On complexity of metric spaces by Aarno Hohti * (Helsinki) and Jan Pelant (Praha) Abstract. In this paper we study the question whether the ath "slowed down" Ginsburg-Isbell derivative of a given metric uniformity is fine. We characterize the metric spaces with this property and generalize the work begun in [5]. We state related results for infinite products and hyperspaces of complete metric spaces. - 1. Introduction. In their fundamental 1959 paper [1], S. Ginsburg and J. Isbell proved that the locally fine coreflection of a complete metric uniformity is fine. The locally fine coreflection of a uniformity μ is constructed combinatorially by forming the successive Ginsburg-Isbell derivatives $\mu^{(\alpha)}$ of μ . Hence, it is natural to try to characterize those complete spaces whose ath derivatives for some given ordinal α is fine. This and some other questions ([4) connected with the Ginsburg-Isbell derivative are facilitated by slightly changing the definition of the original derivatives (as was done in [5]) to make them more suitable for inductive purposes. In [5] the first author characterized the metric spaces for which there is a countable ordinal a such that their ath derivative is fine; here we will extend this result to the uncountable case. In the proof of the main result the technique of special trees from [12] and [13] is used. The main theorem is then used to give estimates for the ranks of infinite products and hyperspaces. It should be noted that the main result (Theorem 3.1) is a sort of a reduction theorem since it refers to the notion of derivative which seems impossible to dispose with. We also remark that our result is related to earlier investigations, see for example [10], [2], [1], [14] and [3]. - 2. Preliminaries. First we shall give some preliminary definitions. The reader is referred to [6] and [7] for information on uniform spaces. Let X be a set and let μ and ν be filters of coverings of X, ordered by the relation of refinement. Then ν/μ denotes the collection of all covers of X that have a refinement of the form $\{U_i \cap V_i^l\}$, where $\{U_i\} \in \mu$ and for each i, $\{V_i^l\}$ belongs to ν . Then ν/μ is a filter ^(*) During the preparation of this paper, the first author visited the Czechoslovak Academy of Sciences under a scientific exchange programme between Czechoslovakia and Finland, and wishes to thank CSAV, the Academy of Finland, and the Finnish Academy of Sciences for their support. of coverings of X. Following [5], we define the derivatives $\mu^{(a)}$ of a uniformity μ on X by setting $$\mu^{(0)} = \mu$$; $\mu^{(\alpha+1)} = \mu^{(\alpha)}/\mu$ and $\mu^{(\beta)} = \bigcup \{\mu^{(\alpha)} : \alpha < \beta\}$ if β is a limit ordinal. (Note that these derivatives are different from the Ginsburg–Isbell derivatives: the expression $\mu^{(\alpha)}/\mu^{(\alpha)}$ is replaced by $\mu^{(\alpha)}/\mu$.) It was proved in [5] that if τ is a regular infinite ordinal, $\alpha < \tau$ and the α th Ginsburg–Isbell derivative of μ is fine, then there is a $\beta < \tau$ such that $\mu^{(\beta)}$ is fine. There is an $\alpha \in \text{Ord}$ such that $\mu^{(\alpha)} = \mu^{(\alpha+1)} = \lambda \mu$, where $\lambda \mu$ denotes the Ginsburg-Isbell locally fine coreflection [2]. If $\lambda \mu X = FX$ (= the fine uniform space associated with X), then μX is called ranked and we define rank $$\operatorname{rank}(\mu X) = \inf\{\alpha \in \operatorname{Ord} \colon \mu^{(\alpha)} X = FX\}$$ provided that |X| > 1. If $|X| \le 1$, let $\operatorname{rank}(\mu X) = -1$. For the purpose of this paper, the symbol ϱX refers to a metric space and ϱ denotes both the metric and the associated metric uniformity. A special tree is a partially ordered set $\mathscr{T}=(T,\leqslant)$ with a (unique) minimal element such that branch (i.e. a subset linearly ordered by \leqslant) is finite and for any $x\in T$, the set of \leqslant -predecessors of x is well-ordered. Given an element $x\in T$, let $\widetilde{S}(x)=\{y\in T\colon y>x\}$ and let $S(x)=\widetilde{S}(x)-\bigcup\{\mathscr{F}(y)\colon y\in T(x)\}$. Thus, S(x) is the set of all immediate successors of x in \mathscr{F} . Define $\mathrm{End}(\mathscr{F})=\{x\in T\colon S(x)=\varnothing\}$. If X is a subset of T, then $\mathscr{F}|X$ denotes the restriction $(X,\leqslant|X^2)$ of \mathscr{F} to X. In particular, let $\mathscr{F}(x)=\mathscr{F}|(\mathscr{F}(x)\cup\{x\})$ for all $x\in T$. Given a special tree \mathscr{F} , define $$T^{(0)} = T$$, $\mathscr{T}^{(0)} = \mathscr{T}$; $T^{(\alpha+1)} = T^{(\alpha)} - \operatorname{End}(\mathscr{T}^{(\alpha)})$, $\mathscr{T}^{(\alpha+1)} = \mathscr{T}|T^{(\alpha+1)}$ and $$\mathcal{T}^{(\beta)} = \mathcal{T}|\bigcap \{T^{(\alpha)}\colon \alpha < \beta\}$$ if β is a limit ordinal. Given in addition a uniform space μX , a $\langle \mathcal{F}, \mu \rangle$ -map is any mapping $\varphi \colon T \to P(X)$ such that $\{\varphi(y) \colon y \in S(x)\}$ is a uniform cover of $\varphi(x)$ for each $x \in T^{(1)}$. Special trees were earlier applied in [12] and [13]. The following notion yields a connection between ranks and special trees. Definition. If $\mathscr T$ is a special tree, then the length complexity $l(\mathscr T)$ of $\mathscr T$ is the unique ordinal α such that $|\mathscr T^{(\alpha)}|=1$. Remark. For each ordinal $\alpha \ge 1$, let $P(\alpha)$ denote the following statement: if μX is a uniform space, $\mathcal F$ is a special tree with $l(\mathcal F) < \alpha$, $\varphi \colon T \to P(X)$ is a $\langle \mathcal F, \mu \rangle$ -map and $\varphi[\operatorname{End}(\mathcal F)]$ is a cover of X, then $\varphi[\operatorname{End}(\mathcal F)] \in \mu^{(\alpha)}$. Clearly $P(\alpha)$ is valid for $\alpha = 1$. Suppose that $P(\alpha)$ is valid for $1 \le \alpha \le \beta$. Let μX , $\mathcal F$, and φ be as above and let $\tau = l(\mathcal F) < \beta$. Denote by p the unique minimal element of $\mathcal F$. Note that $l(\mathcal F(x)) < \tau$ for all $x \in S(p)$. Thus, by the inductive hypothesis (applied to the subspaces $\varphi(x)$ of μX) there exist covers $\mathcal F_x \in \mu^{(\tau)}$, $x \in S(p)$, such that $$\{V \cap \varphi(x) \colon x \in S(p), V \in \mathscr{V}_x\} < \varphi[\operatorname{End}(\mathscr{T})]$$ belongs to $\mu^{(\mathfrak{r})}/\mu = \mu^{(\mathfrak{r}+1)} \subset \mu^{(\beta)}$, as required. This proves that $P(\alpha)$ is valid for all $\alpha \geqslant 1$. Hence, in order to show that $\operatorname{rank}(\mu X) \leqslant \alpha$, it is enough to prove that for each open cover $\mathscr V$ of X there is a special tree $\mathscr F$ and a $\langle \mathscr F, \mu \rangle$ -map φ such that $I(\mathscr F) < \alpha$ and $\varphi[\operatorname{End}(\mathscr F)] < \mathscr V$. Let α be a cardinal number. A tree $\mathcal F$ is called an α -tree provided that each element of $\mathcal F$ has at most α immediate successors. The following result was stated as Proposition 5(v) in [13] without proof—the proof will be given here. (We assume that α is an infinite cardinal.) Proposition 2.1. If $\mathcal F$ is a special α -tree and σ is an infinite cardinal, then $l(\mathcal F)<\alpha^+.$ Proof. First note that $|T| < \alpha^+$ because each element of $\mathcal F$ has less than α^+ successors, the branches of $\mathcal F$ are finite and α^+ is an infinite regular cardinal. Define a map $f\colon T\to \operatorname{Ord}$ so that for each $p\in T$, f(p) is the unique ordinal β for which $p\in\operatorname{End}(\mathcal F^{(\beta)})$. We claim that $f(p)<\alpha^+$ for all $p\in T$. Indeed, if the claim were not true, then there would exist a maximal $p\in T$ such that $f(p)\geqslant\alpha^+$. Now $p\in\operatorname{End}(\bigcap\{\mathcal F^{(f(q))}\colon q>p\})$ and hence $f(p)=\sup\{f(q)+1\colon q>p\}<\alpha^+$, since $f(q)<\alpha^+$ for every q>p and $|\widetilde S(p)|<\alpha^+$: a contradiction. In particular, $l(\mathcal F)=f(p)<\alpha^+$ for the unique minimal element p of $\mathcal F$. 3. The main result. Let α be an ordinal number. In case α is a successor ordinal, let $cf\alpha = 0$. Otherwise define $cf\alpha = \inf\{|A|: A \subset Ord, \alpha \notin A \text{ and } \alpha = \sup A\}$. If X is a topological space and \varkappa is an infinite cardinal, then X is \varkappa -compact provided that every open cover of X has a subcover of cardinality $<\varkappa$. The following theorem is the main result in our paper. Theorem 3.1. Let ϱX be a complete metric space, let $\alpha \in \operatorname{Ord}$ and let $\varkappa = \max(\operatorname{cf}\alpha, \omega)$. The following statements are equivalent: (i) $rank(oX) \leq \alpha$; (ii) there is a closed \varkappa -compact subspace E of X such that for each $\varepsilon > 0$ there exist an $r(\varepsilon) > 0$ and a $\beta(\varepsilon) < \alpha$ and with $\mathrm{rank}(\overline{B}_{r(\varepsilon)}(x)) \leqslant \beta(\varepsilon)$ for all $x \in X - B_{\varepsilon}(E)$. Proof. To show that (i) implies (ii), let $\operatorname{rank}(\varrho X) \leq \alpha$. We shall assume that α is a limit ordinal, since the case of a successor ordinal is essentially the same as the case of countable α in [5]. Consider the cover $\Re(1/(n+1))$ of X consisting of all closed balls $\overline{B}_{1/(n+1)}(x)$ with ϱ -radius 1/(n+1). OBSERVATION. If $M \subset \overline{\mathcal{B}}(1/(n+1))$ is uniformly discrete and $$\mathcal{M}' = \{ \overline{B} \in \mathcal{M} : \operatorname{rank} \overline{B} = \alpha \},$$ then $|\mathcal{M}'| < \varkappa$ and $\sup \{ \operatorname{rank} \overline{B} : \overline{B} \in \mathcal{M} - \mathcal{M}' \} < \alpha$. Proof of Observation. Suppose that $|\mathcal{M}'| \ge \alpha$. Then there is a map $f: \mathcal{M}' \to \alpha$ such that $\alpha = \sup f[\mathcal{M}']$. For each $\overline{B} \in \mathcal{M}'$, rank $\overline{B} = \alpha$ and hence there is an open cover \mathscr{V}_B of \overline{B} such that \mathscr{V}_B is not refined by any cover $\mathscr{W}|\overline{B}$, where belongs to $\varrho^{(f(\overline{B}))}$. Since \mathscr{M}' is uniformly discrete it is easily seen that we can find a disjoint collection $\{\mathscr{V}_B': \overline{B} \in \mathscr{M}'\}$ of open families \mathscr{V}_B' of X such that $\mathscr{V}_B = \mathscr{V}_{\mathscr{B}}'|\overline{B}$. Let $$\mathscr{W} = \bigcup \left\{ \mathscr{V}_{B}' \colon \overline{B} \in \mathscr{M}' \right\} \cup \left\{ X - \bigcup \left\{ \overline{B} \colon \overline{B} \in \mathscr{M}' \right\} \right\}.$$ Then $\mathscr W$ is an open cover of X and thus $\mathscr W \in \varrho^{(\beta)}$ for some $\beta < \alpha$ since $\operatorname{rank}(\varrho X) \leqslant \alpha$ and α is a limit ordinal. Choose a $\overline{B} \in \mathscr M$ for which $f(\overline{B}) > \beta$; we obtain a contradiction since $\mathscr W|\overline{B}$ refines $\mathscr V_B$ and $\mathscr W \in \varrho^{(f(\overline{B}))}$. The proof of the latter statement is similar but simpler. It follows from Observation that for each $n \in \omega$ there is an $\mathcal{M}_n \subset \overline{\mathcal{B}}(2^{-n-1})$ and a $\beta(n) < \alpha$ such that - (1) $|\mathcal{M}_n| < \varkappa$, - (2) \mathcal{M}_n is uniformly discrete, - (3) rank $\overline{B} \leq \beta(n)$ whenever $\overline{B} \in \overline{\mathcal{B}}(2^{-n-1})$ and $\overline{B} \cap B_{2^{-n-1}}(\bigcup (\mathcal{M}_n)) = \emptyset$. The desired collections \mathcal{M}_n will be constructed by induction as follows. Let $f\colon \varkappa \to \alpha$ be a map with $\alpha = \sup\{f(\beta)\colon \beta < \varkappa\}$. We first construct \mathcal{M}_0 . Let $\overline{B}_{0,0}$ be an arbitrary element of $\overline{\mathcal{B}}(2^{-1})$. Suppose that $\overline{B}_{\tau,0}$ is defined for all $\tau < \sigma$, where $\sigma < \varkappa$, and let $\mathcal{B}_{\sigma,0} = \{\overline{B} \in \overline{\mathcal{B}}(2^{-1})\colon \varrho(\overline{B},\bigcup_{\tau < \sigma}\overline{B}_{\tau,0}) \geqslant 2^{-1}\}$. If $\operatorname{rank}|\mathcal{B}_{0,0}$ has no upper bound $<\alpha$, choose a $\overline{B}_{\sigma,0} \in \mathcal{B}_{\sigma,0}$ such that $\operatorname{rank}\overline{B}_{\sigma,0} > f(\sigma)$. Otherwise, stop here and let $\mathcal{M}_0 = \{\overline{B}_{\tau,0}\colon \tau < \sigma\}$. Suppose that \mathcal{M}_n is defined and let Z_n denote the set of all centers of balls from \mathcal{M}_n . Let $\overline{B}_{0,n+1}$ be an arbitrary element of $\overline{B}(2^{-n-2})$ such that $\overline{B}_{0,n+1} \subset \overline{B}_{2^{-n}}(Z_n)$. If $\overline{B}_{\tau,n+1}$ is defined for all $\tau < \sigma$, $\sigma < \varkappa$, let $\mathcal{B}_{\sigma,n+1} = \{\overline{B} \in \overline{\mathcal{B}}(2^{-n-2})\colon \overline{B} \subset \overline{B}_{2^{-n}}(Z_n)$ and $\varrho(\overline{B},\bigcup_{\tau \in \mathbb{N}}\overline{B}_{\tau,n+1})\geqslant 2^{-n-2}\}$. Then proceed as in the case n = 0. Finally, let $$E = \overline{\bigcup \{Z_n \colon n \in \omega\}}.$$ Then E is \varkappa -precompact. For, if $\mathscr U$ is a uniform cover of E, there is an $n \in \omega$ such that the balls $\overline{B}_{2^{-n+2}}(z)$, $z \in Z_n$, partially refine $\mathscr U$. The relation $Z_{n+1} \subset \overline{B}_{2^{-n+1}}(Z_n)$ implies that $\mathscr U$ has a subcover of cardinality $\leq |Z_0| + \ldots + |Z_n| < \varkappa$. Thus, E is \varkappa -compact, since it is complete. (Completeness is really needed for the case $\varkappa = \omega$ only.) Clearly E witnesses that (ii) is satisfied. To prove that (ii) implies (i), we consider two cases. Case 1. $\varkappa = \omega$. Then E is compact. If $\mathscr V$ is any open cover of X, then $\mathscr V$ is uniform over some uniform neighbourhood of E and it is not difficult to see that $\mathscr V \in \varrho^{(\beta)}$ for some $\beta < \alpha$. Case 2. $\varkappa > \omega$. Put $\beta = \sup\{\beta(1/(n+1)): n \in \omega\}$. Then $\beta < \alpha$. As E is \varkappa -compact and $\varkappa > \omega$, there is a dense subset D of E with $|D| < \varkappa$. Let $\mathscr V$ be an open cover of X. We shall show that there is a special tree $\mathscr F^*$ with a $\langle \mathscr F^*, \varrho \rangle$ -map φ such that $l(\mathscr F^*) < \alpha$ and φ [End $(\mathscr F^*)$] $< \mathscr V$. Then the Remark of Section 2 applies to prove that $\operatorname{rank}(\varrho X) \leqslant \alpha$. We will first construct a tree $\mathscr F$ by induction. To start with, let $T_0 = \{X\}$ and let \leq_0 be the trivial (linear) ordering of T_0 and let $\mathscr{F}_0 = (T_0, \leq_0)$. For n>0, we shall construct trees $\mathscr{T}_n=(\mathscr{T}_n,\leqslant_n)$ whose points are (m+1)-tuples $\langle \overline{B}_m,\ldots,\overline{B}_1,X\rangle$ $(1\leqslant m\leqslant n)$ of subsets of X that satisfy the following properties: - (i) $\langle \overline{B}_m, ..., \overline{B}_1, X \rangle <_n \langle \overline{B}_{m+1}, \overline{B}_m, ..., \overline{B}_1, X \rangle$ for $1 \le m < n$; - (ii) if $1 \leq m < n$ and $\langle \overline{B}_m, ..., \overline{B}_1, X \rangle$ is an end point of \mathscr{T}_n , then the restriction of \mathscr{V} to \overline{B}_m belongs to the β th derivative of $\varrho | \overline{B}_m$; - (iii) $\overline{B}_{m+1} \subset \overline{B}_m$ and diam $\overline{B}_{m+1} < 1/m$ for $1 \le m < n$; - (iv) each element of $\mathcal{F}_n^{(1)}$ has only |D| immediate successors in $\mathcal{F}_n^{(2)}$. Step 1. $\varepsilon = 1/2$. By assumption there is an $r(1) \in]0$, $\varepsilon[$ such that (ii) is satisfied for $\varepsilon = 1/2$. Define $$M_1 = \{ \overline{B}_{r(1)}(x) \colon x \in X - B_{1/2}(E) \}$$ $$N_1 = \{ \overline{B}_{1/2}(d) \colon d \in D \}.$$ Let T_1 be the union of T_0 and $\{\langle \overline{P}, X \rangle \colon \overline{P} \in M_1 \cup N_1 \}$. Extend \leqslant_0 to \leqslant_1 on T_1 by setting $A >_1 A'$ iff A is a 2-tuple and A' = X. Let $\mathcal{F}_1 = (T_1, \leqslant_1)$. Step n+1. $\varepsilon = 1/(n+1)$. Suppose that $\mathcal{T}_n = (T_n, \leq_n)$ is defined. Let $$\mathscr{B}_n = \left\{ \left\langle \overline{B}_n, \dots, \overline{B}_1, X \right\rangle \in T_n \colon \mathscr{V} | \overline{B}_n \notin (\varrho | \overline{B}_n)^{(\beta)} \right\}.$$ Choose an $r(n+1) \in]0, 1/(n+1)[$ satisfying (ii). Given an (n+1)-tuple $S = \langle \overline{B}_n, ..., \overline{B}_1, X \rangle \in \mathcal{B}_n$, put $$M_{n+1}(S) = \{ \overline{B}_{r(n+1)}(x) \cap \overline{B}_n : x \in \overline{B}_n - B_{1/(n+1)}(E) \}$$ $$N_{n+1}(S) = \{ \overline{B}_{1/(n+1)}(d) \cap \overline{B}_n : d \in D \}.$$ For each such an S, define $$T_{n+1}(S) = \{\langle \overline{B}, S \rangle \colon \overline{B} \in M_{m+1}(S) \cup N_{n+1}(S), \overline{B} \neq \emptyset \}$$ and let T_{n+1} be the union of T_n and $\bigcup \{T_{n+1}(S): S \in \mathcal{B}_n\}$. We extend \leq_n to \leq_{n+1} by setting $A >_{n+1} S$ iff $S \in \mathcal{B}_n$ and $A \in T_{n+1}(S)$. Let $$T = \bigcup \{T_n : n \in \omega\}, \leqslant = \bigcup \{\leqslant_n : n \in \omega\}$$ and put $\mathscr{T}=(T,\leqslant)$. As ϱX is complete and \mathscr{V} is open, the method used to prove VII 9. in [7] can be applied here to show that \mathscr{T} is special. Indeed, if \mathscr{T} were not special, then it would contain an infinite branch and hence there would be a sequence $\{\langle \overline{B}_n, ..., \overline{B}_1, X \rangle : n \in \omega \}$ from \mathscr{T} . Now $\overline{B}_n \supset \overline{B}_{n+1} \neq \varnothing$ for every $n \in \omega$ and diam $\overline{B}_n \to 0$, whence there would be a point $p \in X$ such that $\{p\} = \bigcap \{\overline{B}_n : n \in \omega \}$ and hence there would exist an $n \in \omega$ and a $V \in \mathscr{V}$ with $\overline{B}_n \subset V$, which would imply $\langle \overline{B}_n, ..., \overline{B}_1, X \rangle \notin \mathscr{B}_n$. Furthermore, if $S = \langle \overline{B}_n, ..., \overline{B}_1, X \rangle \in \operatorname{End}(\mathscr{T})$, then there is a special tree $\mathscr{T}_S = (T_S, \leqslant_S)$ and a $\langle T_S, \varrho | \overline{B}_n \rangle$ -map $\varphi_S \colon T_S \to P(\overline{B}_n)$ such that $l(T_S) \leqslant \beta$ and $\varphi_S[\operatorname{End}(\mathscr{T}_S)] < \mathscr{V} | \overline{B}_n$. Let $$T^* = T \cup \{\langle x, S \rangle : S \in \text{End}(\mathcal{F}) \text{ and } x \in T_S\}$$ Lemma 4.2. Let ϱX be a complete metric space with $\operatorname{cf}(\delta(\varrho X)) > \omega$. Then $\operatorname{rank}(\varrho X) \leq \delta(\varrho X)$. and extend \leqslant to \leqslant^* on T^* by setting $\langle x,S\rangle^* > \langle x',S'\rangle$ iff $S=S', x, x'\in T_S$ and $x>_S x'$; and let $\langle x,S\rangle^* > S$ for each $S\in \operatorname{End}(\mathscr{T})$ and every $x\in T_S$. Then $\mathscr{T}^*=(T^*,\leqslant^*)$ is a special tree. (See Figure.) Define $\varphi\colon T^*\to P(X)$ in an obvious way by setting $\varphi(\langle x, S \rangle) = \varphi_S(x)$ if $S \in \operatorname{End}(\mathscr{T})$ and $x \in T_S$, and if $S \in T$, let $\varphi(S)$ be the first member of S. Since $\mathscr{T}^{(1)}$ is a |D|-tree (each element has at most |D| immediate successors), Proposition 2.1. Implies that $l(\mathscr{T}) < |D|^+$. Recall that $|D| < \varkappa$ and $\beta < \alpha$. Hence $l(\mathscr{T}^*) = \beta + l(\mathscr{T}) < \alpha$, because $|D| < \operatorname{cf}(\alpha)$. Clearly $\varphi[\operatorname{End}(\mathscr{T}^*)] < \mathscr{V}$ and our proof is complete. 4. Some applications of Theorem 3.1. Call a topological space $X C(\kappa)$ -scattered if every nonempty closed subset F of X contains a point with a κ -compact neighbourhood in F. The following corollary can be proved by transfinite induction. PROPOSITION 4.1. Let ϱX be a metric space such that $\operatorname{rank}(\varrho X) \leqslant \alpha$ and let $\varkappa = \max(\omega, |\alpha|)$. Then X is $C(\varkappa)$ -scattered. Let ϱX be a metric space with $\operatorname{rank}(\varrho X)=0$. It was shown in [5] that $\operatorname{rank}(\varrho X)^n \leqslant n-1$ for each $n \in \omega - \{0\}$. One might be tempted to conjecture that $\operatorname{rank}(\varrho X)^\omega \leqslant \omega_1$ or at least $\operatorname{rank}(\varrho X)^\omega \leqslant 2^\omega$. However, the actual situation is much worse. In fact, there is no upper bound for the ranks of countable powers of metric spaces of the rank zero. Indeed, let $\varkappa \geqslant \omega$ and let D_\varkappa be a uniformly discrete space of power \varkappa . Then $\operatorname{rank}(D_\varkappa^\omega) \geqslant \varkappa^+$. For, if $\alpha = \operatorname{rank}(D_\varkappa^\omega) < \varkappa^+$, then $|\alpha| \leqslant \varkappa$ and thus D_\varkappa would be $C(\varkappa)$ -scattered, by Proposition 4.1. But then some point of D_\varkappa^ω would have a \varkappa -compact neighbourhood and consequently D_\varkappa would be \varkappa -compact, which is impossible. On the other hand, $\operatorname{rank}(D_\varkappa^\omega) \leqslant \varkappa^+$, since D_\varkappa^ω is \varkappa^+ -compact. Hence, $\operatorname{rank}(D_\varkappa^\omega) = \varkappa^+$. These remarks enable us to determine the rank of the countably infinite power of any complete metric space. If μX is a uniform space, let $\delta(\mu X)$ denote the least cardinal \varkappa such that $|D| < \varkappa$ for each uniformly discrete subsets D of μX . Let us first state two lemmas. Proof. We must show that for any open cover $\mathscr V$ of X there is a special tree $\mathscr T$ and a $\langle \mathscr T, \varrho \rangle$ -map $\varphi \colon T \to P(X)$ such that $\varphi[\operatorname{End}(\mathscr T)] < \mathscr V$ and $l(\mathscr T) < \delta(\varrho X)$. To this end, let $\mathscr V$ be an open cover of X. For each $n \in \omega$, let $\mathscr B_n$ be an open cover of ϱX by balls of radius 2^{-n} . As $\mathscr B_n$ is a uniform cover, we can choose a uniform subcover $\mathscr B_n'$ with $\varkappa_n = |\mathscr B_n'| < \delta(\varrho X)$. The points of $\mathscr T$ are finite ordered (n+1)-tuples $\langle B_n, ..., B_1, X \rangle$, where $B_i = B_1' \cap ... \cap B_i' \neq \emptyset$ and $B_i' \in \mathscr B_i'$ for $1 \leqslant i \leqslant n$, and $B_{n-1}' \subset V$ for no element V of $\mathscr V$. The tree $\mathscr T$ is ordered in the same way as in the proof of 3.1. Thus, we set $\langle B_{n+1}, ..., B_1, X \rangle \geqslant \langle B_n, ..., B_1, X \rangle \geqslant \langle X \rangle$ for all elements $\langle B_{n+1}, ..., B_1, X \rangle$ of $\mathscr T$. Since ϱX is complete, we can see in the proof of 3.1. that $\mathscr T$ is special and that by defining $\varphi(\langle B_n, ..., B_1, X \rangle) = B_n$ we obtain a $\langle \mathscr T, \varrho \rangle$ -map φ such that $\varphi[\operatorname{End}(\mathscr T)] < \mathscr V$. Let $\varkappa = \sup\{ \varkappa_n \colon n \in \omega \}$. Then $\varkappa < \delta(\varrho X)$. Now $\mathscr T$ is a \varkappa -tree and thus by Proposition 2.1., the length complexity of $\mathscr T$ is less than $\varkappa^+ \leqslant \delta(\varrho X)$. Lemma 4.3. Let ϱX be a noncompact complete metric space with $\operatorname{cf}(\delta(\varrho X)) = \omega$. Then X^{ω} is not $C(\delta(\varrho X))$ -scattered. Proof. Since $\operatorname{cf}(\delta(\varrho X))=\omega$, there exist uniformly discrete subsets X_n of X such that $\sup\{|X_n|\colon n\in\omega\}=\delta(\varrho X)$. Since ϱX is noncompact and complete, there is an infinite uniformly discrete subset $Y=\{y_n\colon n\in\omega\}$ of ϱX . We shall show that X^ω is nowhere locally $\delta(\varrho X)$ -compact. Let $p\in X^\omega$ and let U be a neighbourhood of p in X^ω . Then there exists an embedding of X^ω onto a closed subspace of U. Thus, it is enough to show that X^ω is not $\delta(\varrho X)$ -compact. To show this, let $\pi_n\colon X^\omega\to X$ denote the nth projection and define a subset S of X^ω as the set of all points $x\in X^\omega$ such that (i) $\pi_0(x) \in Y$; (ii) if $\pi_0(x) = y_n$, then $\pi_1(x) \in X_n$; (iii) $\pi_n(x) = \pi_0(x)$ for $n \ge 2$. It is easy to see that S is a discrete closed subset of X^{ω} with $|S| = \delta(\varrho X)$ and hence X^{ω} is not $\delta(\varrho X)$ -compact, as desired. PROPOSITION. 4.4. Let ϱX be a noncompact complete metric space. If $\operatorname{cf}(\delta(\varrho X)) < \omega$, then $\operatorname{rank}(\varrho X)^{\omega} = \delta(\varrho X)$, if $\operatorname{cf}(\delta(\varrho X)) = \omega$, then $\operatorname{rank}(\varrho X)^{\omega} = \delta(\varrho X)^{+}$. Proof. For each $\varkappa < \delta(\varrho X)$ there is a uniformly discrete subset D_\varkappa of ϱX and consequently a uniform embedding $D_\varkappa^\omega \to (\varrho X)^\omega$. Thus, $\operatorname{rank}(\varrho X)^{\omega} \geqslant \sup \left\{ \operatorname{rank}(D_{\varkappa}^{\omega}) \colon \varkappa < \delta(\varrho X) \right\} = \sup \left\{ \varkappa^{+} \colon \varkappa < \delta(\varrho X) \right\} = \delta(\varrho X).$ If $\operatorname{cf}(\delta(\varrho X)) > \omega$, then $\delta((\varrho X)^\omega) = \delta(\varrho X)$ implies by Lemma 4.2. that $\operatorname{rank}(\varrho X)^\omega \leq \delta(\varrho X)$. Consequently $\operatorname{rank}(\varrho X)^\omega = \delta(\varrho X)$. On the other hand, suppose that $\operatorname{cf}(\delta(\varrho X)) = \omega$. By Lemma 4.3, X^ω is not $C(\delta(\varrho X))$ -scattered and hence by Proposition 4.1, $\operatorname{rank}(\varrho X)^\omega \geq \delta(\varrho X)^+$. Now $(\varrho X)^\omega$ is $\delta(\varrho X)^+$ -compact and it easily follows from Lemma 4.2. that $\operatorname{rank}(\varrho X)^\omega \leq \delta(\varrho X)^+$. Hence, $\operatorname{rank}(\varrho X)^\omega = \delta(\varrho X)^+$. Now we shall consider hyperspaces of metric spaces. For a metric space ϱX , the hyperspace K(X) of all compact subsets of X can be metrized by the Hausdorff metric $\hat{\varrho}$ given by setting $\hat{\varrho}(A_1,A_2)<\varepsilon$ iff $A_1\subset B_{\varrho,\varepsilon}(A_2)$ and $A_2\subset B_{\varrho,\varepsilon}(A_1)$ for each $\varepsilon>0$. For an element A of K(X), let $\overline{B}_{\varepsilon}^K(A)$ denote the closed $\hat{\varrho}$ -ball of radius ε and center A. E. Michael proved in [9] that if $C\in K(X)$ is compact, then $\bigcup \{A: A\in C\}$ is a compact subset of X. His proof can be modified to prove the following generalization. Lemma 4.5. If $C \in K(X)$ is \varkappa -compact, then $\bigcup \{A \colon A \in C\}$ is a \varkappa -compact subset of X. On the other hand, if $\varkappa = \omega$ or $\mathrm{cf}(\varkappa) > \omega$ and X is a \varkappa -compact metric space, then so is $K(\varrho X)$. (This is far from being true for more general spaces. Indeed, A. Okuyama gives in [11] an example of a cosmic space X for which K(X) is not even paracompact.) The following proposition can in some cases be used to estimate the rank of the hyperspace of compact subsets. PROPOSITION 4.6. Let ϱX be a complete metric space and let $\alpha \in \operatorname{Ord}$. Put $\varkappa = \max(\omega, \operatorname{cf} \alpha)$. The following statements are equivalent: - (i) $\operatorname{rank}(K(\varrho X)) \leq \alpha$; - (ii) either X is κ -compact or there is an $\epsilon>0$ and a $\beta<\alpha$ such that $\mathrm{rank}(\bar{B}_{\epsilon}^{K}(A))\leqslant\beta$ for each $A\in K(X)$. Proof. Note that (ii) \rightarrow (i) is obvious. To prove that (i) \rightarrow (ii), let $\operatorname{rank} \left(K(\varrho X)\right) \leqslant \alpha$. By Theorem 3.1 there is a \varkappa -compact $C \subset K(X)$ that satisfies the following condition: given an $\varepsilon > 0$, there exist an $r(\varepsilon) > 0$ and a $\beta(\varepsilon) < \alpha$ such that the rank of $\overline{B}_{r(\varepsilon)}^K(A) \subset K(X) - C$ is at most $\beta(\varepsilon)$ for each $A \in Y_\varepsilon = K(X) - B_\varepsilon^K(C)$. Put $E = \bigcup \{A \colon A \in C\}$. Then E is \varkappa -compact, by Lemma 4.3. If X is not \varkappa -compact, then $X - \overline{E} \neq \emptyset$. In that case choose an $x_0 \in X - \overline{E}$ and an $\varepsilon > 0$ with $\varrho(E, x_0) > \varepsilon$. If $A \subset B_{\varepsilon/2}(E)$ is compact, then $\hat{\varrho}(A \cup \{x_0\}, C) \geqslant \hat{\varrho}(A \cup \{x_0\}, K(E)) \geqslant \varrho(x_0, E) > \varepsilon$. Hence, rank $\overline{B}_{r(\varepsilon)}^K(A \cup \{x_0\}) \leqslant \beta(\varepsilon)$ for each such an A. Put $$r = 1/8 \min \{ \varepsilon, r(\varepsilon), r(\varepsilon/2) \}$$. Then $A \subset B_{\epsilon/2}(E)$ implies $\varrho(x_0, A) > 4r$ and thus map $$\varphi \colon \overline{B}_r^K(A) \to \overline{B}_r^K(A \cup \{x_0\})$$ given by $\varphi(L) = L \cup \{x_0\}$ is an isometric embedding. Indeed, clearly $\hat{\varrho}(\varphi(L_1), \varphi(L_2)) \le \hat{\varrho}(L_1, L_2)$ for any $L_1, L_2 \in \overline{B}^K_r(A)$, and the conditions $\varphi(L_1) \subset B(\varphi(L_2))$, $\varphi(L_2) \subset B_\eta(\varphi(L_1))$ imply that $L_1 \subset B_\eta(L_2)$ and $L_2 \subset B_\eta(L_1)$ for any $\eta \in [0, 2r]$. Moreover, φ is a closed map since its domain is complete. It follows that $\operatorname{rank}(\overline{B}^K_r(A)) \le \operatorname{rank}(\overline{B}^K_r(A) \cup \{x_0\})) \le \beta(\varepsilon)$. On the other hand, if $A \cap (X - B_{\varepsilon/2}(E)) \neq \emptyset$, then $\operatorname{rank}(\overline{B}^K_r(A)) \le \beta(\varepsilon/2)$ by assumption. Corollary 4.7. The rank of the hyperspace $K(\varrho X)$ is never a nonregular limit ordinal. If \varkappa is a regular ordinal, then $\operatorname{rank}(K(\varrho X))=\varkappa$ iff X is \varkappa -compact. Let ϱX be a metric space. Then ϱX is uniformly isomorphic to the bounded metric space σX , where $\sigma(x,y)=\min\{1,\varrho(x,y)\}$ for all $x,y\in X$. It can be shown that the uniform hyperspace $H(\varrho X)$ of all closed subsets of X can be metrized by the Hausdorff metric $\hat{\sigma}$ defined as for K(X). If ϱX is complete, then so is σX and hence by [7], II.48, $H(\sigma X)$ is complete. Thus, σX is ranked if, and only if, $H(\sigma X)$ is ranked. $\leq \delta(\varrho X)^+$ for any complete metric space ϱX , because $\delta(K(\varrho X)) = \delta(\varrho X)$ for any PROPOSITION 4.8. Let ϱX be a complete metric space, let \varkappa be an infinite cardinal and let $\{Z_n^\alpha: \alpha < \varkappa, n \in \omega\}$ be a collection of subsets of ϱX for which there is a sequence $\{\delta_n\}$ of real numbers such that - (i) the collection $\{Z_{\alpha}^{n}: \alpha < \varkappa, n \in \omega\}$ is δ_{0} -discrete; - (ii) $0 < \delta_{n+1} < \text{diam} Z_{\alpha}^{n} < \delta_{n} \text{ for all } \alpha < \varkappa \text{ and } n \in \omega;$ - (iii) $\lim \delta_n = 0$. Then rank $(H(\varrho X)) \geqslant (2^{\kappa})^{+}$. metric space with $|X| \ge \omega$. Proof. Note that we can assume that ϱX is bounded and that $|Z_{\alpha}^n|=2$ for all $n\in\omega$. We shall apply Proposition 4.1. For each $n\in\omega$, let D_n be the set of all $p\in H(\bigcup\{Z_{\alpha}^n\colon \alpha<\varkappa\})$ such that for each $\alpha<\varkappa$, $|p\cap Z_{\alpha}^n|=1$. Then $|D_n|=2^{\varkappa}$. The collection $\{D_n\colon n\in\omega\}$ is δ_0 -discrete and diam $D_n\leqslant\delta_n$ for all n. For each n, let $\varphi_n\colon D_{2^{\varkappa}}\to D_n$ be a one-to-one map. Define a map $f\colon (D_{2^{\varkappa}})^\omega\to H(\varrho X)$ by setting $f(p_0,p_1,p_3,\ldots)=\bigcup\{\varphi_n(p_n)\colon n\in\omega\}$, where $p_n\in D_{2^{\varkappa}}$ for all n. (Note that by (i) of 4.8., $f(p_0,p_1,p_3,\ldots)$ is a closed subset of X.) The conditions (ii) and (iii) of 4.8. ensure that f is a uniform embedding. Thus, it follows from 4.1. that $$\operatorname{rank}(H(\varrho X)) \geqslant \operatorname{rank}(D_{2^*})^{\omega} = (2^*)^+.$$ Proposition 4.8 enables us to give an example of a complete metric space whose rank exceeds the cardinality of the space. Let X be the subset $$\{2^m 3^n: m, n \in \omega\} \cup \{2^m 3^n + 1/n + 1: m, n \in \omega\}$$ of the real line. For all $x, y \in X$, let $\varrho(x, y) = \min\{1, |x-y|\}$. Then ϱX is a bounded complete metric space with $|X| = \omega$. By defining $Z_n^m = \{2^m 3^n, 2^m 3^n + 1/n + 1\}$, we see that the conditions of 4.8. are satisfied for ϱX . Hence, $\operatorname{rank}(H(\varrho X)) \geq (2^\omega)^+$. However, $|H(\varrho X)| = |P(X)| = 2^\omega$. Let dens(X) denote the minimum cardinality of a dense subset of X, where X is a topological space. Then for any complete metric space ϱX , $\operatorname{rank}(\varrho X) \leq (\operatorname{dens}(X))^+$. The above example shows that this upper bound can be achieved. 142 #### A. Hohti and J. Pelant #### References - [1] H. H. Corson, and I. Isbell, Some properties of strong uniformities, Quart. I. Math. 11. (1960), pp. 17-33. - [2] S. Ginsburg and I. Isbell, Some operators on uniform spaces, Trans. Amer. Math. Soc. 93 (1959), pp. 145-168. - [3] A. Hohti, On uniform paracompactness, Ann. Acad. Scient. Fenn. Ser. A, I. Mathematica Dissertationes 36 (1981). - 141 On supercomplete uniform spaces, to appear in Proc. Amer. Math. Soc. - [5] On Ginsburg-Isbell derivatives and ranks of metric spaces, to appear in Pacific Math. J. - [6] M. Hušek and M. D. Rice, Uniform spaces, to appear. - [7] J. Isbell, Uniform spaces, Mathemathical Surveys No. 12, American Mathematical Society, Providence, Rhode Island 1964. - [8] B. Levšenko, On compactness conditions and point-finite coverings, Math. Sb. 42 (1957), pp. 479-484, (in Russian). - [9] R. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), pp. 152-182. - [10] J. Nagata, On the uniform topology of bicompactifications, Journal of the Institute of Polytechnics, Osaka City University, Vol. 1, No. 1, Series A (1950). - [11] A. Okuyama, Note on hyperspaces consisting of compact sets, Math. Japonica 24 (1979), pp. 301-305. - [12] J. Pelant, Local fineness and normal covers, to appear. - [13] and M. D. Rice, Remarks on e-locally fine spaces, Seminar Uniform Spaces 1976-1977, Československá Akademie Věd, Praha, pp. 51-62. - [14] M. D. Rice, A note on uniform paracompactness, Proc. Amer. Math. Soc. 62 (1977), pp. 339-342. - [15] R. Telgársky, C-scattered and paracompact spaces, Fund. Math. 73 (1971), pp. 59-74. UNIVERSITY OF HELSINKI DEPARTMENT OF MATHEMATICS Hallituskatu 15 SF-00100 Helsinki 10 Finland INSTITUTE OF MATHEMATICS ČSAV Žitná 25 11567 Praha 1 Czechoslovakia Received 13 June 1983; in revised form 12 December 1983 # Fake topological Hilbert spaces and characterizations of dimension in terms of negligibility b: ### Jan Dijkstra and Jan van Mill (Amsterdam) Abstract. For every $k \in \{-1, 0, 1, ...\}$ we construct a topologically complete separable metric AR space X_k which is *not* homeomorphic to the Hilbert space I_2 , but which has the following properties: - (1) X_k embeds as a linearly convex subset of l_2 . - (2) every compact subset of X_k is a Z-set and homeomorphisms between compact subsets of X_k can be extended (with control), - (3) $X_k \times X_k \approx l_2$, - (4) if $A \subseteq X_k$ is σ -compact, then A is strongly negligible iff dim $A \le k$ (in particular, $X_k \approx X_{k'}$ if $k \ne k'$) - (5) if $A \subset X_k$ is any compactum of fundamental dimension at most k, then A is negligible in X_k . - Introduction. All topological spaces under discussion are separable metric. Toruńczyk [15] has obtained the following topological characterization of the separable Hilbert space l₂: - 1.1. THEOREM. A topologically complete AR space X is homeomorphic to l_2 if and only if every map $f\colon \bigoplus_{i=1}^\infty Q_i \to X$ of the countable free union of Hilbert cubes is strongly approximable by maps $g\colon \bigoplus_{i=1}^\infty Q_i \to X$ for which the collection $\{g(Q_i)\}_{i=1}^\infty$ is discrete. This extremely useful characterization has now become the standard method for recognizing topological Hilbert spaces. The above approximation property, referred to as the *strong discrete approximation property*, can be stated in the following way: 1.2. With respect to every admissible metric d on X, for each map $f: \bigoplus_{i=1}^{\infty} Q_i \to X$ and each $\varepsilon > 0$, there exists a map $g: \bigoplus_{i=1}^{\infty} Q_i \to X$ such that $d(f(y), g(y)) < \varepsilon$ for each y and $\{g(Q_i)\}_{i=1}^{\infty}$ is discrete. In Anderson, Curtis and van Mill [3] it was shown that the strong discrete approximation property cannot be relaxed by considering only positive constants 4 — Fundamenta Mathematicae CXXV. 2