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Extensions of invariant measures
on Euclidean spaces

by

Krzysztof Ciesielski and Andrzej Pele (Warszawa)

Abstract. Sierpiniski (see Szpilrajn [8]) asked if there exists a maximal extension of the
Lebesgue measure on the Euclidean space E", invariant with respect to all isometries of this
space. Our result implies a negative answer to this problem. We also show that for semiregular
measures the existence of proper invariant extensions depends on the size of 2%.

0. Terminology. We use the standard set theoretic notation. For any set X,
P(X) denotes the family of all subsets of X and |X| the cardinality of X. Ordinals
are identified with sets of their predecessors and cardinals with initial ordinals.
If /: X = Y is a function and A< X then f[4] denotes the image of 4. R denotes
the set of reals, O the set of rationals and w the set of natural numbers.

A measure on a set X is a non-negative, extended real-valued: function m defined
on a g-algebra M of subsets of X containing all singletons such that:

m({x}) = 0 for any xe X,

m(X)>0,
m( U 4,) = ¥ m(4,) for pairwise disjoint sets 4, from M.
new new

Elements of the o-algebra M are called measurable sets.
A measure on X is:
~— complete iff all subsets of sets of measure zero are measurable;
— universal iff it is defined on P(X);
— uniform iff for any AcX, m(4) = 0 whenever |4|<|X]|;
— o-finite iff X is a countable union of sets of finite measure;
— semiregular iff every set of positive measure contains a set of positive finite
measure.

If G is any group of bijections of a set X, then a measure m defined on a o-al-
gebra M of subsets of X is G-invariant iff g[4] e M and m(g [4]) = m(A4) for any
geG and 4e M. :

If m,; is a measure defined on a o-algebra M; of subsets of X (f = 1,2) then
m, is an extension of m, iff M, oM, and m,(4) = m,(4) for any 4 e M,.
1.~ Fundamenta Mathematicae CXXV. 1
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Looking for extensions of G-invariant measures we .hall always assume
without loss of generality that the extended measure is complete. (The measure
completion of a G-invariant measure is also G-invatiant).

If G is any group of bijections of a set X then a subset 4= X is G-absolutely
negligible iff for any ¢-finite G-invariant measure m on X there exists a G-in-
variant extension of 7 defined on a ¢-algebra 9t containing A4 and for any such
extension #, m(4) = 0.

A cardinal % is large iff there exists a universal semiregular measure on %,
Otherwise it is small. It is clear that x is large iff it is greater or equal to a real-valued

measurable cardinal and hence the existence of large cardinals cannot be proved

in ZFC.

1. Preliminaries. Sierpifiski (quoted in Szpilrajn [8]) asked if there exists
a maximal G-invariant extension of the Lebesgue measure on the Euclidean space E"
where G is the group of all isometries of this space. A few partial solutions of this
problem have been obtained. Hulanicki [3] proved the following

LemMa 1.1. Let G be any group of bijections of a set X such that |G|<|X| and
\X| is small. If m is any uniform measure on X, then there exists a non-measurable
set Zc X such that

m(@IZIAZ)=0 for every geG.

From the above lemma he inferred the following consequence.

THEOREM 1.2. Let G be any group of-bijections of a set X such that |G| <|X]| and
| X is small. Then every uniform G-invariant measure on X assuming positive finite
values has a proper G-invariant extension.

As a corollary he got a negative answer to the problem of Sierpiriski, assuming
that 2¢ is a small cardinal. (This result was obtained earlier by Pkhakadze [7] using
similar methods.) In order to see this it suffices to remark that if G is the group
of all isometries of the space E™ then every og-finite G-invariant measure on E”
bhas a uniform G-invariant extension and hence, in view of the above theorem,
also a proper G-invariant extension.

In the proof of Theorem 1.2. from Lemma 1.1., Hulanicki used the extension
theorem of Lo§ and Marczewski [4]. Applying it to semiregular measures we would
risk to loose semiregularity of the extension because the technique of Lo$§ and Mar-
czewski does not guarantee it. However, a different argument allows us to omit
that difficulty. We shall use the following easy fact essentially due to Szpilrajn [8].

ProrosiTiON 1.3. Let G be any group of bijections of a set X and m any semi-

regular G-invariant measure on X. If there exists a non-measurable subset AcX

such that for any countable set {g,: ne w}=G the set \) g,lA] has inner measure

new
zero then m has a proper semiregular G-invariant extension.

" The next proposition is the - counterpart of Theorem 1.2 for semiregular
measures mentioned above (cf. Pelc [6])
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_ PRrOPOSITION 1.4. Let G be any group of bijections of a set X such that |G1<|X]|
and |X| is small. Then every semiregular uniform G-invariant measure m on X has
a proper semiregular G-invariant extension.

Proof. Let:Z be the set from Lemma 1.1. and Y <Z be measurable and such
that the set Z;, = Z\Y has inner measure zero. It is easy to see that Y has also
the following property: '

m(g[YIAY)=0
Hence the set Z, satisfies the following conditions (cf. Pkhakadze [7], Theorem 3.22):
(a) Z, is non-measurable, ‘
(b) Z; has inner measure Zero,
© m(glZ,1 A Z,) = 0 for every geG.
It follows from (b) and (c) that the set ) g,[Z,] has inner measure zero for any
new

for every g€ G.

countable subset {g,: n& w} of G. Hence we get our conclusion by Proposition 1.3.

We do not know if the assumption of uniformity can be removed from the
general formulation of Proposition 1.4. It will be done in a special case in The-
orem 3.1. Clearly the assumption about the cardinality of X is necessary. Namely,
for any set X of large cardinality we can find a group G of bijections of X of the
same cardinality, for which the proposition fails: take as G the group of those
bijections of X which move only finitely many elements. Then every measure on
X is G-invariant and hence any universal semiregular measure on X provides
a counterexample.

The next step towards the solution of Sierpiiski’s problem is due to Harazi-
gvili (see [1], [2]). The tool he used were G-absolutely negligible sets. Notice that
his definition (cf. also Pkhakadze [7]), though different from ours, turns out to
be equivalent for any group G of isometries of E" containing all translations.

Harazidvili proved the following facts: '

THEOREM 1.5. Let G be the group of translations of the Euclidean space E". Then

E" is a countable union of G-absolutely negligible sets.

THEOREM 1.6. Let G be the group of all isometries of the real line E*. Then E* is
a countable union of G-absolutely negligible sets.

THEOREM 1.7. Assume the contimum hypothesis. Let G be the group of all iso-
metries of the Euclidean space E". Then E™ is a countable union of G-absolutely
negligible sets. '

Clearly cach of those results implies a negative answer to Sierpifiski’s problem
in the respective special case because for any o-finite G-invariant measure m oné
of the countably many G-absolutely negligible sets must be non measurable and
m can be extended G-invariantly over it. )

Harazidvili (cf. [1], [2]) stated the following problem: Let G be the group of
all isometries of the Buclidean space E”. Do there exist countably many G-ab-
solufely negligible subsets of E" whose union is E™?

The positive answer to this problem implies a negative answer to Sierpiniski’s

1%
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‘ question and generalizes Theorems 1.6 and 1.7. In Section 2 we prove an even stronger
result, -thus solving Sierpifiski’s and Harazi§vili’s problems and generalizing Theo-
rems 1.5, 1.6, 1.7. Since isometrically invariant o-finite measures always turn out
to have proper invariant extensions, we are also going to investigate semiregular
measures as their natural generalization. In this case, discussed in Section 3, the
existence of invariant extensions turns out to depend on the size of 2°, and hence
becomes a set theoretical problem.

The following auxiliary fact is an important tool in the theory of G-absolutely
negligible sets. We state it in the general setting and omit the easy proof.

PROPOSITION 1.9..Let G be any group of bijections of a set X. If a subset AcX
satisfies the following property:
Jor any countable set {g,: ne w}=G there exists an uncountable subset HeG such
that k[ U g,[4]] hz[ U gAY = @, for distinct by, h, € H

new

then A is G-absolutely negllgtble.
2. o-finite measures.

THEOREM 2.1. Let G be any group of isometries of the Euclidean space E" which
contains all translations. There exists a countable family {N,,: m € o} of G-absolutely
negltgzble sets such that ) N,, = E".

mew

Proof. Let {K;: {<2°} be a family of subfields of the field of reals R such that:
Ky = 0, Kyo = R, KK, for {<n<2® and K, = UKg for limit ordinals A. '

For any <2 let Byi 1=Ky y\K; be such that B, U {1} is a linear basis of the
space K., over the field K.

We put B* = {b, ..b;: O<k<o & @< ..
ordinals and b, € B, )}.
Lemma 2.2. The family B* U {1} is a linear basis of R over the field K.
Proof. It is enough to prove by induction on 0<{<2° that
@ if B = {b; .. b O<k<o & @o,< ... <ne<))
(n; are successor ordinals and b, & B)};
then B} U {1} is a linear basis of K; over K.

Fix any 0<8<2® and suppose that (%) is true for every 0<{<$. If 9 is a limit
ordinal then the set B is linearly independent over K, because B = U B} and

<m<2%) (n, are successor

the system of sets B; are increasing. The space K} is spanned by By L {1} because
K- UK

If 9 =4+1 then
{1} UBy = {c-b: ceB} u{l},beB, , u{l}}.
Since by definition B,,; U {1} is a linear basis of X a+1 Over K, and by the

inductive hypothesis B; U {1} is a linear basis of K, over K, it easxly follows that
B; U {1} is a linear basm of K, over K,. This completes the proof of the lemma.
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Let S be the family of finite subsets of the cardinal 2°. We define ‘a function
: R S as follows:

(@) r(0) = g, r(1) = {0},
(b) #(b) = {0, {+1} for any b e By, {<2°
©@r®= U l(b,) for be B*, where b = b, ..

15isk
tion from the definition of B*,
@ r(x) = U r(x;), where x = kyxy+ ...
1<ism

is the unique representation of x in the basis B* U {1}.

. b is the unique representa-

kX (k€ Ko\{0}, x; € B* U {1})

The following lemma states some s1mple propertles of the function r. We leave
it without proof.
LemMA 2.3. Let n be a limit ordinal.
1. If xe K, then r(x)<=n;
2. rx) Ar(er(x+y)crx) v r(y), for any reals x,y;
3. r(xY)er(®un, for any xekK,, yeR;
4, r(p)\pcr(x-y), for any xe KN{0}, ye R.
For any natural number m, let
o,y = {A+k: A<2° A is a limit ordinal, k<m},
X,={xeR: r(x)co,} and N, =X

where » is the fixed dimension of our Euclidean space.
Cleatly, E" = U N,, because |J &, = 2° and r(x) is always a finite set.

mew mew

1t suffices to show that every set N, is G-absolutely negligible. We use Proposi-
tion 1.9. Fix a natural number m and let {g,: k € w} be any countable set of iso-
metries from G. Every isometry g, can be represented as a superposition wy e 4
where w, is a translation (w¥, ..., wt) and 4, is an isometry fixing the origin of
coordinates, given by the matrix

det(d,) = 1.
&y o
By abuse of notation we identify vectors with translations and matrices with

respective isometries. .
Let W, = {w¥, ..., Wi} U {a};: 1<i,j<n} and take a limit ordinal 4, <2? such
that {J W,cK,,. For any limit ordinal { such that Ao <{<2° let b, € By.p and

kew
put w, = (b, 0, ...,0) € E".
By Proposition 1.9 it is enough to prove

W;[kg” gx[N,1] n w,,[kgwgk[Nm]] =0

for any limit ordinals {, n such that A,<{<n<2®.
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Hence if suffices to show that for any pair (s, z) of natural numbers:
wgN1] o w, g N,]] = &

or, in other words, that if Z = (g,") o (=w,) o (W) o (g5)[N,y] then Zn N, = @,
Let x = {Xq, sres Xpp € N,,. Hence if y = (yy, ..., »,y denotes the image g,(x), we
have y; = afyx+ ... +di,x,+wi, for i =1, ..,n and r(y)c, U i, by Lemma
2.3. Let furthermore v = (v, ..., v,y = (—w,) o (W) (). Hence v; = y; for 2<ign
and vy = y,+b,~b,. By Lemma 2.3 we get {+mer(v,).

By definition we have g;* = (4,%) o (—w,). Let

A I , det(47 M= +1.
Ay e oy

Clearly, {d;;: 1<i,j<n}cK,,. Let finally z = {2y, ..., z,» = ¢, *(v). Hence for any
i<n, z; = dyy (v, —wi)+r; where r; = dip(vs —Wo)+ oo +dp (v, —Wh).

By Lemma 2.3. we get r(r)cal, Uy, {+mer(,—wy) and r(dy)ci,.
However, since det(4,™) # 0, it follows that d,,; # 0 for some i<n. Hence by
Lemma 2.3., {+m e r{d;,y (v, —w})) which implies {+m e r(z,).

Hence, if zeZ then z ¢ N,, because {+m ¢ <,,. This gives Zn N,, = & and
completes the proof of our theorem.

The next corollary follows immediately from Theorem 2.1. and gives a negative
answer to the problem of Sierpinski.

COROLLARY 2.4. Let G be any group of isometries of the Euclidean space E",
which contains all translations. Then every o-finite G-invariant measure on E" has
a proper G-invariant extension.

It is easy to see that some assumptions on the group G of isometries have to
be imposed in the above results. If 2° is large and G is e.g. any countable group
of translations, then there exists a universal o-finite G-invariant measure on E"
hence Corollary 2.4. fails. It would be interesting to find an exact charactcrizatior;
of those groups G of isometries of E” for which Corollary 2.4. is true.

3. Semiregular measures. Since in the o-finite case every measure on E” in~
variant with respect to all isometries can be properly extended with preservation
of this property, it seems natural to investigate the extension problem in a more
general setting. The only place where o-finiteness was used in the proof of Theo-
rem 2.1. was the application of Proposition 1.9. In fact, instead of the uncountable
set H of isometries required in this proposition, we have shown a set of cardinality 2°
thus proving Theorem 2.1. in a slightly more general situation: for measures which
do not admit pairwise disjoint families of cardinality 2° of sets of positive measure.

Semiregular measures can be equivalently defined as those for which every
set of positive measure has a partition into subsets of positive finite measure (with-
out any specific restriction on the size of the partition). Hence semiregularity seems
the reasonable assumption for which there may be some hope of a different answer
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to the extension problem. On the one hand no argument of the type used before
can work, on the other hand we avoid e.g. the trivial case of measure giving value 0 to
countable and value co to uncountable sets. Let us recall that there-exist natural
examples of semiregular and not o-finite measures in Euclidean spaces, e.g. the
one-dimensional Hausdorff measure on the Euclidean plane. It is moreover a mea-
sure invariant with respect to all isometries.

The result of this section shows that in the semiregular case the solution of
the extension problem depends on the size of 2°. In particular Corollary 2.4. fails
for semiregular measures when 2° is a large cardinal. Notice that our theorem
remains true (with the same proof) for measures assuming at least one positive
finite value (cf. Theorem 1.2.).

THEOREM 3.1. Let G be any group of isometries of the Euclidean space E™. The
following are equivalent:

(2) 2° is large,

(b) there exists a universal semiregular G-invariant measure. on E”,

(c) there exists a maximal semiregular G-invariant measure on E”.

Proof.

(a)= (b) Denote by & the family of all lines in the space E". Fix on each S € &
two points: Og and 1g with Euclidean distance between them equal to 1. Thus for
any Se & there exists a bijection ps: S — R such that for any isometry T of E®,
if T[S;] = S, then the transformation ¢s1°ana§1‘: R -+ R is an isometry of
the reals.

We shall use the following result of Pelc [5]: on every abelian group of large
cardinality there exists a semiregular universal invariant measure which is moreover
invariant with respect to the “inverse element” operation.

This theorem applied to the additive group of reals gives a semiregular universal
measure m invariant with respect to all isometries of -the reals. Let mg be the re-
spective measure on S obtained via the bijection ¢g.

We define for any A<E™:

uld) = Yy mgdnS).
Sed

The above infinite sum is defined as the supremum of sums over finite sub-
sets. u is clearly a semiregular universal measure on E”. It is enough to show that
is invariant with respect to all isometries. Let T be any isometry of E". Since T
induces a permutation of the set & we get:

(T = 3, moT14] 0 S) = 3, mas(Tl4] 0 T[S])

- Se¥
It is enough to show that for any Se &

ms(4 A S) = mysy(T1A] A TIST).
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Indeed, since m is a measure invariant with respect to all isometries of the
reals, we get:
ms(4 0 8) = m(psld n ST)
= m(prso T o ps5 ' [osl4 0 ST))
= m(@us[TI4] n T[S1])
= mys(T4] N T[S]).
(b) = (c¢) This is obvious, since universal measures are maximal.
(c) = (2) Assume that 2¢ is small and let u be any semiregular G-invariant
measure defined on a o-algebra M of subsets of E”. Denote by A the smallest

cardinality of a subset of positive outer measure. If every set of cardinality 1 has
inner measure zero, we are done by Proposition 1.3. Hence we may assume that

there exist sets of cardinality /2 and positive inner measure and thus also measur-

able sets of cardinality 4 and positive measure. Let k be the smallest integer for
which a set of cardinality 4 and positive measure is contained in a k-dimensional
hyperplane. Fix such a set 4 contained in a hyperplane E.

We define by induction a non~decreasing'family {G,;: mew} of subgroups
of G As G0 take the trivial group. If G, is already constructed let B, U hl4]

keGm
dnd’ B, be such a measurable subset of B, that B,\B, has inner measure zero.

It is easy to show that p(h[B,] A B,) = 0 for any ke G,,. Denote by. G,,.; the set
{g€G: u(g1B,] A B,)>0}

and let G,,,+1 be the group generated by G, ;. It is easy to see"that the groups G,
are actually non-decreasing,. We may also assume that B, < By for any natural m;

The following statement will be proved by simultaneous induction on m:
For every me.w'and g€ G, g[E] = E and H,,, ={gtE:geG,}isa group of
isometries of E of cardinality <A.

Suppose we are done for m and let g € G,’,,H If g[E] # Etheng[E]n E is
an [-dimensional hyperplane for /<k and the set g[B,] N B,, has positive measure
and cardinality A. By the inductive hypothesis B,<E and hence

g[B, 1N B,cg[E]nE

whlch contradicts the minimality of the dxmensxon k.
any g €Gpyy and hence also for any g€ Gy

In order to show |H,. <A take again g €G.,,, and notice that the sct
g(B,] 0 B, must contain k+1 points Ay, ..., x;.; which are not elements of the
same (k~—1)-dimensional hyperplane. Let us call such points independent. Hence
the points x; = g~'(xy), ..., X4y = g~ '(¥ps,) also form an independent sub-
set of B,,.

It follows that for any isometry g € G, there exist independent (k + 1)-ele-
ment sets Iy, I, < B,, such that'g [];] = I,. For any such pair 1, I, there are however

This proves g[E] = E for

v
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only finitely many isometries / of the hyperplane E for which A[l}] = T5. Since
|B,| = 4 by the inductive hypothesis, it follows that [{g } E: g e Gri1}]<A and
hence |H,,. /<A which finishes the proof of our statement by induction.

Put H = |J H,. Since H, were formed a non-decreasing system groups of

mew

cardinalities at most A, H is also a group of such cardinality. Denote by C the
set |J B,. We show that any g € G such that g | E¢ H the following holds:

® . #(glC1n C)=0.
Indeed
glCln C=glUB,]nUB,cUglBunBi= U giB,n By,

mecw meo I,meo meo

because the sets B, are non-decreasing. For any me w we have g ¢ G4y Hence

for any meo

#(g[Bal N B,) =0
which implies (%).
Next we show that for any ke G such that & } Ee H we have
(%%) p(R[CIAC) =0.
Indeed, for some mew, he G, which implies u(h[B,] A B;) =0 for any rzm.
Hence

w(hl U B]A U B)=0

rzm

which implies (#+) because {J B, = C.
rEm

By an argument of Pkhakadze [7] and Hulanicki [3] we get a non-measurable
set Z< C such that u(h[Z] A Z) = 0 for any k€ H. Then, similarly as in the proof”
of Proposition 1.4, we find a subset Z; =Z satisfying the following conditions:

(@) Z, ¢,

(b) Z, has inner measure Zero,

(¢) u(hlZ,1AZ,) =0 for any he H.

In view of Proposition 1.3. it is enough to show that for any countable set
LcG the set | /[Z,] has inner measure zero. Let G* = {g } E: g € G}. We shall

leL

equivalently show the above property for any countable Lo G*,
Suppose that T= J I[Z,], p(T)>0 and let L' be a subset of L whose elements

lel

belong to distinct left cosets of H in G* and such that for any le L there is an isometry
I' e L' belonging to the same coset. Since for distinct 7, [, e L’ the sets /,[C] and
L[C] are both measurable and (1,[CT A L,[C]).= 0, we get that for some I, e L"

w(T A L[C)>0.
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Let {h;: iew} be such elements of H that every /e L belonging to the same coset

K, Ciesielski and A. Pelc

that I, is of the form I o i;. Clearly

W@ A BICINU lo o hiZ]) = 0.

However in view of property (c),

#((U Iho hi[zi]) A lo[zx]) =0

which implies that the set /;[Z,] contains a set of positive measure, This contradicts
property (b).

1
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Uber den Homotopietyp von Linsenraumprodukten

yon

Giinther Huck und Wolfgang Metzler (Frankfurt am Main)

Abstract. In this paper we derive a necessary criterion for products of lens spaces to have
the same homotopy type. The criterion is 2 generalization of the Franz-Whitehead—criterion for
a single factor.

1. Einfihrung und Ergebnis. Linsenrdume wurden 1935 von W. Franz [2] und
K, Reidemeister [7] kombinatorisch und 1941 von W. Franz [3] und J. H. C. White-
head [9] beziiglich ihres Homotopietyps klassifiziert. Diese Arbeiten waren grund-
legend fiir die Theorie des einfachen Homotopietyps, und Linsenrdume waren
die ersten Beispiele fiir die Stirke der damit zusammenhingenden Torsionsin-
variante.

Fiir Mannigfaltigkeiten mit endlicher zyklischer Fundamentalgruppe sind
Linsenraume besonders wichtige Beispiele. Dasselbe gilt fiir Produkte von Linsen-~
raumen beziiglich endlicher abelscher Gruppen. Zwischen diesen Produkten kdnnen
Diffeomorphismen existieren, die nicht von solchen der Faktoren herriihren: Einer

8
der Sitze in [5] besagt z.B., daB der Diffeomorphietyp eines Produktes -l:[lL""(r‘)

aus dreidimensionalen Linsenrdumen L, (r) fiir s>2 allein durch die Fundamental-
gruppe bestimmt ist, falls mindestens zwei der Drehnenner m; teilerfremd sind
und mindestens eine Verdrillungszahl die Bedingung r; = +1 modm, erfiillt.

Im Anhang von [5] wurden jedoch bereits ohne Beweis Beispiele dafiir ange-
geben, daB auch fiir s3»2 die Fundamentalgruppe nicht immer den Homotopietyp
bestimmt. Die dieser Bemerkung zugrundeliegende Idee wird in der vorliegenden
Arbeit ausgefiihrt, d.h. das Homotopietypkriterium von Franz und Whitehe'c.).d auf
Produkte (2n—1)-dimensionaler Linsenrdume (n>1) verallgemeinert. Wir be-
weisen die Verallgemeinerung als notwendiges Kriterium. Spezialfille davon wurden
bereits von R. Quetting [6] in Zusammenarbeit mit den Autoren erzielt. In einer
weiteren Arbeit [4] wird gezeigt, daB fiir Produkte dreidimensionaler Linsenrdume
das Kriterium auch hinreichend ist.

Folgende Begriffe und Erlduterungen seien der Formulierung des Resultates
vorausgeschickt:

Sei m eine natiirtiche Zahl und (rg, s ') ein n-tupel zu m teilerfremder ganzer
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