be an irreducible graph whose complement G is of size § = 4
and let k be an integer satisfying 2 < k < §—2. Then the following statements are
equivalent:

(i) G is uniquely k edge extendible;
(i) G is k-edge-symmetric;

(iii) For n =g either G & K,y or G 2 K, UK.

Theorem 2 covers only irreducible graphs G for which G has size § > 4. There
are only nine irreducible graphs G such that G has size § < 3, namely K3, K; U K3,
Py, K, U Py, and Ky with § = 3, and Ky U K, and C, with § = 2, and K, with
g =1, and K; with § = 0. These can be individually examined to determine all

graphs which are uniquely multiply edge extendible or multiply-edge-symmetric.
_ This leads to the following classifications.

COROLLARY 2a. Let G be an irreducible graph for which G has size § > 3. Then
Sfollowing statements are equivalent:

() G is uniquely 2 edge extendible;

(i) G is uniquely k edge extendible for every 2 = k < §—1;

(iii) Either

(iiia) g > 4 and for n = 3, G = K,y or G2 Ky UK,
or

(iiib) § = 3.

COROLLARY 2b. Let G be a graph of size ¢ > 3 which has no isoluted vertices.
Then the following conditions are equivalent: ’

() G is 2-edge-symmetric;
(i) G is k-edge-symmetric for every 2 < k <q-2;
(iii) Either
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(iiia) ¢ > 4 and for n =g, G = nkK, or G = K(1,n)
or

(iiib) g = 3 and G = K5 or G = K(1,3) or G = 3K,.

Actually the preceding corollaries classify all graphs which are either uniquely
multiply edge extendible or multiply-edge-symmetric. If a graphs G is not irreducible,
then for all 2 < k < §—1, G is uniquely k edge extendible if and only if the graph
obtained from G by deleting all vertices of degree |V(G)|—1 (all but one such
vertex for a complete graph) is uniquely k edge extendible. Also, if G has isolated
vertices then for all 2 < k < q—1, G is k-edge-symmetric if and only it the graph
obtained from G by deleting all isolated vertices (all but one vertex for an empty
graph) is k-edge-symmetric. T

From Corollaries 2a and 2b we may deduce the following result:

COROLLARY 2¢. The only graphs which are both uniquely multiply edge extendible
and multiply-edge-symmetric are Ky U K3 and K(1, 3).
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