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On complexity of metric spaces
by

Aarno Hohti* (Helsinki) and Jan Pelant (Praha)

Abstract. In this paper we study the question whether the ath “slowed down” Ginsburg-Isbell
derivative of a given metric uniformity is fine. We characterize the metric spaces with this property
and generalize the work begun in [5]. We state related results for infinite products and hyperspaces
of complete metric spaces.

1. Introduction. In their fundamental 1959 paper [1], S. Ginsburg and J. Isbell
proved that the locally fine coreflection of a complete metric uniformity is fine.
The locally fine coreflection of a uniformity u is constructed combinatorially by -
forming the successive Ginsburg-Isbell derivatives 4@ of . Hence, it is natural
to try to characterize those complete spaces whose ath derivatives for some given
ordinal ¢ is fine. This and some other questions ([4) connected with the Ginsburg—
Isbell derivative are facilitated by slightly changing the definition of the original
derivatives (as was done in [5]) to make them more suitable for inductive purposes.
In [5] the first author characterized the metric spaces for which there is a countable
ordinal o such that their ath derivative is fine; here we will extend this result to the
uncountable case. In the proof of the main result the technique of special trees
from [12] and [13] is used. The main theorem is then used to give estimates for
the ranks of infinite products and hyperspaces. It should be noted that the main
result (Theorem 3.1) is a sort of a reduction theorem since it refers to the notion
of derivative which seems impossible to dispose with. We also remark that our
result is related to earlier investigations, see for example [10], [2], [1], [14] and [3].

2. Preliminaries. First we shall give some preliminary definitions. The reader
is referred to [6] and [7] for information on uniform spaces. Let X be a set and
let u and v be filters of coverings of X, ordered by the relation of refinement. Then
v/ denotes the collection of all covers of X that have ‘a refinement of the form
{U; n V}}, where {U;} € p and for each i, {V3} belongs to v. Then v/u is a filter
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of coverings of X. Following [5], we define the derivatives u® of a uniformity
on X by setting

0) @+1)

u® = U {u®: o< B}
if B is a limit ordinal. (Note that these derivatives are different from the Ginsburg-
Isbell derivatives: the expression u®/u® is replaced by u®/u.) It was proved in [5]
that if 7 is a regular infinite ordinal, « < 7 and the ath Ginsburg-Isbell derivative
of u is fine, then there is a § <  such that #® is fine.

There is an o & Ord such that u® = p®** = Ay, where Au denotes the Gins-
burg-TIsbell locally fine coreflection [2]. If AuX = FX (= the fine uniform space
associated with X), then uX is called ranked and we define rank

O =p; p®P = y®y and

rank (uX) = inf{x € Ord: u®X = FX}

provided that |X| > 1. If |X| < 1, let rank(uX) = —1. For the purpose of this
paper, the symbol ¢X refers to a metric space and ¢ denotes both the metric and
the associated metric uniformity. ’

A special tree is a partially ordered set & = (T, <) with a (unique) minimal
element such that branch (i.e. a subset linearly ordered by <) is finite and for any
xe T, the set of < -predecessors of x is well-ordered. Given an element x € T, let
S(x)={yeT: y > x} and let S(x) = S(x)— U{Z (»): y e T(x)}. Thus, S(x) is
the set of all immediate successors of x in 7. Define End(7) = {xe T: S(x) = 8}.
th' X is a subset of T, then J|X denotes the restriction (X, <|X?) of 4 to X. In
particular, let 7 (x) = 7|(7 (x) U {x}) for all x e T. Given a special tree 7, define

T® =1,
T = T —End(77®),

0
TO =7, ;
gty flT(a-Pl)
and
TP =TI N{T9: 0 < p}

if is. a limit ordinal. Given in addition a uniform space pX, a {J, u)-map is any
mapping zp(:1 )T—> P.(X ) such that {@(): y € S(x)} is a uniform cover of ¢(x) for
f:ac]la xe'T . Special trees were earlier applied in [12] and [I13]. The following
notion yields a connection between ranks and special trees.

D}.ZFINITION. If 7 is a special tree, then the length complexity 1(T) of T is
the unique ordinal « such that |7 ™| = I,

' Re.mark. For each ordinal o > 1, let P(x) denote the following statement:
if pX is a uniform space, 7 is a special tree with I(7) < a, @: T — P(X) is
a (7, uy-map and @[End(7)] is a cover of X, then @ [End(9)] € u®. Clearly
P(e) is valid for a = 1. Suppose that P(«) is valid for 1 < « < B. Let uX, 7, and ¢
be_ as above and let v = /(7)) < B. Denote by p the unique minimal element of 7.
Note that /(77 (x)) < 7 for all x e S(p). Thus, by the inductive hypothesis (applied
to the subspaces ¢(x) of uX) there exist covers ¥, e u®®, ;ceS(p), such thét

icm

On complexity of metric spaces 135

7 Jo) < ¢[End(7(x))). On the other hand, by the definiton of ¢,
{¢(x): x & S(p)} is a uniform cover of pX. Therefore,

{Voo@): xeSp), Ve?,} < ¢[End(9)]
belongs to p@/u = p < uP, as required. This proves that P(«) is valid for
all & = 1. Hence, in order to show that rank(uX) < «, it is enough to prove that
for each open cover ¥~ of X there is a special tree 7 and a (7, u)-map ¢ such
that 1(9) < o and @[End(7)] < 7.

Let o be a cardinal number. A tree I is called an «-tree provided that each
element of 7 has at most « immediate successors. The following result was stated
as Proposition 5(v) in [13] without proof — the proof will be given here. (We assume
that o is an infinite cardinal.)

PROPOSITION 2.1. If 7 is a special w-tree and o is dn infinite cardinal, then
(7)< at.

Proof. First note that |T] < «* because each element of 7 has less than at
successors, the branches of 7 are finite and o* is an infinite regular cardinal. Define
a map f: T — Ord so that for each peT, f(p) is the unique ordinal B for whick
peEnd(T By, We claim that f1 (p)<a* for all p e T. Indeed, if the claim were not
true, then there would exist a maximal peT - such that f(p) >at. Now
peEnd(() {79®: ¢ > p)) and hence f(p) = sup{f(9)+1: ¢ >p} < a*, since
F(g) < a* for every ¢"> p and 1S(p)] < a*: a contradiction. In particular, /(7" )
=f(p) <-«* for the unique minimal element p of 7.

3. The main result. Let o be an ordinal number. Tn case « is a successor ordinal,
let cfe = 0. Otherwise define cfa = inf{|4|: 4cOrd, a¢ 4 and o = supA}. If
X is a topological space and x is an infinite cardinal, then X is x-compact provided
that every open cover of X has a subcover of cardinality <x. The following theorem
is the main result in our paper.

TeeoreMm 3.1. Let oX be a complete metric space, let oeOrd and let
% = max(cfa, ®). The following statements are equivalent:

(i) rank(eX) < «; : .
- (i) there is a closed w-compact subspace E of X such that for each & > O there
exist an r(e) > 0 and a (&) < o and with rank (B, (x)) < B(e) for all x € X— B,(E)}

Proof. To show that (i) implies (i), let rank(eX ) < «. We shall assume that
o is a limit ordinal, since the case of a successor ordinal is essentially the same as
the case of countable  in [5]. Consider the cover B(1/(n+ 1)) of X consisting of
all closed balls B jt1)(*) with g-radius 1/(n+1).

OBSERVATION. If e B(1/(n+1)) is uniformly discrete and

M' ={Be p: rankB = a}, )

then | M'| < % and sup{rankB: Be g~ A< :
Proof of Observation. Suppose that | ] = % Then there is a map
fi g = asuch thato = supf[.4']. For each Be ', rank B = a:and bence thereis an
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open cover ¥ 5 of Bsuch that "z is not refined by any cover #'|B, where belongs to

o ®, Since g’ is uniformly discrete it is easily seen that we can find a disjoint
collection {#73: Be 4/} of open families ¥ of X such that ¥y = ¥%|B. Let
W =U{#5 Be #}u{X~ U{B: Be 4}}.

Then # is an open cover of X and thus #" € o® for some f<a since rank (0X) <
and « is a limit ordinal. Choose a Be ' for which f(B) > f; we obtain a contra-
diction since #|B refines ¥, and % e oY ®. The proof of the latter statement
is similar but simpler.

It follows from Observation that for cach ne o there is an g, Ty
and a f(n)< o such that

W) Tl < 2,

) ., is uniformly discrete,

(3) rank B < B(n) whenever Be #(2°""1) and B Ba-n-s(U () = 9.
The desired collections g, will be constructed by induction as follows. Let f: » —o
be a map with o = sup{f(f): f < x}. We first construct Mo- Let By o be an ar-
bitrary element of % (2™1). Suppose that B, is defined for all © < o, where ¢ < %,
and let #,, ={BeB2™Y): o(B, E) B.o) = 27'}. If 1ank|%o, has no upper

<a

bound <a, choose a B, ¢ € &, such that rank B, o > f(o). Otherwise, stop here
and let g, = {B,o: 7 < 0}. Suppose that s, is defined and let Z, denote the
set of all centers of balls from ,. Let By, be an arbitrary element of B(277"2)
such that By ws1SBy-Z,). If B, ., is defined for all 7 < 0,0 < let B,,.y
={Be#(2""%: BcB,-(Z,) and o(B, B,.s+1) = 27772}, Then proceed as
in the case n = 0, my

Finally, let

E=0{Z:nea}.

Then E is x-precompact. For, if % is a uniform cover of E, there is an » €  such
that the balls B,-nsa(z), z€Z,, partially refine %. The relation Zyp1 =By -nii(Z))
implies that % has a subcover of cardinality <|Zg|+...+|Z,| < ». Thus, E is
%-compact, since it is complete, (Completeness is really needed for the case % =
only.) Clearly E witnesses that (ii) is satisfied.

To prove that (ii) implies (1), we consider two cases.

Case 1. % = o. Then E is compact. If ¥ is any open cover of X, then ¥ is

uniform over some uniform neighbourhood of E and it is not difficult to see that
¥ €0® for some B<a. o

Case 2. %> w. Put f= sup{f(1/(n+1)): new} Then B <o As E is
%-compact and x > o, there is a dense subset D of E with |D] < #. Let 4 be an
open cover of X. We shall show that there is a special tree I7* with a {T*, g>-map
@ SlJ..ch that [(9*) < a and ¢[End(T" ") < ¥. Then the Remark of Section 2
applies to prove that rank (p.X ) < . We will first construct a tree 7~ by induction.
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To start with, let Ty = {X} and let <, be the trivial (linear) ordering of T, and
let T = Ty, <o)- )

For n > 0, we shall construct trees 7, = (7,, <,) whose points are (m+1)-
tuples (By, ..., By, X (1 < m < n) of subsets ot X that satisfy the following pro-
perties:

@) {Bus o> Biy XD < {Bps1s By oy B, X for IS m < m3
(i) if 1 € m.<n and (B, ..., B;, X) is an end point of 7, then the re-
striction of ¥~ to B,, belongs to the fth derivative of o|B,,;

(iii) B,+,<B, and diamB,, ., < 1/m for 1 < m < n;

(iv) each element of 7" has only | D| immediate successors in 7.

Step 1. ¢ = 1/2, By assumption there is an r(1) & ]0, &[ such that (ii) is satisfied
for ¢ = 1/2. Define

' My = {B.ay(x): x e X—Byp(E)}
Ny = {Byp(d): de D}.

Let T, be the union of T, and {(B, X): Be M; U N,}. Extend <, to <; on T}
by setting A >, A’ iff 4 is a 2-tuple and 4’ = X, Let 7, = (T3, <y)-
Step n+1. & = 1f(n+1). Suppose that 7, = (T,, <,) is defined. Let
%, = {<En’ ey Bl: X> eT,: 'VIB,, ¢ (QlEn){ﬂ)} .

Choose an r(n+1)e]0, 1/(n+1)[ satisfying (ii). Given an (n+1)-tuple S
={B,, .., B, X)eB,, put
M,11(S) = {Brwrny(®) 0 En:xegn"Bil(n+l)(E)}
N1 (S) = {Bijas1)(d) 0 By de D}
For each such an S, define
T,.1(S) = {(B, S): Be My1(S) U NosaS), B+ 0}

and let T,,.; be the union of T, and U {T,+1(5): S€ B,}. We extend <, 10 <,4q
by setting 4 >,4, S iff Se 4, and 4 e T, 1(S). Let

T=U{T;:neo}, < =U{<,: new}

and put I = (T, <). As ¢X is complete and ¥ is open, the method.used to prove
VII 9. in [7] can be applied here to show that I~ is special. Indeed, if I were ngt
special, then it would contain an infinite branc_l_x axid hence there would be
a sequence {(B,, ..., By, X): ne o} from 7. Now B,>B, # @ for everyne o
and diam B, — 0, whence there would be a pointp e X suc]ithat {r} = N {B,: ne w}
and hence there would exist an ne w and a I:'e ¥ with B,= ¥, which would xmpl.y
{B,, .., By, X) ¢ #,. Furthermore, if S = (By, -, By, X) e End(¥), then tixler;lli
a special tree I5= (Ts, <g) and_ a (Ts, 0|B,y-map @s: Ts— P(B,) suc af
I(Ty) < B and ¢g[End(75)] < ¥|B,. Let

T* = Tu {{x,S): S€End(s) and xe T}
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and exténd < to <* on T* by setting {x, S)* > (x', 8y iff § = 5", x,J'é’ €Ty
and x >gx'; and let {x, S)* > S for each SeEnd(J) and every x e Ts. Then
F* = (T*, €*) is a special tree. (See Figure.) Define ¢: T* — P(X) in an obvious

way by setting ¢ ((x, $)) = @4(x) if Se End(7) and xe Ty, and it SeT, let ¢(S)
be the first member of S. Since 7 is a |D|-tree (each element has at most | D)
immediate successors), Proposition 2.1. Implies that /() < |D|*. Recall that
[D] < % and B.< a. Hence /(T#)] < p+1(9) < a, because [D| < cf(x). Clearly
¢ [End(7%)] < ¥ and our proof is complete.

4. Some applications of Theorem 3.1. Call a topological space X C(x)-scattered
if every nonempty closed subset F of X contains a point with a %-compact neigh-
bourhood in F. The following corollary can be proved by transfinite induction.

ProposiTION 4.1. Let oX be a metric space syck that rank(oX) < o and let
% = max(w, |«|). Then X is C(x)-scattered.

Let oX be a metric space with rank(¢X) = 0. It was shown in [5] that
rank(¢X)" < n—1 for each n e w—{0}. One might be tempted to conjecture that
rank(eX)” < , or at least rank (0X)® < 2. However, the actual situation is much
worse. In fact, there is no upper bound for the ranks of countable powers of metric
spaces of the rank zero. Indeed, let # > w and let D, be a uniformly discrete space
of power . Then rank(D2) > »*. For, if « = rank(D?) < x™, then |o| < # and
thus D, would be C(x)-scattered, by Proposition 4.1, But then some point of D¢
would have a %-compact neighbourhood and consequently D, would be %-compact,
which is impossible. On the other hand, rank(Dy) < »™, since D? is »*-compact.
Hence, 1ank(D2) = »*. . k

These remarks enable us to determine the rank of the countably infinite power
of any complete metric space. If uX is a uniform space, let 8(uX) denote the least

cardinal x such that |D| < x for each uniformly discrete subsets D of uX. Let us
first state two lemmas. v ‘
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Lemma 4.2. Let oX be a complete metric space with of(5(eX)) > w. Then
rank (@X) < 6(eX).

Proof. We must show that for any open cover ¥~ of X there is a special tree
and a (7, 0y-map ¢: T — P(X) such that ¢ [End( Z)] < ¥ and I(7) < (eX).
To this end, let ¥~ be an open cover of X. For each n € w, let %, be an open cover
of ¢X by balls of radius 27", As &, is a uniform cover, we can choose a uniform
subcover %, with %, = |8;| < §(¢X). The points of 7 are finite ordered (n+1)-
tuples {B,, ..., By, X, where B; = B; n..NnB; # @ and Bjed; for Isi<n,
and Bj_, <V for no element ¥ of #". The tree & is ordered in the same way as
in the proof of 3.1. Thus, we set {(B,yy, ..., By, XD = (B, ..., By, X) = (X)) for
all elements {B,.1, ..., By, X of 7. Since ¢X is complete, we can see in the proof
of 3.1. that 7 is special and that by defining ¢((B,, ..., By, X)) = B, we obtain
a (7 ,0y-map ¢ such that ¢[End(Z)] < ¥ Let x = sup{%,: new}. Then »
< 8(eX). Now 7 is a x-tree and thus by Proposition 2.1., the length complexity
of 7 is less than ™ < §(gX).

LemMa 4.3. Let oX be a noncompact complete metric space with of(8 (oX)) = o.
Then X© is not C(3(X))-scattered.

Proof. Since ¢f(5(oX)) = w, there exist uniformly discrete subsets X, of X
such that sup{|X;|: n € o} = 6(¢X). Since ¢X is noncompact and complete, there
is an infinite uniformly discrete subset ¥ = {,: ne w} of ¢X. We shall show that
X* is nowhere locally 8(oX)-compact. Let pe X® and let U be a neighbourhood
of p in X®. Then there exists an embedding of X onto a closed subspace of U.
Thus, it is enough to show that X is not &(eX)-compact. To show this, let
m,: X©— X denote the nth projection and define a subset § of X© as the set of
all points x € X such that

() m()e Y3
(i) if mo(x) = Yy, then my(x) € X5

(iii) 7, (x) = mo(x) for n = 2. ‘

It is easy to see that S is a discrete closed subset of X with |S] = 6(eX) and hence
X is not 6(eX)-compact, as desired.

PROPOSITION. 4.4. Let oX be a moncompact complete metric space. ir
of(8(eX)) < @, then rank(eX)" = &(aX), if of(8(eX)) = w, then rank(X)®
= 8(0X)*.

Proof. For each % < 8(oX) there is a uniformly discrete subset D, of gX and
consequently a uniform embedding D2 - (@X)®. Thus,

rank (eX)® = sup{rank(D}): » < 8(0X)} = sup{at: % < 6(eX)} = 6 (eX).
If of(5(0X)) > w, then 5((eX. ¥°) = 8(eX) implies by Lemma 4.2. that rank(eX)”
< 6(gX). Consequently rank (gX)® = 8(pX). On the other hand, suppose that
cf(8(eX)) = w. By Lemma 4.3, X is not C(8(eX))-scattered and hence by Prop'o-
sition 4.1, rank(eX)® = 6(X)". Now (eX)” is d(eX y*-compact and it easily
follows from Lemma 4.2. that rank(¢X)® < 5(¢X)*. Hence, rank (X ) = 8(X)7.
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Now we shall consider hyperspaces of metric spaces. For a metric space oX,
the hyperspace K(X) of all compact subsets of X can be metrized by the Hausdorff
metric ¢ given by setting §(dy, 4;) < & iff 4, B, (d,) and A,= B, (4,) for
each & > 0. For an element 4 of K(X), let BY(4) denote the closed -ball of
radius ¢ and center 4. E. Michael proved in [9] that if C e X (X) is compact, then
U{4: 4e C}is a compact subset of X. His proof can be modified to prove the
following generalization.

Lemma 4.5. If C e K(X) is %-compact, then |) {d: deC}isa *®-compact sub-
set of X.

On the other hand, if % = w or ¢f(%) > w and X' is a %-compact metric space,
then so is K(¢X). (This is far from being true for more general spaces. Indeed,
A. Okuyama gives in [11] an example of a cosmic space X for which X (X) is not
even paracompact.) The following proposition can in some cases be used to estimate
the rank of the hyperspace of compact subsets.

PROPOSITION 4.6. Let oX be a complete metric space and let o e Ord. Put
% = max (o, cta). The following statements are equivalent :

() rank(K(eX)) < a3

(ii) either X is x-compact or there is an ¢ >0 and a B < o such that
rank(BY(4)) < B for each A e K(X).

Proof. Note that (ii) — (i) is obvious. To prove that (i) —» (i), let rank (K (X))
<o. By Theorem 3.1 there is a x-compact CcK(X) that satisfies the following
condition: given an & > 0, there exist an r(e) > 0 and a f(g) < « such that the
rank of E,'f(n)(A)cK(X)—C’ is at most B(g) for each de ¥, = K(X)—BXC). put
E={J{4: A€ C}. Then E is x-compact, by Lemma 4.3. If X is not #-compact,
then X—E # @. In that case choose an x, € X—E and an ¢ > 0 with 0(E, xp) >e.
If A= B,,(E) is compact, then §(4 U {x,}, C) > o{d u {xg}, K(E)) = o(xo, E)
> & Hence, rank Bf,,(4 U {x,}) < B(e) for each such an 4. Put

= 1/8 min {g, r(e), #(g/2)} .
Then A<B,;,(E) implies o(xo, 4) > 4r and thus map
' 91 B(4) - BXA4 U {xo})

gjvgn by o(L)= L | {x,} is an isometric embedding. Indeed, cleatly g(p(L,), o (L))
<-0(Ly, Ly) for any Ly, L, e BX(4), and the conditions (L)<= B (o(Ly)), o(Ly)
< B(p(L,)) imply that L, = 4(L2) and Ly = B,(L,) for any ne 0, 2r]. Moreover,
¢ is a closed map since jts domain is complete. It follows that rank(Ef‘(A))
< rank(Bi(4 U {x,})) < B(¢). On the other hand, if 4 N (X—B,,,(E)) # @, then
rank(BS(4)) < B(s/2) by assumption.

COROLLARY 4.7. The rank of the hyperspace K(gX) is never a nonregular limit
ordinal. If % is a.regular ordinal, then rank(K (X ) =% iff X is K~compact.
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Remark, Let H(x) be the usual hedgehog with » spines equipped with its
standard geodesic metric. Let H*(x) be otherwise the same as H(x) but replace
each spine, a copy of the unmit interval [0, 1], by {I/n: ne w—{0}} L {0}. Let
% > o. Then rank (H*(»)) = 0 but rank(K(H*(x)) = »*. In general, rank(K(oX))
< 8(eX)* for any complete metric space oX, because §(K (X)) = 5(oX) for ary
metric space with [X| > .

Let ¢X be a metric space. Then ¢X is uniformly isomorphic to the bounded
metric space o.X, where o (x, ¥) = min{l, o(x, )} for all x, ye X. It can be.shown
that the uniform hyperspace H(gX) of all closed subsets of X can be metrized by
the Hausdorff metric & defined as for K(X). If ¢X is complete, then so is ¢X and
hence by [7], 1148, H(cX) is complete. Thus, oX is ranked if, and only if, H(eX)
is ranked.

PROPOSITION 4.8. Let X be a complete metric space, let » be an infinite cardinal
and let {Zy: o < %, ne w} be a collection of subsets of ¢X for which there is a se-
quence {8,} of real numbers such that

() the collection {Zy: o < %,ne€ o} is d,-discrete;

(i) 0 < 8,44 < diamZ, < 8, for all & < % and ne w;

(iii) lim 6, = 0.

n—+oo
Then rank (H(@X)) =z (29".

Proof. Note that we can assume that oX is bounded and that |Zg] = 2 for
all n € w. We shall apply Proposition 4.1. For each n e w, let D, be the set of a,IcI
pe H\U{Z!: « < x}) such that for each & < x,|p nZg = 1. Then D, =h2 .
The collection {D,: n€ w} is 8y-discrete and diam D, < &, f(;r all n. For eacl 71,
let @,: Dy — D, be a one-to-one map. Define a map i (Dy)® = H(gX) by s;ttmg
S(Pos P1s Pas ) = U {@u(pn): new}, where p,€ Dy for.a'll . gNotc tl_xva.xt fy4(é)
of 4.8., /(P D1, P3» --) is 2 closed subset of X.) The conditions (ii) and (iii) of 4.3.
ensure that f is a uniform embedding. Thus, it follows from 4.1. that

rank (H(pX)) > rank(Dy)* = @H*.

Proposition 4.8 enables us to give an example of a complete metric space
whose rank exceeds the cardinality of the space. Let X be the subset

{2"3": m,new} v {2"3"+1/n+1: m,n € w}

of the real line. For all x, y € X, let o(x, ») = min{l, |x—yl}.mThenmgffls a bounded
complete metric space with [X| = o. By defining Zy = {2"3",2"3 +1/n+1},mvie
see that the conditions of 4.8, are satisfied for ¢X. Hence, ran1'<(.H X)) = FZ l) .
However, |H(oX)| = |P(X)] = 2°. Let dens(X) denote the minimum cardlnalxiy
of a dense subset of X, where X is a topological space. Then for any compt;i e
metric space X, rank(eX) < (dens(X))*. The above example shows that this
upper bound can be achieved.
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Fake topological Hilbert spaces and characterizations
of dimension in terms of negligibility

by

Jan Dijkstra and Jan van Mill (Amsterdam)

Abstract. For every ke{—1,0,1,..} we construct a topologically complete separable
metric AR space Xy which is not homeomorphic to the Hilbert space /,, but which has the following
properties:

(1) X) embeds as a linearly convex subset of Z,.

(2) every compact subset of Xy is a Z-set and homeomorphisms between compact subsets
of Xi can be extended (with control),

(3) Xix Xig & by,

4) if A C Xy is o-compact, then A4 is strongly negligible ift dimd<k (m partlcula:, X & X
if kK

(5) if A C Xy is any compactum of fundamcntal dimension at most k, then 4 is negligible in Xe

1. Introduction. All topological spaces under discussion are separable metric.‘

Toruficzyk [15] has obtained the following topological characterization of
the separable Hilbert space ly:

1.1. THEOREM. 4 topologically complete AR space X is homeomorphic to L if

and only if every map f: @ 0,-X of the countable free union of Hilbert cubes is

strongly approximable by maps g: GB 0, — X for which the collection {g ()
is discrete,

This extremely useful characterization has now become the standard method
for recognizing topological Hilbert spaces. The above approximation property,
referred to as the strong discrete approximation property, can be stated in the
following  way:

1.2. With respect to every admissible metnc d on X, for each map f: @ 0;—»X

and each ¢ > 0, there exists a map g: @ Q;— X such that d(f(y) g(y)) < g for
cach y and {g(Q)}2, is discrete. '~

In Anderson, Curtis and van M111 [3] it was shown that the strong discrete
approximation property cannot be relaxed by considering only positive constants
4 — Fundamenta Mathematicae CXXV. 2
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