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On Carathéodory type selections
by

L. Rybinski (Zielona Géra)

Abstract. Roughly speaking, certain “random” analogues of the theorem on paracompactness
of metric spaces and Michael’s theorem on continuous selections are given for Polish spaces. The
proofs resort to the results on measurability of multivalued mappings due to Himmelberg [8].

Let T be a measurable space, X be a Polish space, ¥ be a Banach space and
F be a multivalued mapping from Tx X into' ¥ with closed convex valiies. We are
interested in the existence of Carathéodory’s selections for F, i.e., single-valued
mappings f from TxX into ¥ such that f(t,x) e F(z,x) for (¢t,x) e Tx X, f(-, %)
is measurable for x € X and f(z, ) is continuous for ¢ € 7. There are several papers
containing results of that sort ([3], [4], [5], [7], [9], [12]). In those papers in general,
either the measurable structure of T is generated by a topology ([3), [4], [5]) or
X is assumed¥to be locally compact ([7], [9]). In [12] assumptions concerning 7'
.and X are most general; however, certain special conditions are imposed upon F.

In this paper we show that the original proof of Michael’s theorem on continu-
ous selection can be modified so as work with Carathéodory type selection. This
is possible owing to a generalization of Dieudonné’s result on paracompactness
of second-countable metrizable spaces (Theorem 1). I am indebted to the referee
for the suggestion how to simplify the proof of this theorem.

-1. Preliminaries. Throughout the paper T denotes a measurable space with
a o-algebra . I is called complete if there is a complete ¢-finite measure
defined on . X denotes a Polish space and g is a complete metric for X, By #(X)
we denote the ¢-algebra of Borel subsets of X, by .« x #(X) the product o-algebra
on I'x X. Let 2¥ be the family of all subsets ot X. A relation FeTx X is denoted
by F: T— 2¥ and is called a multivalued mapping. We write

Gr(F) = {(t, x)e TxX: xe F(1)},
F!(B)={teT: F(t) nB # @}, for BcX.
F has measurable graph if Gr(F)e o/ x#(X). F is %-measurable (resp.
measurable, weakly measurable) if F~*(B)e o for each Borel (resp. closed, open)

subset of X, see [8]. For a multivalued mapping F: TxX — 2%, where Y is
a topological space, are defined with respect to & x#(X) various kinds
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of measurability. G: X — 2 is lower semicontinuous if the set G(C) is open
for every open subset C of Y.

Let R denote the extended positive half-line [0, -+ co] metrized by
a b

a
b =|— = —!, tting —— =1 for 2 = -+o0 |.
@b =17 1+bl (pu " e )

LemMA 1. Let F: T — 2% be a multivalued mapping. Consider the statements:
(a) F has measurable graph,
(b) F is %-measurable,
(¢) F is measurable,
(d) F is weakly measurable,
(e) F defined by F(t) = F(t) is weakly measurable,
() the function f: TxX — R defined by

£t %) = d(x, F(O) = {zl:fia(x,y)- yeF@®)}

is measurable in t for each fixed x € X,

(@) F has measurable graph.

Then: -

O ® = © = @ < () =@ = @,

(i) if T is complete then also (a) = (b).

For the proof see [8]: (i) (b) = (¢) = (d) is given by Proposition 2.1, (d) <> (¢)
by Proposition 2.6, (d) < (f) = (a) by Theorem 3.3, (i) is given by Theorem 3.4.

LemMma 2. Let F, G: T — 2% be multivalued mappings with measurable graphs.
Then:

() F': T — 2X defined by F'(t) = X\F(t) has measurable graph;

(i) H: T — 2% defined by H(t) = F(t) n G(t) has measurable graph.

This is a consequence of the equalities: Gr(F") = (Tx X)\Gr(F), Gr(H)
= Gr(F) n Gr(G).

Lemma 3 ([8], Proposition 2.3). Let J be a set, finite or countable, and let
F,: T — 2% be a multivalued mapping for each n eJ. Then, if each F, is measurable,
50 is the multivalued mapping \) F,: T 2% defined by (U F,)(t) = U F,(t).

if F@)+ 9,
f F@) =8,

Lemma 4 ([10], Proposition 3). Let Y be a metric space, f: TxX — 2% be
a mapping measurable in t and continuous in x, V be an open subset of Y. Let
G: T — 2% be a weakly measurable mapping with nonempty closed values. Then the
multivalued mapping F: T — 2% defined by F(t) = {x € G(t): f(t, x) € V} is weakly
measurable.

2. Random partition of umity.

THEOREM 1. Let T be a complete measurable space, X be a Polish space. Given
a family of multivalued mappings U;: T — 2%, i€ N, such that, for each i, U, has
measurable graph and {U )}y is an open cover of X for every t € T. Then there
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exists a family of multivalued mappings with measurable graphs VI*: T— 2%, i, me N,
i<m, such that {V{"(t)}i<m is a locally finite open cover of X for every te T and
Vi@)cULe) for i<m, teT.
Proof. We shall adopt the proof of Lemma 5.2.4 from [6] (p. 394). Define
fit TxX - [0,1] by
d(x, X\U(?))
1+d(x, X\U(2))

fit,x) =1

St x) = i U@ # X,

it U= X.

Since for each i the multivalued mapping U; has measurable graph, f;(-, x) is measur-
able for each ie N, xe X. Clearly f(t,) is continuous for te T, ie N. Letting

fit,x) = 12 @(¢, x) we define a function f: TxX — [0, 1] measurable in ¢ and
=1

continuous in x. Define V™ W™ V": T - 2% by
V1) = {xe X:f(t,x)>1m}, W"F) = {xeX: f(t,%)>=1/m},

V) = Ud) o (P EONW™T(1)), wherem=1,2, ...,

1<ig<m, Wot) =@ for teT.

For every ¢ e T the family {¥]'(#)},<,, is a star-finite open cover of X, and so it is
a Jocally finite open cover of X, (see [6], p. 394). Clearly V{"(x)<= Ut).

Since f is measurable in both variables jointly (see e.g. [8], Theorem. 6.1), we
see that Gr(V™ = f~(1/m, 1] and Gr(W™ = f"![1/m, 1] belong to o x #(X).
Since Gr(¥") = Gr(U) n Gr(V™*Y) A Gr(W™ '), each VJ* has measurable
graph.

- Remark 1. Under the assumptions of Theorem 1 one can also prove the
existence of a family of multivalued mappings satisfying the same requirements
but with closed values. . ’

COROLLARY 1. Let T, X and a family {U};cn be as in Theorem 1. Then there
exists a family of functions pi': TxX — [0,1}, i,me N, i<m, such that:

@) p{'(-, x) is measurable for xe X, i,me N;
(i) the family {p}(t, *)}i<m forms a locally finite partition of unity on X for
every teT and {x € X: p{(t,x)> 0} < Ut) for i<m.

Proof. Let a family {V["}; nen,icm be chosen for {Uj};.y according to the
assertion of Theorem 1. Letting

N _d(x, XNTQR)
0 = s )

=1

iff VP # X,

iff V@) =X

1*
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and
A0 = w2
> XA %)

I=1ksl

we define a family of functions satisfying (i) and (ii).

3, A selection theorem. Now we state a selection theorem based on Michael’s
result ([11), Theorem 3.2, see also [2], Theorem 7.1).

LemMa 5. Let T be complete, let (Y, |- |) be a separable Banach space and
CCI(Y) be the family of all nonempty closed convex subsets of Y. Suppose that
a multivalued mapping F: TxX — CCI(Y) is weakly measurable (with respect to
o x B (X)) and lower semicontinuous in x for each teT. Then for any 8>0 there
exists a mapping f,;: T XX — Y such that:

@) f.(¢, *) is continuous for each teT, the set
G{t, x) = {y e F(t, x): |y—fdt, Ol <e}

is nonempty for (t, x) € Tx X and G,: Tx X — CCI(Y) defined by G (t, x) = G(t, x)
is lower semicontinuous in x;

(i) f, is measurable and G, is weakly measurable.

Proof. Let {3;};.y be a dense subset of Y. Letus put B,= {y e ¥: |y—y <&}
and define U;: T— 2% by Ut) = {xe X: F(t,x) n B, # O}

Since {B;};cy covers ¥ and F(z, -) is lower semicontinuous for each ¢, it follows
that {U(t)};cy is an open cover of X for each f. Since

{t, ) xe U®)} = {(t, 0): F(t,%) 0 B, # )

and F is weakly measurable, each U; has measurable graph. By Corollary 1 there
exists a family of functions pi*: Tx X — [0, 1], i, m& N, i < m, which are measurable
in 't and continuous in x and such that {p}*(f, )};<. is a locally finite partition of
unity satisfying

{xeX: pI'(t,x)>0}cU(r) for i<m,tel.

° :
Letting f,(t, x) = Z Zp?(z, x)y; we define a mapping f,: TxX =Y. By the

proof of Mlchael’s Theorem (see [11], Lemrna 4.1, Proposition 2.5, Proposition 2.3)
f, and G, satisfies (i).

Since f(t, x) = lim S,(¢, x), where S,(¢, x) = 21 Z P, X))y, and S, Tx X
n—oo m=] iSm

- Y is measurable for every », f, is measurable. It remains to show that G, is

weakly measurable, Let g; (T'xX)x ¥ — R be defined by g(t, x, ¥) = [y—f. (¢, ®)|.

It is easy to check that g(z, x, ©) is continuous for (t,x)e Tx X and g(-, -, ) is

measurable for ye Y. We have G,(t,x) = {y e F(t,x): g(¢,x,y) <e}; thus by

Lemma 4 G, is weakly measurable. Hence G, is weakly measurable (Lemma 1).
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THEOREM 2. Let (T, o) be a complete measurable space, X be a Polish space,
(Y, |:]) be a separable Banach space, CCI(Y) be the family of all nonempty closed
convex subsets of Y. Suppose that a multivalued mapping F: Tx X — CCI(Y) is
weakly mieasurable and F(t, )7 X — CCI(Y) is lower semicontinuous for each ﬁxed
teT. Then there exists a mapping f: TxX - Y such that:

@A) f@t,): X = Y is continuous for each fixed teT;

(ii) f is measurable;

(iii) f(t, x) e F(t, x) for (t,x)e Tx X.

Proof. We will follow the proof of Theorem 3.2"" (A) from [11]. Using Lemma 5
we define inductively a sequence (f,) of mappings from TxX into Y, which are
continuous in ¥ and measurable and such that '

m [t ) —fucsE <2277, n=2,3,.., (¢, x)eTxX,
%) d(fi(t, ), F@t, ©)<1/2", n=1,2,..,(xeTxX.

Applying Lemma 5 for ¢ = 1 we get a mapping f; satisfying (2). Suppose that
we have f1, f2, ..., fi satisfying (1) and (2). Define

Goralts3) = {y €2 Iy=1i, 9] <112}
and

Gk+1(t x) = Gk-l-l(t x)

Clearly Gi.(t, x)<F(2; x). By the inductive assumption (2), Gi4,(t,x) # @ for
(t,x)eTxX, so Gyy, is a multivalued mapping from Tx X into CCI(Y). By
Lemma 5, Gy, is lower semicontinuous in x and weakly measurable. Again by
Lemma 5 for & = 1/2°*! there exists a mapping f;41: TxX — ¥ continuous in x
and measurable and such that

{ve (_;k+;_(t: X [y=Sfrars, 0 < 1/2“1} # 0.
Thus

Aforsts 2, F( D) < U2 and | fyat )—Filt D) <2/2°.

Now observe that, by (1), (f,) is a uniformly Cauchy sequence of mappings
which are continuous in x and measurable. Let f be the limit of (f;). Certainly f
satisfies (i) and (ii). From (2) it follows that f satisfies (iii).

4. A representation. Now we state a necessary and sufficient condition for
a multivalued mapping F: Tx X — CCL(Y) to be lower semicontinuous in x and
weakly measurable. We adopt the proof of Michael’s result on representation for
lower semicontinuous multivalued mappings ([11], Lemma 5.2, see also [1],
Lemma 2). The analogous result for measurable multivalued mappings is die to
Castaing (see [8], Theorem 5.6).

THEOREM 3. Let T, X, Y be as in Theorem 2. 4 multivalued mapping F: Tx X
— CCI(Y) is lower semicontinuous in x and weakly measurable if and only if
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there exists a countable family F of mappings f: TxX — Y satisfying conditions
‘@)-(i)) of Theorem 2 and such that F(t,x) = {f(t,x): fe F} for (t,x)eTxX.

Proof. If F(t,x) = {f(t,x): fe F} for (t,x)eTxX and each f satisfies
(i)~(ii)) of Theorem 2, then the weak measurability of F follows easily from the
measurability of all fe &, via Lemma 3 and Lemma 1. The lower semicontinuity
of F(t,") is a consequence of the equality

(xeX: Ft, ) nV# @} = U {xeX: f(t,)eV},
. fe#F

valid for every open subset ¥ of Y.
Suppose now that F is lower semicontinuous in x and weakly measurable.
Let {y;}i.y be a dense subset of ¥ and let

B ={yeY:|y-yl<1/2"} for i,meN.
Letting
Ur@) = {xeX: F(t,x) n B} + &}
we define the multivalued mapping U": T — 2% with open values and measurable
graph for every i, me N. Hence, similarly as in the proof of Theorem 1, we can
see that each of multivalued mappings W{j: T — 2%, i,j, me N, defined by
W) = {xe X: d(x, X\U(®) = 1/j}»

has closed values and measurable graph. It is evident that | Gr(Wj}) = Gr(U7").
Define the multivalued mappings Gij: Tx X - 2% letting 7

T, %) =F@t,x)n B iff

i, %) = F(t, x)

¢, x) e Gr (W),
iff  (t, x) e MxXNGr (W) .

Clearly, each Gj; has nonempty convex values. We show that each Gj} is weakly
measurable and GJj(t, ) is lower semicontinuous for every t e T. Let ¥ be an open
subset of Y. We have

@G (V)= (Gr(W) A F™YBY o 7)) U (Tx XNGr (W) n F=3(P).

Hence, the weak measurability of F and the measurability of Gr(#7j) implies the
weak measurability of Gjj. For any teT we have

{x: Gljt, x) n V # B}
= (W50 o {x: F, x) n Bl oV # B}) 0 (INW0) n {x: Ft, ) V % &)
={x: Ft, x) n Bl n V # B} U (XNWHO) 0 {x: F(£, ) n V # B}),

since {x: F(t,x)n Bl nV # @}c{x: F(t,x) "V # @}. Hence, by the lower
semicontinuity of F(t, ) and since the set X\WJj(t) is open, it follows that GYj(t, +)
is lower semicontinuous.

icm

On Carathéodory type selecti 193

Now, define the multivalued mappings Fj;: T'xX - CCI(Y), i,j,me N,
letting

Fij(t, x) = Gij(t, x).

Each Fj} is weakly measurable (see Lemma 1), and for every ¢ e T’ the mapping
F{i(¢, -) is lower semicontinuous (see [11], Proposition 2.3). In virtue of Theorem 2,
for each Fj} we can choose a selector satisfying (i)-(iii) of this Theorem. Let fi] be
such selector for F;; and let

F ={fij: i,j,meN}.
The standard reasoning gives the equality

F(t,x)={)‘}’;(t,x):ﬂ}'§ﬁ} for (,x)eTxX.
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