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Chapman’s category isomorphism for arbitrary ARs
by

P. Mrozik (Siegen)

Abstract. In [7] T. A. Chapman proved that there exists a category isomorphism from the
full subcategory of the weak proper homotopy category whose objects are complements of Z-sets
in thé Hilbert cube Q onto the full subcategory of Borsuk’s shape category whose objects are
Z-sets in Q. We éxtend Chapman’s result from Q to arbitrary ARs, and moreover establish analo-
gous category isomorphism theorems in homotopy theory. Beyond these existence theorems, we
specify unique “patural” category isomorphisms and describe their characteristic properties and
interrelations.

Introduction. The main concern of this paper is to present versions of
Chapman’s category isomorphism in which the role of the Hilbert cube, i.e. the
role of the ambient space, is playéd by arbitrary ARs, and to characterize these
category isomorphisms by certain natural properties. We now give an outline of
our results.

Let W be an AR, i.e. an absolute retract for metrizable spaces, which is ad-
ditionally equipped with a complete uniform structure (such always exist, but need
not be induced by a metric); we write W* for the resulting uniform space. Let
C,(W%*) denote the category whose objects are uniform complements of compact
Z-sets in W and whose morphisms are weak complete homotopy classes of com-
plete maps (see § 1 for all definitions), and let Sh(W) denote the full subcategory
of the shape category whose objects are compact Z-sets in W. We prove

THEOREM I (cf. § 2, Theorem 2.3). There exists a category isomorphism
T Con(W*) — SR(W) such that T, (M) = W—M for each object M.

We also prove a strong shape analogue of Theorem I (cf. § 2, Theorem 2.3).
For compact W, the category C,,(W*) can be identified with the full subcategory
of the weak proper homotopy category whose objects are topological complements
of Z-sets in W; however, it should be emphasized that for non-compact W no
reasonable results are available in the topological setting. Consider for example

L]
s = [] R,, where each R, denotes a copy of the real line. It is well known [1] that,
n=1 -

for any compact X s, s—X is homeomorphic to s; thus:no category whose objects
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are topological spaces having the form s—X can be used in a non-trivial category
isomorphism.

Theorem I and its strong shape analogue have further extensions — as an
ambient space one can take an arbitrary absolute retract for paracompact p-spaces
(see [2], [16] concerning the class of absolute retracts for paracompact p-spaces;
note that it contains all absolute retracts for (a) metrizable spaces, (b) compact
spaces).

In general, there exist different category isomorphisms 0: C,,(W*) — Sh(W)
such that 6(M)= W—M for each object M (in fact, this always happens if W
contains a Z-set having more than one point). We wish to exhibit a unique category
isomorphism T,,;,: C,,(W*) — Sh(W) as “the natural” one. The following analogue
of Theorem I in homotopy theory is crucial for this purpose.

Let UC,(W*) denote the category whose objects are uniform complements
of compact Z-sets in W and whose morphisms are z-uniformly continuous com-
plete homotopy classes of z-uniformly continuous complete maps (see § 1 for
definitions), and let Top,(W) denote the full subcategory of the homotopy category
of topological spaces Top, whose objects are compact Z-sets in W.

TereoreM II (cof. § 2, Theorem 2.2). There exists a unique category isomorphism
R,: UC(W*) — Top(W) satisfying

(R1) R(M) = W—M for each object M.

(R2) For each morphism : M — N in UC(W*), there exist maps f M -+ N
resp. ' W—M — W—N representing the homotopy classes \ resp. R,(y) such
that f and f’ can be pieced together to a continuous f*: W— W.

Now let G: UC(W*) — C,,(W*) be the obvious functor, and let S: Top,(W)
— Sh(W) be the shape functor. The particular category isomorphism T, con-
structed in the proof of Theorem I has the property T,,°G = SoR, (cf. § 2,
Theorem 2.3); moreover, in many interesting cases (e.g. W = I", Q, s) T, is the
only functor having this property (cf. § 2, Theorem 2.5). In the general case we
obtain a unique characterization of T, by another property involving the functors R,
(cf. § 2, Theorem 2.8). Roughly speaking, it is the natural behavior of T} on the
map-induced shape morphisms which enforces a natural behavior on arbitrary shape
morphisms. i

Details and further results can be found in § 2.

The material in this paper is part of the author’s doctoral dissertation written
under the supervision of Professor F. W. Bauer at the University of Frankfurt
am Main.

1. Preliminaries. Let X be a topological space. A subset A= X is said to be
unstable in X (cf. |19]), if there is a map H: XxI— X such that H, = 1y and
H(X)cX—4 for all te(0,1] (for each rel=[0,1], H;: X > X is given by
H{(x) = H(x,t)). An unstable zero-set AcX will be called a Z-set in X (recall
that 4 is a zero-set in X, if there is a wap u: X — I with 4 = u~1(0)). Note that
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m standard examples, e.g. in finite or infinite dimensional manifolds, the above
definition of a Z-set is equivalent to the definitions given in [1] or [8].

1.1. DEFINITION. A map f: X — Y between uniform spaces X, Y is called
complete, if f~'(M)<X is a complete uniform subspace for every complete uniform
subspace M Y.

Note that 2 map f: X — Y between totally bounded uniform spaces is complete
iff it is proper (i.e. preimages of compact subsets are compact).

For any uniform space X; let #(X) denote the family of closed totally bounded
uniform subspaces of X.

1.2. DepmNITION. A map f: X — ¥ between uniform spaces X, Y is called
t-uniformly continuous, if the following conditions are satisfied:

(a) For every A e t(X) there exists A’ €(Y) such that f(d)=4".

(b) For every Aet(X) and every Bet(Y) such that f(d)cB the map
Sfupt A — B, fu,5(x) = f(x), is uniformly continuous.

It is easy to see that f: X — ¥ is ¢-uniformly continuous iff f],: 4 — ¥ is
uniformly continuous for every 4 e t(X); thus if X is totally bounded, then f: X—» ¥
is t-uniformly continuous iff it is uniformly continuous.

We now consider the following categories:

Top, the category whose objects are topological spaces and whose morphisms
are continuous functions (= maps);

P, the category whose objects are topological spaces and whose morphisms
are proper maps; .

UP, the category whose objects are uniform spaces and whose morphisms
are uniformly continuous proper maps;

C, the category whose objects are uniform spaces and whose morphism
are complete maps;

UG, the category whose objects are uniform spaces and whose morphisms
are ¢-uniformly continuous complete maps.

In each of these categories € we have the notions of homotopy and weak
homotopy. :

A morphism H: XxI— Y in @ is called a G-homotopy. Morphisms
Jo-fi: X > Y in € are called €-homotopic, fo~cfi, if there is a E-homotopy
H: XxI— Y such that H; = f;, i=0,1 (here H;: X — Y is given by Hi(x)
= H(x,1)).

Morphisms fo, f1: X — ¥ in € are called weakly €-homotopic, fo =ye fi, if
the following condition is satisfied: \

(€ = Top) For every ANR (= absolute neighbourhood retract for metrizable
spaces) P and every map r: ¥ — P, the maps rf, and rf; are homotopic;
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(€ = P resp. UP) For every compact Mc Y there is a continuous Tesp.
uniformly continuous map H: XxI— Y such that H~'(M) is compact and
Hy=f,i=0,1;

(€ = C resp. UC) For every complete M< Y there is a continuous resp.
t-uniformly continuous map H: XxI — ¥ such that H~1(M) is complete and
Hi=f, i=0,1

One easily verifies

1.3. (a) The notions of homotopy and weak homotopy in € induce equivalence
relations on the set €(X, ¥) of morphisms f: X — ¥: The €-homotopy class of
fe€X, Y) is denoted by [f]s, the weak €-homotopy class by [fl,g.

(b) Let fo,f1 € C€(X, ¥) and gy, 9; € &(Y,2Z): I f 2 f; and g, g g4, then
gofo e guf1; If foucfi and go 2y gy, then gofy e 4171

Thus in the usual fashion we obtain from € a homotopy category G, and
a weak homotopy category €, together with a functor IT: €, — €,,, assigning to
the €-homotopy class [f]e the weak €-homotopy class [flug.
~ Note that if € = Top, then the homotopy category €, = Top, is precisely
the ordinary homotopy category of topological spaces.

There are also obvious forgetful functors F,: UP, — P, and F,,: UP,, — P,
(tesp. Fy,: UC, — C, and F,,: UC,;, - €,,;) which simply forget uniform continuity
(resp. z-uniform continuity).

2. The category isomorphism theorems. Let W be an absolute retract for para-
compact p-spaces and W* be a complete uniformization of W (i.e. a complete
uniform space W* such that (a) the sets W* and W coincide, (b) the topology
induced by the uniform structure on W* coincides with the topology on ). Note
that every paracompact topological space has a completé uniformization (cf. [11],
8.5.13).

Now let be :

(@) Top,(W) resp. Top,,(W) the full subcategories of Topy, resp. Top,,;, whose
objects are compact Z-sets in W;

() C,(W*) resp. C,,(W*) the full subcategories of C, resp. C,,;, whose objects
are uniform subspaces (W—X)*< W*, where X is a compact Z-set in W;

(¢) UC,(W*) resp. UC,,,(W*) the full subcategories of UC, resp. UC,,;, whose
objects are uniform subspaces (W~ X)* < W*, where X is a compact Z-set in W;

(d) sSh(W) resp. Sh(W) the full subcategories of the strong shape category sSh

(I31, 51, (6], [9], [14]) resp. the shape category Sh ([4], [15]) whose objects are
compact Z-sets in W,

Remark. In some of the references given in (d) shape is defined only for
compacta. However, once the notion of shape has been ‘introduced for compacta,
it extends uniquely to all spaces having the homotopy type of a compactum. The
following result shows that this is sufficient for our purpose:
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.2.1. PROPOSITION. If W is an absolute retract for paracompact p-spaces, then
every compact zero-set in W has the homotopy type of a compactum.
- For the proof see § 3. : o

Together with the shape categories we have the shape functors sS: Top,(W)—
‘- sSh(W) and S: Top,(W) — Sh(W), the functor =: sSh(W) — Sh(W¥) satistying
mosS = S, and the functor S': Top,(W) - Sh(W) determined by S’ II = S,
where II: Top,(W) — Top,(W).

The following theorems and propositions are proved in § 3.

2.2. THEOREM. There exist unique functors R,: UC(W*)— Top, (W) resp.
Ryt UC, (W) — Top,,(W) satisfying the following conditions:

R1) Ry(M) = W—M (resp. R, (M) = W—M) for each object M.

(R2) For each feUC((W—X)*, (W—=Y)*), the homotopy class Ry([fluc)
eTop,(X, Y) (resp. the weak homotopy class Ry ([flyvuc) € Topu(X, Y)) contains
a representative f': X — Y such that f and ' can be pieced together to a continuous
fr=fuf: W= (W=-X)UX~(W—Y)U Y= W. The functors R resp. R
are category isomorphisms which render commutative the diagram

Ry
UC,(W*) —— Topy(W)
n n

Ry
UC,(W*) ——> Top,(W)

2.3. THEOREM. There exist category isomorphisms Ty: C(W*) — sSh(W) resp.
Tt Cou(W*) > Sh(W) satisfying the following conditions:

(T1) T (M) = W—M (resp. T,y(M) = W—M) for each object M.

(T2) The diagram

Rwh .
~ Top,u(W)

Ru
UC,(W*) ——— Top,(W) UC, (7%
Fa 8 resp. Fun s
G ~sSh(W) Cop( W) —————Sh(W)
commuites.

Remark. The condition T,y o F,; = S’ R,, is equivalent to the condition

'T,,0G = SoR,, where G=F,olIl: UC(W*) — C,,(W*); this follows from

the fact that the functor IT: UC,(W*) > UC,,(W*) is epimorphic.

In general conditions (T1) and (T2) do not determine unique category
isomorphisms T;, resp. T,,. This follows from

2.4. PROPOSITION. There exist a separable AR, W, and nontrivial category
isomorphisms A: sSh(W) = sSh(W) resp. B: Sh(W) — Sh(W) such that Ao sS
=55 resp. Bo S =§.
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However, there are interesting cases in which (T1) and (T2) guarantee
uniqueness.

Let Pol, denote the full subcategory of Top, whose objects are all spaces
having the homotopy type of a polyhedron. Following [15], a Pol,-expansion of
a topological space X is a morphism p: X — X in the pro-category pro-Top, (cf.
[10], [15]), where X is an inverse system in Pol,, with the following universal
property: For any inverse system Y in Pol, and any morphism k: X — Y in pro-
Top;, there exists a unique morphism f: X — Y in pro-Top, such that h = fo p.
We say W is large, if every compact Z-set X in W has a Pol,-expansion p: X —»X
= {X,, pp> L} such that each X, is homotopy dominated by a compact Z-set
in W. Examples for large Ware W= 1", Q, s (thxs can be derived from [15] § 5.3
Corollary 6).

2.5. THEOREM. Let W be large. Then there exists a unique functor T, C(W*) —
— Sh(W) satisfying (T1) and (12); T,y is a category isomorphism.

Let us call W wniversal, if each compactum X is homotopy dominated by
a compact Z-set X’ in W. It is readily verified that each universal W is large, but
not conversely (consider W = I"). Examples for universal W are W = Q, s.

2.6. THEOREM. Let W be universal. Then there exists a unique functor
T,: C(W*) — sSh(W) satisfying (T1) and (T2); T, is a category isomorphism.

It is not known to the author whether the conclusion of 2.6 is valid for more
general W, e.g. W=1I"

The reason that T, resp. T, are not always uniquely characterized by (T1)
and (T2) is that in general there are not enough compact Z-sets in W. To obtain
a general uniqueness result we proceed as follows.

Let € be one of the categories UC,, UC,,, C,, C,,, Top,, Top,, sSh, Sh,
For each space 4, let py: AxQ — A denote the projection map; p, induces
a morphism p(€) e €(4x 0, 4) (e.g. p4(Cp) = [p4lo)- It is easy to show that
p4(€) is an isomorphism in €.

2.7. PROPOSITION. There exist unique functors i(€); C(W*) - C€(W*x Q)
resp. i(€): €(W) - C(Wx Q) satisfying the following conditions:

(E1) i(€©)(4) = Ax Q for each object A

(E2) For each morphism \j: A — B, the diagram

)W)

AXxQ——>BxQ
PA(G)l lPB(E)
A 14
A4 —————>B
commutes.
The functors i(€) are full embeddings.

2.8. THEOREM. There exist unique functors Ty: Cy(W*) — sSh(W) resp.
Tyn: Con(W*) — Sh(W) satisfying (T1) and
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(T3) There is an extension 6, C(W*x Q) - sSh(WxQ) of T, (resp.
0,1: Con(W*x Q) » Sh(Wx Q) of T,,) such that the diagram

CW? — > sSh(W) ClW?) —2> SH(W)
i(Cn) i(sSh) {Cwh) i(Sh)
C W % Q) —2>sSh(Wx Q)  rep. Co(W*x0) —=> Sh(Wx Q)
Fn sS Fyon S
UC(W* x 0) ——>Top(Wx Q) UC(* x Q) - Top,,(Wx Q)
commutes.

The functors T}, resp. T,, are category isomorphisms which satisfy (T2) and
render commutative the diagram

C(W*) —=—>sSh (W)
pid T
‘l’ Twa
Con(W®) —>Sh(W).

If the ambient space W is a compact absolute retract for paracompact p-spaces,
ie. an absolute retract for compact spaces, we can state our results in a slight
different form. Note first that for compact W there exists exactly one uniformi-
zation W* of W (which is complete); thus we do not distinguish between W and W%,
but regard W at the same time as a topological and a uniform space. Let be

¢) P(W) resp. P, (W) the full subcategories of P, resp. P,, whose objects
are topological subspaces W—Xc< W, where X is a Z-set in W;

) UP,(W) resp. UP,, (W) the full subcategories of UP, resp. UP,, whose
objects are uniform subspaces W—Xc W, where X is a Z-set in W.

2.9. PROPOSITION. If W is compact, then the following pairs of categories can
be identified: UC,(W*) and UP(W); UC,,(W*) and UP,,(W); C(W*) and P W);

Con(W*) and P (W).

This follows immediately from the definitions in §1 because all uniform
subspaces of W are totally bounded.

Let us now consider some ambient spaces which are of particular interest.

For W = Q we obtain the four category isomorphisms T: Py(Q) ~ sSh(Q),

Tt Pu(Q) = Sh(Q), R,: UP,(Q) — Topy(W) and R,,: UP,(Q) — Top.u(Q)-
Note that the existence of category isomorphisms t: P,(Q) — sSh(Q) resp.
0: P,,(Q) — Sh(Q) is well-known (see [10], [14] resp. [7]). However, if we want
to characterize among all category isomorphisms t resp. 0 a “reasonable” T}, resp.

T, the functors R, resp. R,,; get involved. Moreover, the characterizing property
(T2) allows to describe the relation between the strong shape category and the
homotopy category from a new point of view — the category P,(Q) arises from
UP,(Q) simply by forgetting the uniform structure.
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For the cubes I we obtain explicit finite-dimensional versions of the category
isomorphisms already known for the Hilbert cube (including uniqueness results;
it should be mentioned, however, that the mere existence of category isomorphisms
7: P,(I") - sSh(I") resp. 0: P,,(I") - Sh(I™) follows also from [14] resp. [13]).
Additionally we obtain finite-dimensional versions for W = R% = {(x,, ..., x,) €
€ R"|x, >0}; but observe that for Euclidean space R" our category isomorphisms
do not produce interesting results, because the empty set is the only Z-set in R".

For any infinite-dimensional metrizable linear space W we obtain new infinite-
dimensional versions of the category isomorphisms. Particular nice examples are
W = an infinite-dimensional Banach-space, or W = s, the infinite product of
lines R (in these cases W has a natural complete uniformization W*). These
examples show also that in general we cannot avoid to consider uniform structures
on the ambient spaces; see the introduction for W = s.

3. Proofs. (I) Proof of 2.1
3.1. LEMMA. Let W be an absolute retract for paracompact p-spaces and X be
a compact zero-set in W. Then X is homotopy dominated by a compactum Y.
Proof. It follows from [17] that W can be embedded as a closed subset of
a suitable product CxI™, where C is a convex subset of a normed linear space
and I™ is a Tychonoff cube of some power m (for any cardinal number m, I™ is
represented by the product [] I, where 4 is a set of cardinality m and each I, is
aed

a copy of I). There is a retraction r: CxI™ — W. If p: CxI™ — C denotes the
projection map, then K = p(X)=C is a compactum. If the restriction of r to
KxI™ is denoted by R: KxI™— W, then R-*(X) is compact. Obviously X is
homotopy dominated by R™!(X). Choose u: W — I such that u”*(0) = X. Then
R™Y(X) = (uR)~1(0). The map uR: KxI" — I depends only on countably many
coordinates (cf. [11] 2.7.12(c)); thus (@R)™*(0) = ¥xI", where Y is a compactum
and n is a cardinal number not exceeding m.

Proposition 2.1 follows from 3.1 and a result from [12] stating that every space
homotopy dominated by a compactum is homotopy equivalent to a compactum.

(II) Proof of 2.2 and 2.3
Throughout this section let “cl” denote closure.

3.2. LeMMA. Let X be a complete uniform k-space, AcX be a Z-set, Y be
a complete uniform space, B< Y be closed and V< Y be an open neighbourhood of B.

(a) Every t-uniformly continuous map f: X—A — Y—B has a unique continuous
extension f*: X = Y. If f"(Y-V)cX—A is complete, then f*(d)ccl(V);
conversely, if f¥(A)cV, then f~(Y—~V)=X—A is complete. Thus f is a complete
map iff f*(A)<B.

(b) If F: X — Y is continuous, then Flx.. ,: X— A — Y is t-uniformly continuous.

Proof. (a) The proof that f has a unique continuous extension f* is straight-
forward (using the facts that X is a k-space and, because A is unstable in X, that
each compact K< X lies in the closure (rel. X) of some M e t(X— 4)). If f~X(¥Y—V)
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‘is complete, then f*(V) = X ~f"(Y¥Y—¥) is an open neighbourhood of 4 in X
with f(f*(V)—A)< V. Because 4 is a Z-set in X, A= cl(f*(¥)—4). We obtain

AP~ D) d(f* (FH7) - 4) = dd(f(F*(V)~D) = (V).

Conversely, if f(4) <V, then f~YY~V) = (fF)"{(¥-V) is clo.sed in X and
a fortiori. complete. If f is a complete map, then f* (4)=cl(U) for each open
neighbourhood U of B; it follows f*(d4)=B; the converse is obvious.

(b) This is’ straightforward.

3.3. LemMA. Let W be an absolute retract for paracompact p-spaces and ¥ <=W
be closed. Two maps f,,f1: X - Y are weakly Top-homotopic (cf. § 1) iff for every
open neighbourhood V of Y in W there exists a homotopy H: X xI ~ V such that

=fi, i=0,1.

Proof. We only have to observe the following two facts (see [16]):

(a) Every ANR is- an absolute neighbourhood retract  for paracompact
p-spaces;

(b) For every open neighbourhood U of any closed A< W there exists an
open U'cW, AcU’cU, which is homotopy equivalent to an ANR.

We also need the following result from [19] (stated in a slightly generalized form).

3.4. Lemma (cf. [19], Lemma 2.1). Let W be an absolute retract for paracompact

‘p-spaces and X be an unstable subset of W. Then every wmap f: By — W defined on

a zero-set By of a paracompact p-space B has a continuous extension F: B — W

‘such that F(B—By)c W—X.

Let & be one of the categories UC, UC,, UC,,, C;, C,,;. We define a category
&* as follows. The objects of F* are all triples (W*, W, X), where W is an absolute
retract for paracompact p-spaces, W* is a complete uniformization of W and X
is a compact Z-set in W. The set of morphisms is defined by

B, Wi X)), (W5, W3, X)) = (W — X%, (Wo— X)),

Obviously there exist canonical full embeddings §(WW*) < §*.

‘We shall first construct a functor R: UC* - Top.

For each object (W*, W, X) we define R(W*, W, X) = X. Each morphism
Fe UCK(W1, Wy, X), (W3, Wa, X)) has a unique continuous extension f+: W, —»
— W, such that f*(X,) = X, (see 3.2). We define a map R(f): Xy - X; by R(NX)
= f*(x). It follows from the uniqueness of the extension that we have defined
a functor R: UC* — Top.

In the following claims let f,, f; € UCK(Wy, Wy, Xy), (W3, W, X,)). Note
that claims (3), (4), (5) are immediate consequences of Lemma 3.4 (tacitly making
use also of Lemmas 3.2 and 3.3).

(D) If fo ~ycfi» then R(fo)=R(f1): There is a z-uniformly continuous com-
plete homotopy F: (W;~X,)xI— W,—X, such that F; = f;, i = 0, 1. By 3.2,
F }has a unique continuous extension F*: Wy x I - W, such that F*(X, xI)c X,
2 — Fundamenta Mathematicae CXXV. 3
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(observe that each paracompact p-space is a-k-space, cf. [2]). This induces a homo-
topy between R(f) and R(f)-

@) If fo 2quc fis then R(fo) = yroepR(fy): Consider an open neighbourhood ¥
of X, in W, and choose an open neighbourhood U of X, in W, such that cl(U)=V.
Then W,—U is complete and there exists a z-uniformly continuous homotopy
F: (W,—X)xI— W,~X, such that F™*(W,—U) is complete and F;=f,
i =0, 1. By 3.2, the unique continuous extension F*: W;xI — W, of F has the
property F¥ (X, xI)cc(U)=V. From 3.3 we deduce R(fp) = wropR(f3)-

3) If R(f) = R(f1), then fo =ucfis

@ If R(fo) =wropR(f1)s then fo = gucfss

(5) R is a full functor.

For the proofs of (3) and (4) observe that B, = Wy x {0, 1} U X; x [ is a zero-set
in B=W;x1I

1t follows - from the above claim that R induces fully faithful functors
Ry: UC§ — Top, and R,,: UCy, ~ Top,,.

As an obvious corollary we obtain Theorem 2.2. Note that uniqueness is
a consequence of (R2).

‘We now prove Theorem 2.3. Let us first consider W = Q. It is well-known
that the strong shape morphisms ¢: X — Y in sSh(Q) can be described as ap-
proaching homotopy classes (cf. [5], [6], [14], [18]): If X, Y are compacta in Q,
then an approaching map f from X to Y'is a map f: @ x (0, 1] = Q with the follow-
ing propérty: For every open neighbourhood ¥ of Y in Q there exist an open
neighbourhood U of X in @ and a number ¢ e (0, 1] such that f(Ux (0, t)= V.
An approaching homotopy H from X'x7I to Y is a map H: OxIx(@©,1] —»
with an analogous property (cf. [14]). The approaching homotopy class of an
approaching map f'is denoted by [f1,. If g: X'~ Y is a continuous map, we choose
an extension g’: Q xI — Q of g (where X'= X x {0} cQ xJ)and put "’ = ¢'lgx (0,13
Then g’ is an approaching map from X to Y and [g"'], is a well defined approaching
homotopy class depending only on [g]; the shape functor sS: Top,(Q) — sSh(Q)
isnow given by sS([g]) = [9"'],.

Using our notation, we restate Theorem 1 from [14] as follows: There exists
a category isomorphism 0: Pi(Q) — sSh(Q) such that 0(M) = Q—M for each
object M. Moreover, if the construction of 8 is studied carefully, it turns out that
for any morphism [f], e P,(Q)(Q—X, @—7Y), 8([f],) can be constructed in the
following way: Choose a map H: @ xI— Q such that H, = 1 and H(Q)c0-X
for ¢ # 0, and define §(f, H): Qx(0,1] » Q by 0(f, H)(x, t) = fH(x, ). Then
6(f, H) is an approaching map from X to Y, and we have 0([f1,) = [0(f, H)]4-
Since @ is compact all uniform subspaces of Q are totally bounded; thus we can
identify P,(Q) and C,(Q) (see § 1). We now write Tj,: C,(Q) — sSh(Q) tor the
category isomorphism- constructed in [14]. Using the explicit construction of 1),

_described above, it is an easy exercise to verify sSo R, = T}, o Fj.
The shape morphisms : X —» ¥ in Sh(Q) can be described as fundamental
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equivalence classes in the sense of Borsuk.[4]. The canonical functor z: sSh(Q)—
— Sh(Q) is now given as follows: For any approaching map f; Qx(0, 11-0
from X to ¥ we obtain a fundamental sequence {y,} if we define y,: @ — Q by
Yr(x) = f(x, 1/n), and we have n([f],) = {{y,}>, where { ) denotes fundamental
equivalence class. It is now an easy exercise to show that the category isomorphism
Q: P,,(Q) — Sh(Q) constructed by Chapman [7] has the property no 8 = Qo IT
where II: P,(Q) — P,,(Q). We identity P,,(Q) and C,,,(Q) and write T',;: C,(Q)—
— Sh(Q). Thus 7o T}, = Ty, 0 IT, where II: C(Q) — ’w,,(Q). This implies SoR,
= Ty 0 Fyy o II, where IT: UC(Q) — UC,(Q).

Thus 2.3 is proved for W = Q. We shall now regard the functors T}, TESp. Tw,,
as full embeddings Tj: C,(Q) - sSh resp. T,: C,.(Q)— Sh, Recall that for
§ = UG, UC,,, C,, C,; we can identify §(W*) with a full subcategory of F*.
If (W*, W, X) is an arbitrary object of UC}, then by 2.1"X is homotopy equivalent
to a compactum X’. We may assume that X" is a Z-set in Q. Since R,: UC} — Top,

s fully faithful, (W*, W, X) is isomorphic in UC} to (@, @, X’). Choose an iso-

morphism j(X): (W*, W, X)— (0, @, X") in UC!. 'We now extend T,: Cy(Q)
—sSh to a functor 7,: C; — sSh. Deﬁne T, ,,(W ‘W, X) =X for each object
(W*, W, X) of Cj. For any

) l,b € C:((Wf: le Xl)’ (WZ*’ WZ’XZ)) A

define - .

TW): —SSRI:(J(XZ) 1)Th(‘lf*)SSRh(J(X1))

where y* = F(j(X2)yF,(j(X)™") is 2 morphism in C,(Q). Tt is easy. to check
‘that T,,: Cy — sSh is a well-defined fully faithful fiinctor. Obviously, the restriction
to C,(W*) determines a category isomorphism T3,: C,(W*)— sSh(W) satisfying

(T1) and (T2). By the sameargument we obtam a’ category 1somorphlsm

T Con(W*) — Sh(W) satisfying (T1) and (T2).
(IID) Proof of 2.4. We first define two compacta K,L & R For a, beR?

let [a, b] denote the segment connecting a and b. We shall ne¢d points gy = (—1; 1),
a; = (=1; —=2), by = (1; 1), by = (1; —2) in R%. We define maps

u: [-1,00)u(©,1]> R resp. V:(—1,1)->R

by u(x) = sin(1/x) resp. v(x) = sin(l/1—|x|). Let G resp. H denote the closure
(in R?) of the graph of u resp. v. Put A = [ay, a,] U [a;, b;] U [Bo, b;]. Then
K=GuU4d and L = Hu 4 are compacta of dimension 1. The following proper-
ties are readily verified. -

(1) X and L have the shape of a circle (in fact, there are maps r: K — S* and
s:L— S*! which are strong shape equlva]cnces) )

2) Any map f: K— L resp. g: L K induces the tr1v1a1 sha.pe morphism.
2.
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'(3) Each connected proper subcompactum X <X resp. YL has trivial shape.
(4) For each proper subcompactum XcX resp. Y<L there exists. a sub-
compactum X' =K resp. Y’ <L having trivial shape such that X< X" resp. Yc Y’

We embed the topological sum K+L in the two dimensional sphere S%. If B3
denotes the interior of the three dimensional ball, then W = D? U (K+L) is
a separable AR (W is a convex subset of R®). K+L is a compact Z-set in W, more-
over, a compact subset X'< W is a Z-set iff X< K+ L. We shall construct a category
isomorphism A: sSh(W) — sSh(W) such that A% 1 and Ae sS =sS (the
construction of an analogous B: Sh(WW) — Sh(W) is similar). For any compact
Z-set X in W we choose an equivalence’ &y e sSh(X, X) as follows:

JIf K is not contained in X, &y = ly; if KcX ie. X' = K+X' with X'<L,
éDx = Ag+1y, where AgesSh(K, K) is the non-trivial shape equivalence de-
termined- by the condition sS([r]) o Ag = sS([—1]) o sS([r]) (here —1: St 8t
is a map of degree —1). For the above definition one should observe that there
exist finite sums in the category sSh. Now define 4(X) = X for each object X’ of
sSh(W) and A(¥) = cby‘l@xl for each morphism !PesSh(X Y). A: sSh(W) -
—sSh(W) is a well-defined category isomorphism such that -4 # 1 (for 4
= sS([r) "1 o sS([s]) e sSSh(L, K), A(¥) # ¥). Consider ¢ e Top,(W)(X, ¥) and
represent @ by a map f: X — Y. We have X = X;+X,, ¥ = Y,+Y,, where
X, YK and X,, Y,<L. PutX = X, nf"(¥). Then X = Xy + X+ X+
+X,,, and f induces maps f;;: X;; = ¥;. Using (1)-(4) it is a routine business to
verify A o sS([f;]) = sS([f;;]). Since the functors 4 and sS([-]) commute with
sums, we obtain A o sS([f]) = sSfD.

4

‘(IV) Proof of 2.5. Let T,,;: C,,(W*) — Sh(W) be a category isomorphism
satisfying (T1) and (T2). If F: C,(W*) - Sh(W) is another functor satisfying (T1)
and (T2), then G= Fo Ty, : Sh(W) — Sh(W) is a functor satisfying G o S = S. It is
sufficient to show that G = 1. Consider compact Z-sets X, ¥ in ¥ and an arbitrary
@ eSh(X, ). Since W is large, ¥ has a Pol,-expansion p: ¥ — ¥ = {¥,, p, L}
such that each Y, is homotopy dominated by a compact Z-set K, in W. Choose
U, éTop,,( Y,, Ka) and d, e Top,(K,, Y,) such that d,u, = 1. The morphism p con~
sists of a family of homotopy classes p, € Top,(¥, Y,), o€ L. For any o€ L, there
exists fe Top,(X, Y,) such that S(p.)® = S(f); hence S(up)® = S,f). Ap-
plying G we obtain

S(upa) G(P) = GS(Uep) G() =

Thus S(p)G(P) = S(d,)S(uyp,) G(®) = S(d)S(u,p)P = S(p)P. We now have
proved S(p) o G(®) = S(p) o D; it follows from the continuity theorem (cf. [15],
§23 Theorem 6) that G(P) = . Thus G = 1.

) Proof of 2.6. It is again sufficient to show that any functor G: sSh(W)
— sSh(W) satisfying G »sS = 5§ is the identity. Consider compact Z-sets X, Y
in W and an arbitrary @ esSh(X, Y). By 2.1, there exist compacta X resp. L homo-

GS(u.f) = S(u.f) = S P, P-

icm°®
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topy equivalent to X resp. Y. We choose homotopy equivalences u: X — K and
v: Y - L. There is ¥ e sSh(K, L) such that sS([v]) o ® = ¥ o sS([u]). Tt is well-
known ‘[5], [6] that there exist a compactum'M and maps f: K — M, i: L - M
such that 7 is a strong shape equivalence and sS([i]) o ¥ = sS([f]). Since W is
universal, M is homotopy dominated by a compact Z-set Z in W. Choose maps
ri M—Z and s: Z— M such that [sr] = 1. We obtain sS([rio])® = sS([rfu]).
Application of G gives sS([riv]) G(®) = GsS([riv]) G(P) = GsS([rfu]) = sS([rful)
= sS([riv])®. Since sS([riv]) bas a left inverse in sSh, G(®) = &. Thus G = 1.

(VI) Proof ot 2.8. We shall show that Wx Q is universal; then 2.8 follows
from 2.5, 2.6 and 2.7. Since W is a paracompact p-space, there is a proper map
J: W — M onto a metrizable space M. Thus there exists a compact zero-set Kc W
(e.g. K = f~(x) for an arbitrary x € M). If X is a compactum, we choose a copy
X" of X which is embedded as a Z-set in @ and define X’ = KxX"'. X' is a com-~
pact Z-set in Wx Q which homotopy dominates X. Thus Wx Q is universal.
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On the Baire order problem for a linear lattice of functions
by

Takeshi Ohno (Shizuoka)

Abstract. Let a be a linear lattice of real valued functions containing the constant functions
and By(a) be the first Baire class of functions generated by a. Denote by A the smallest complete
ordinary function system containing a. Then it follows immediately that a @ 4 < Bi(a) [3]. Here
we show that (1) the condition (x) given by Mauldin in (13], Th. 4.1) is a necessary and sufficient
condition for Bi(a) = B;(Bl(n)), and (2) 4 = Bi(a) iff 4 satisfies D-condition.

1. Introduction.” Let X be a nonempty set and R¥ be the set of all functions
from X into the set R of real numbers, forming the lattice ordered R-algebra
structure under operations defined pointwise. Let H<R¥. Then B;(H) (the first
Baire class of H) is the family of all functions in R* which are pointwise limits
on X of sequences from H, B,(H)= B,(B,(H)) and in general if «>0 is an ordinal
then B,(H) is the family of pointwise limits of sequences from |J ByH). If o is

p<a

the first uncountable ordinal then B(H)= B,,(H)= B, (H), and B(H) is
called the Baire class generated by H. H, denotes the family of ail functions in RX
which are uniform limits on X of sequences from H, LS(H) (resp. US(H)) the
family of all fe R¥ which are pointwise limits of increasing (resp. decreasing)
sequences from H and H, the subset of H consisting of bounded functions.

A subspace H of R¥ is called an ordinary function system if it is both a linear
lattice and algebra which contains the constant functions, and which is closed under
inversion (if fe H and f>0, then 1/fe H). An ordinary function system H is
called complete if it is also closed under uniform limits. If A is a linear lattice con-
taining the constants, then B,(H) is a complete ordinary function system (See [3]).
In [3] Mauldin proved the following.

TreorREM ‘1.1, Let a=RX be a linear lattice containing the constants and A be
the smallest complete ordinary function system containing a. Then the Sfollowing hold:

(1) aca, = (LS(@) n US(a))=4<By(a) = By(d).

@) (@)y=dy = (LS(@ n US (@)

For a discussion of Baire functions see Mauldin [2] and [3}.

Let HcRX be a linear lattice containing the constants, and Let E} denote
the dual space of linear space H, with the norm ||f]| = sug 1f(x)|. Let g Hy. Then

x€
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