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Polyhedral-shape concordance implying
homeomorphic complements

by

Vo Thanh Liem

Abstract. If two compacta X and Y satisfy the inessential loops condition in the interior of
a piecewise linear m-manifold M, m > 6, and are shape concordant in M, and if X has the shape
of a compact k-polyhedron, k¥ < m—3, then M— X is homeomorphic to M— Y.

A compact subset X of a manifold N satisfies the inessential loops- condition
(abbreviated ILC) if for each neighborhood U of X, there is a neighborhood ¥
of X such that each loop in ¥—X which is null homotopic in ¥ is null homotopic
in U~X. Throughout the paper, I = [0, 1].

Two compacta X, and X, (satisfying ILC) in the interior of a manifold M is
said to be (ILC) shape’ concordant if there is a compactum Z (satisfying ILC) in
MxI such that X;x{i} =Zn (Mx{i))c-Z is a shape equivalence for -each
i = 0, 1. Similarly, if X, X and Z are polyhedra in the corresponding PL manifolds,
we can define the notion of polyhedral concordance. ’

Sher has proved in [S] that “If X and Y are ILC compacta in a PL manifold
M™ (@M = @ and m > 6) and ILC shape concordant in M by Z, and if X has the
shape of a k-polyhedron (k <m-—3), then M— X< M— Y.” In this note, we will
show that if X and ¥ satisfy ILC in M and are shape concordant, then M—X is
still homeomorphic to M~ Y without assuming that Z satisfies ILC in Mx[I
(Theorem 3.4).

For standard notions and notations in piecewise linear - (abbreviated PL)
topology as: simplicial collapse, PL homeomorphism, ambient isotopy, singular
set S(f) of a PL map f, derived neighborhood, boundary 9Q of a PL manifold @,
Fio N, Intg N, ..., we refer to [Hd). Given an open subset W of 8Q, by an open
collar of W in O, we mean the image of a2 PL open embedding .h: Wx[0,1) > Q
such that A(x,0) = x for all xe W. If Q is a PL manifold, { denotes Q—aQ.

We will suppress the base points from our notations of homotopy groups.
If (X, A)=(Y, B), the homomorphism m,(X, A) — n(Y. B) will be the inclusion-
induced one if it is mot specified otherwise. :

We assume that the reader is familiar with the fundamentals of shape [B] and
ANR-systems [M-S].


GUEST


218 Vo Thanh Liem

In the following, we will use the same notation for a PL space and its underlying
space if there is no danger of confusion. For a polyhedron X, by writing X", we
mean dimX = r.

§ 1. An embedding theorem. The central result of this section is Theorem 1.4
which is a more general form of Theorem 8.2 in [Hd] and is a tool for the proof
of our main result, Theorem 3.3.

First, we will prove some technical lemmas needed for the proof of Theorem 1.4.
Let us define some notations. Given an integer ¢, for each integer k < g—3, define
by induction a sequence {#o, Ny, - Mit: Mo =7y = 1, 1y = 14y if 1 <j<<g—3.
Set 1, = fo+ny+ ...+, Define po = po(k) = r, and pyoy = p—n;, j=0,..
v k—1.

Lemma 1.1 (Engulfing Lemma). Let Q7 be a PL manifold and R*™* a compact PL
submanifold of 8Q. Assume that Uy> Uy > ... D Uy is a sequence of open neighbor-
hoods of R in Q such that for each i =0,1,2,...k and j =1, ..., po(k), the
homomorphism ;, R - 7(Uj—y, R) is trivial, and let V be an open collar of R
in Uypy If X and Y are compact subpolyhedra of f],‘om OR and v, respectively,
such that dim(X—R)<k and dim(Y—R) < where k, 1< q—3, then there is. a PL
homeomorphism h: Uy — Uy, fixed-on 83U, v Y and outside a compact subset of U,,
.such that Xch(V). ‘

Proof. Let Z (X n ReZ<V) be a compact subpolyhedron of X and .write
K=@XuUY)=R,L=(Zv Y)—R. Then, K—Lis a compact subpolyhedron of
Uyopy< Uy and Lo 7. We only need to show that there is an ambient isotopy A,
of Uy (0<t<1), keeping L and outside a compact set of U, fixed, such that
h(P)oK.

The proof which is similar to that of Theorem 4.2.1 [R] will be by induction
on k = dim(K—L). The following is an outline of the proof. Let (K, L) also denote
a simplicial triangulation of (X, L) and let K¥ = LU {0 ¢ € K, dimo < i}.

Here, we deform 7 in U, to engulf X', then in U, to engulf K, Assume
ithat the lemma has been prove for all i<k and we already deform V in U, to
engulf K%Y, For convenience, we can assume that K¢ Ve e U,,. Write X,
=K®-g®D and K, , | = K, n K&,

From the triviality of m(U,,, R) = (U, -y, R), it follows that my(U,,, V) -
" m(Uy,_y, V) is trivial; therefore, we can define a map ¢: (K, xI) u (Kx{1}) —
«— U, _; such that OKyr—1xDV, @(x,1) = x for all xe K and e(x,0)e v
for all x e K,. Then, by approximating ¢ if necessary, we can assume further that
there is a simplicial triangulation (S, T) of ((KixI)u (Kx {1, B x-i xD v
“u (Kx{1})) and O, of Q such that SMT, ¢ is a nondegenerate simplicial map,
and  dim(S(pfo U 1)) <dimo+dimc—g for all simplices ¢ and ¢ of S. Let
I=U{S(ple vo)io,teS; dimo = k+1, dimt = k}=S. Then, dimEZ<k—2
(zefer to p. 152 [R]). Now, since §'x T, there is from Lemma 7.3 [Hd] a subcomplex A
of § with A>3 and dimdA<k—1 such that SXA U T\T. Then, by induction
hypothesis, we can first deform ¥ in Um‘_l_,,k = U, to engulf @(4vT), then
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@(S™), containing ¢(Kx {1}) = K, by pushing out the deformed ¥ in U/, along
the image under ¢ of the collapse S A u T, where S™ denotes the k-skeleton
of §. The proof is complete.

The following is a relative version of Lemma 7.3 [Hd].

LemMa 1.2. Let L be a compact PL subspace of a PL manifold M and N a regular
neighborhood of L in M meeting OM regularly. If X* is a subpolyhedron of N such
that X 0 0M <L n M, then there is a subpolyhedron T of N such that X <T,
TnoMcL oM, dimT<x+1 and NNT U LN L.

Proof. Write 4 = N M and C a regular neighborhood of A in N. Then,
there is a PL homeomorphism f: C = 4 x [0, 2] with f(x) = (x, 0) for x € 4. For
each i= 1,2, let 4; denote the simplicial triangulation of Ax[0,] whose
0-skeleton A{” is the set 4?x {0, i} (refer to Lemma 1.4 [Hd]); O, the subspace
of 4; with 0 = 40~ (L®x{i}); and P, = f~1(Q)). Since X n ML n M,
without loss of generality, we can assume that N—P,>X u L. We will show that
NNN—-P; and N—P; & N by a PL homeomorphism, say h, fixing N—P, (in
particular X U L). Then, the lemma will follow.

First, we show that N\ N—P,. Let By, ..., B, be the simplices of A—L in order
of decreasing dimension. By use the PL homeomorphism f above, we only need
to prove that there is a composite of elementary collapses ([Hd], p. 42): O, W\ ¢
WML NCW, = FrQ; where W= Fr0, u(0,—(8, u..u B)x[0,1]). We
will prove by induction on j<r. For j = 1, write B; = ¢ * 1 the join of ¢ in L
and tin 4—L (o = @ if B, n L = &). Observe that Q; n (B, x[0, 1)) is a PL
cell having B, x {0} as a free face; so, we have an elementary collapse O, “W,.
For the inductive step, observe that B;.,x{0} is a free face of the PL cell
Q1 0 (Bj;x[0,1]) in Wj; hence, W\ Wj,y. '

Second, write P,, = P,—P;. Define

h: P - (AP —L)x {1, 2)) u L@ % {0}

by (1) &(@,0) = (v, 1) if e AV —L?; 2) h(v,2) = (¢,2) if ve AP —L®; and
3) h(v,0) = (v, 0) if v e L®, Then, there is a simplicial triangulation R of P,
with R = (4P ~LY x {1, 2}) u (L x {0}) such that we can extend / linearly
over each simplex of P,. Then, extend h via identity over N—P,.

Finally, from Lemma 7.3 [Hd], there is a subpolyhedron T, of N such that
dimTy <x+1, X—LcT, and NNTyuLNL. Define T = h™Y(T,), then NN
NN-P,NAYT) UL =T ULNL. Since i keeps X U L fixed, X—LcT. There-
fore, the lemma is proved.

LeMMA 1.3. Let Q7 be a PL manifold and R*™* a compact PL submanifold of 3Q.
Assume that Uy> Uy > ... DUy, k< g—3, is a sequence of open neighborhoods
of Rin Q such that for eachi= 0,1, ...,k j=1,2, ..., uo(k), the homomorphism
7y (U;, R) — my (Uj— g, R) is. trivial. Let X* and C be compact subpolyhedra of
U,,o(g) U R such that CNC n RcR. Then, there is a compact subpolyhedron C’
8 — Fundamenta Mathematicae CXXV. 3
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of U, such that

() 1 CuXeC'NC'nReR,
and . '
@ , - dim(C'~C)<k+1 .

Proof. Let Z = X~ C. Then, dim(Z n C)<k—land CuX = CU Z. Now,"

since Z n C and C ~ R are subpolyhedra of C with CN\C n R, it follows from
Lemma 7.3 [Hd] that there is a'subpolyhedron 7" of C containing (Z ~'C)—(C ~ Ry
such that . CN(C N R)UTNC A R and that dimT'<k. Consequently, Cu X
=CUZN(CARUY, where ¥=TuZcU,
<max{dimT, dimX} < k.

From Engulfing Lemma 1.1, for a given open collar ¥ of R in Uporry» there is

a PL homeomorphism'4: U, — Uy, fixing 8U, and outside a’compact subset of U,

such that Y<h(¥). Consequently, ((C U X) nR)UR™Y(Y) is a compact sub-
polyhedron of ¥, Therefore, there is-a compact PL submanifold P?~! of R such

that (CUX)NRcP and [([CUX)NRJUA™ 1(Y)cWh.IntQN where N is.

a regular neighborhood of P in ¥ that meets aV regularly. So, [(Cu X)nR]u
v Ych(W)ch(N).

- . By pushing out (W) along the collapse C U XNTYU (C N R), we can obtamf

a PL homeomorphism g of U,, fixing dU, v ¥, such that C'u Xcgh(W)t:qh(N)
Let N, be a second derived neighborhood of P U C in IntUO(Jh(N)) Then, N;NP U
U CNP sinte CNC A RcP; hence, N; and gh(N) are regular nei ghboxhoods

of P in U, with N;cInty,(gh(N)) and both meet 8, regularly ({Hd], p. 65).

Therefore by Corollary 2.16.2 [Hd], (p. 74), gh(N)~Ny is PL homeomorphic to,
(FonNl)x I. Consequently, gh(N) N;\P u C.
From Lemma 1.2, there is a subpolyhedron S of gh(N) such that

gh(NYSP U Cu SNP UL CNP, XcS, SnalycP, and dimS<k+1.

Finally, define C' = CU S, then C"™N(CUS)NP = C"m P=C" nRcR
since the above collapse leaves Pc]{ fixed; and it is clear that dxm(C' C) < dimS
< k+1. The proof is ‘complete,

For convenience, let us define some notations. Let s, q be integers such that’

m< g—3. Define s, = u0(1)+u0(2)+ - #o(2m—g--1), and inductively §,,; = 5,~
—po(2m—~q+1—i) for each i = 1, 2m q+1 Observe that s,,,-, = (1) and
Sam— —g+1 = 0.

THEOREM 1.4. Let Q" be a PL manzfolcl and R a compact PL submanifold
of 8Q. Assume that R has a sequence of open neighborhoods Uy= U2 Uy ... 2 Uy,
in Q such that for each i < 2m—q-+1 and for each J=1,2,..,5, the homnmorphlsm

7Ujs R) = w(Uj=y, R) is trivial. Let M™ be a compact PL manifold (m<q—3).

such that the pair (M,3M) is (2m—q)-comnected, and Si (M, M )-—> (Usys B,

a continuous map. Then, f is homotopic to a PL embedding ¢ :-(M, OM)— (U, U R R
via a, homotopy of pairs (M xI,0M xT) — (Up; R). -

oty V R. Observe that dim ¥

icm°

Polyhedral-shape concordance 221
Proof. By usmg collars of R and 00 in'R and @ respectively, we can
homotope f to a-map g: (M, M) — (@, R) such that g (M) Q.- Moreover, - by

general positioning, we can assume that f is in general posmon and nondegencrate
In partxcular,

dim(S(f) nM)<2m q.

Let Xo = S(f)—aM. By Theorem 7.8 {Hd], there‘ls a compact "PL ‘subspace.C
of M such that X, CNC A oM and dim C < 2m— ~g+1. So, dimf(C) < 2m—g+1
<m<q—3. By Lemma 1.3, there is a compact PL subspace D of . -U,, such that
f(C)c:D\D A RcR and dimD < 2m— ~g+2. By General Position Theorem 4.6
[Hd], there exists a PL homeomorphism #: U,; ~ U,, realized by an amblent
isotopy such that o

(@) 7 = id on f(C) U 8U,, and outside a compact subset of U 0 and

(b) dim{[r(D)~(f(C) v aU,‘)] r\f(M)}<(2m q—l—2)+m q<2m q 1
since m—q < —3.

Therefore, f~*(7(D)) = CU X U Y where dimX'< 2m g—1 (because £is non-
degenerate) and Y<aM.

Define Cy = C, D, = h(D), X1 X and Y1 =Y, Suppose by mductlon
that we have found PL subspaces C;, X;, Y, of M, and D of U_,, such that

1); Xo=CN\Cyn oM, | : : N

@) DDy~ ReR, and

(3 f7ND) = C; L X, U Y, where dlle<2m —g—i and Y,caM
Then, by Lemma 7.8 [Hd], there is a compact PL subspace Ci.,_ch such that

(@) C,uX,cCiyyXCioy NOM, and " | R L TS PR i

B dim(Cyyy~C)) S 2m—g—i+1.

By Lemma 1.3, there IS a compact PL subspace b of U3| —po(Zm—g—i+1)
= Uy,, such that

‘(*) Dy Uf(Cre)eDND ARcR, and
(%) dim(D—D;) < 2m—g—i+2.

By General Position Theorem 4.6 [Hd], there is a PL homeomorphlsm gt Uy, =
Uy,,, realized by an ambient isotopy such that

s
i

(@41 9 = id on f(C,, ) L 8U,,,, and outside a compact subset of Uj,,;, and
®)i+s dim{[g (D)= ((Cisc) © 0V, )] N S(M)} < 2m—~q—i+2)+m—gq
< 2m—q—i—1 by (x*). (Observe that D,r:f(CHI) ) 6U,m by (3)1 and @ a.bove)
Define D,,.; = g(D). Then, f~1(D,,,) can be written as C;,; U Xj4; U Visy
where Y., =0M and dimX;,, <2m—g—i~1 by use of (b)is and the non-
dcgeneraoy of f. Therefore, the proof of the mductwe step is complete
Observe that if we define k = 2m—gq+1, then X, = 4] and f I(Dk) Cy U Y,“
where Y, <M and D, U, Therefora, S(leC,u oM, Ck\ C,‘ oM, Dk\ Dk
A 0U, so that f~Y(D, U 8Q) = C; U oM.
2

N
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Now, the rest of the proof is the same as the corresponding part in the proof
of Theorem 8.2 [Hd] (pp. 179-180). For the sake of the completeness, we include
here an outline of the proof. Let P be a PL submanifold neighborhood of f(0M)
in 8Q such that D, n 8Q<=P; hence, D D n P. Let K and L be triangulations
of M and Q so that f: K — L is simplicial and C, D, are triangulated as sub-
complexes. Let Ny = NOM U C,, K”) and N, = N(P u D,—0P,L") (the sim-
plicial neighborhood of P L Dy mod &P, [R]) where K'" and L' are the second
derived subdivisions of K and L. Then, f~1(Np) = Ny, Ny = 0Mx] and N,

= (PxD)(y,0) = (y,1)lyedP, tel] (refer to [R], p- 25). By use of these
product structures and adjoining to each an inner collar or an inner pinched collar,
we ‘can construct homotopies F,: M — M and G,: @ — @ with the following
properties: F = idy, Fy is a PL homeomorphism M — M—N,, F(dM)<=N; for
all t; Gy = idg, G|@—N,: Q—N; —~ Q@ is a PL homeomorphism and G, carries N,
into P, G, keeps dP fixed and G(3Q) = 8Q for all £. Then, g = G, fF G, fFy=~
~ G,fF, = f; consequently, ¢ is a required PL embedding. Therefore, the theorem
is proved.

§ 2. Some technical lemmas. In this section, we will prove some results about
homotopy groups that will allow us to use Theorem 1.4 in the proof of Theorem 3.3
later. i ' :

For the notions of the homotopy groups, the homotopy exact sequences, ... of
triads, we refer to [H]. Given two triads (X; 4, By=(Y; C, D), the homomorphism

7 (X; A, B) » n(¥; C, D)

will be the inclusion-induced one if it is not specified otherwise.
For a map f: K — Y, its mapping cylinder is defined to be

M(f) = (KX [0’ 1]) Ust

where (x, 1) is identified with f(x) for each x € K. Given two maps f: K— Yand
g: K- X with YcX, if H: forg is a homotopy from f to g, let J: M(f) - M(g)
be the map defined by

[x, 2] if z = (x,) e Kx[0,%),
J(z) = {[H(x,2t=1)] . if z = (x, 1) e Kx [}, 1],
] if zeY.

Observe that J,: nq(M (N K)~ nq(M (g), K) is an isomorphism for each ¢ if
Y=X '

Lemma 2.1, Let Z be a compactum having the shape of a finite complex K. If
Z is contained in a PL manifold M, then there is a sequence of compact-PL-manifold
neighborhood U oU,> ... of Z, and a shape equivalence {f.}, where f,: K- U,,
such that the induced Komomorphism Jy: w{M(f,+0), K) —» (M (f,), K) is a zero
map for each n=1,2,...and ¢ = 0,1, ..

icm
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Proof. Referring to [M-S], we can define a sequence {U,} of compact-PL-
manifold neighborhoods of Z that is an ANR-system associated to Z, and a shape
equivalence {f,}: K — {U,} with a shape inverse {g,}: {U,} - K since K is a com-
pact ANR. Moreover, we can assume that g,f,~idg and f,g,+;2i: U,y <0,
for each n. Therefore, for each ¢ and »n, we have the following: "

(Fnde
@ 0~ n(K)—>n(U,) ~ n,(M(f,), K) - 0 is exact, and
®) Im[r,(U, 1) = 7U,)] = Im[(f;)s: 7,(K) = 7, (U,)], Now, from the follow-
ing commutative ladder )

Tnsadw .
0 -+ nq(K) 'n:q(.Un+1) =+ ﬂ:q(M(.f;l-l-l)a K) _)0

ide Je

0 = 7, (K) — s 1 () > m(M(£,), K) >0,

using (a) and (b), we can prove that J, is trivial.

Lemma 2.2. Assume that {U,}, K and {f,} are defined from Lemmé 2.1. Let r be
an integer and P a subcomplex of K so that my(K, P) = 0 for all j<r, Then, for each
n=1,2,.., the map Jy: m(M(fys1), P) = n{M(£,), P) is trivial for all j<r.

Proof. For each n, it follows from the homotopy sequence of the-triple
(M(f,), K, P) that the homomorphism m{M(f,), P) = n(M(f,), K) is an isomor-
phism for all j<r. Therefore, J} is trivial since J,, is trivial by Lemma 2.1.

The following lemma, which will be used in the proof of Lemma 2.4 below,
is a shape version of Lemma 12.3 [Hd].

LeMMA 2.3. Let K* be a compact subpolyhedron of a PL manifold M™. Given
an integer r> 0, and a sequence of open neighborhoods Uy> Uy > ... 2U. 2N of K
such that for each j<r the homomorphism N

vyt 1(Ui—K, N=K) » 5(Us_;—K, N—K)

is trivial for each i=1,..,r, then the homomorphism n;U,; U,—K,N)—
n(Uy; Up—K,N) is trivial for j<r+m—k—1. .

Proof. Following the proof of Lemma 12.3 [Hd], let f: (B'; F,, Fy)—~
U,; U~K,N) be a nondegenerate PL map represénting an element of
n(U,; U,—K, N) where F, and F, are PL (j—1)-cells such that Fy n F, = 0F;
= OF, and that F; u F, = dB’. Using a homotopy if necessary, we can assume
that (B < U,. o ‘

Define X = f~1(K). Then, X n F; = @ and dimX <j+k—m. Let F, be the
closure of the complement of a closed PL collar of 8F, in F,. Since B!\ F,, there
is from Lemma 7.3 [Hd] a subpolyhedron C of B such that XcCNC n F, and
dimC <j+k—imm+1<r. Let P be a subpolyhedron of C such that P n X = 3,
C—f"YN)clnteP, f71P)n 0B =G and (flO)"Y(fP)) = P. Let Py = FrcP,
then f(P)cU,—K and f(Py)cN~—K. .
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Now, by ‘iise. ofqthe triviality of 7,’s, wé can construct by 1nduct10n on the
skeleta' of f(P) a homotopy (rel. f(Po))H Sf(P)XI = Uy—K such that H ,0 =
and H(y, e ‘N—K for each yE f(P) Then, extend -H over f(C) via. the 1dcnt1ty
By use - of f~1(P)\ 0B @ and with care, we can extend the homotopy H.f| [C
to a homotopy f~g (B; -Fy, F5) — (Uy; Uy—K, N)-such that '

(1) g7HK) =f"}(K), and (2) g(CO)=N.

let. Rbe a second denved neighborhood of F; U C in B with Rn F, =0
and g(R)<N. Smce F,UCNF,, Ris a j-ball in B with R N 0B is its face. So,
there is a strong deformation retraction f: B — B—R. It follows that f~gogf:
(B; Fy, Fy) = (Uy;, Uy—K,N) with gB(B)cUy— K. So,-f represents the zero
element of m(Up; Uy—K, N) ‘

LevMA 2.4, Let L* be .a compact subpolyhedron of a PL manifold M™ with
k<m—3 and dim(L '~ OM)<k-1. Given an intéger r, set.a = 2" Let Uy>
U,o ..2U, be a sequence of open neighborhoods of L such_ that, for each
i=1,2,..,0¢ and j=0,1,...,7, the homomorphism m,U,, L) — n{U;_,L) is
trivial. Let N = Inty W where W is a regular neighborhood of L in U, meeting 0U,
regularly.. “Then;  the inclusion-induced hotnomorphism = U, U,—L,N)

n(Ups Ug—L, N) and nyU,~L, N— L) n(Uy—L, N—L) are trivial for each
g<r+m—k—1, and j<r. . :

Proof. We will prove by induction. Define U(l) =-Uy, wherep =0,1,2,..., 04
= ofr =2(2r)""%.  Inductively, UL = U " where p=0,1,2, 0, = ¢ y/2r
= 2(2r)’ ! Specially, Up = U§" where p=0,1,2;2and U = Uy, UP = Uyp,
U") U,. , ‘ .

' We will: show. that .

® T{UDS UD—L, Ny » n(US; UL =L, N)

is trivial for all < g, = t+m—k—1, p=1,2,.

For ¢ = 1, since k <m—3, the homomorphlsm 7z1(U —L,N—-L) - n(U;, N)
is an isomorphism for each i=0,1,...,2 Consequently, the homomorphism
%, (U,~L, N— L)——»nl(U, 1—L,N-L) is trivial for each i=1,2,. -+ % Ther,
applying Lemma 2.3 to each segment {Ulpr—r<i<pr} of {U)]j = 0,1,..,0}
(whzre p =1, 2 . “1) we can infer that the homomorphism

m(Uf.". U“»’—L N) = n U5 UL, —L, N)
is ‘trivial for each g<q; = 14m—k=1. .
Assume 1nduct1vely that the statement (x) has been proved up to ¢ = s and
q,<r+1 For each even integer p (0 <p <a,), by chasing on the natural ladder
cons1st1ng of the ﬁrst homotopy exact sequences of three consecutive triads

we; U(*’—L s ), (US4 U(s 1L, N) and (U(’) ,‘,’lz-—L N), we can show
that the homomorph.lsm ‘ ‘

nj(U(’)-L N-L) - A(U§‘12'~L, N-—L)

icm

“is trivial for each j<

is trivial for all ¢< ¢y = (gD +m—k—1 (= g, +1
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g;—1. Again, applying Lemma 2.3 to each’ segment
{UP12(p—1)r <i<2pr, i even)

of the sequence {UP|i =0,
the homomorphlsm

wes O} (where p = 1,2, ..., %.,,) we can infer that

n(U(s-H) U(s+1) L, N)-—)ﬂ(U(s“) U(:+1) —L,N)
‘y

= (s+1)+m—k~1). There-
fore, the proof of the inductive step is complete. :
Now, from the case ¢ = r, we have the homomorphisms

nq(Uu; Um—‘L? N) - nq(U‘z[Z; Ua[Z'*L, N)

and
. 7 (Uypas .
‘are trivial for all ¢<g, = r+m—k—1 (>r+1). Again, by chasing on the natural

ladder consisting of the first homotopy exact sequences of these three triads, we
can show that the homomorphism

[

Uyp—L, N) = n(Up; Us—L, N)

ny(U,~L, N~L) » n{U—L, N4L}

fis trivial for each j< r. Therefore, the lemma is proved. B ) B

LEMMA 2.5.‘(21) In addition to the hypotheses of Lemma 2.2, assume that there

is a polyhedron. Lo Uy o g such that f((P)=L and f,41: P — L is a homotopy equiva-
lence, then the -homomorphism n(U, .y, L) — n(U,, L) is trivial for each j<r.

(b) Consequently, if LeU, and N is a regular nezghborhood of L in IntyU,

‘where a = 2'+" as in Lemma 2.4, then for all j < r+m—k—1 Im(i; o) = Im(jo) where

Joi m(Up—L, N=L)—ny(Up, N) and i ;o2 n{U,, N)-)sz(Uo 5 N) are homomorphzsms
induced from the inclusions.

Proof. (a) Since f,, ofy 4y In U,,, by use of the naturahty of thé map J deﬁned
at the beginning of this section, we can assume that f|P = fosdlPe Now, for each
( = n,n+1, define a natural retraction Fy: (M(f)), P) — (Ui,L) by | .

Fil) = x if xeU,

Fp, 1) = f(p). if

Then, for each j = 1,2, ..., it follows from Five-Lemma that
! ' Fy: (M (f), P) = m(U;, L)

is an isomorphism. Therefore, from Lemma 2. 2 the homomorphlsm 11:1(17,‘+ 1 L)—»
w(U,, L) is trivial for each j<r. i

pelP and tel,
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(b) The lemma follows from using Lemma 2.4 and chasing on the following
commutative diagram:

w = 0(U,—L, N=L) — 5 n(U,, N) » 5(Uy; U,—~L, N) - ...

ix,0 0

Je
o = W(Uy=L, N=L)—=>7,(Up, N) = 1,(Up; Up—L, N) > ...

where the horizontal lines are the first homotopy exact sequences of the triads
U, U,—L, N) and (Uy; U,~L, N), and the vertical maps are inclusion-induced
homomorphisms. ) |

§ 3. Main results. In this section, we will state and prove the main result,
Theorem 3.3. All polyhedra will be compact.

Lemma 3.1. Let N be a regular neighborhood of a polyhedron K* in a PL
manifold M™, 0M = @& and k<m—3. If P* >N is a homotopy equivalence where
P is a polyhedron in N, then N—Ks 0Nx[0,1) = N—P.

Proof. Let us give an outline of the proof. Let ¥ be a regular neighborhood
of P in N. We will show that for all ¢

(1) n(N—V,0¥) = 0, and (2) n(N—V, dN) = 0.

Then, it follows from Theorem 7.11 [Hd] that dNx[0, 1) = N—V = N—P.
Therefore, the lemma will be proved.

To prove (1), observe that (N, P) = 0 for all i. Hence, from the proof of
Lemma 12.4 [Hd], it follows that T {(N—P, V—P) = 0 for all q. So,, n(N—V,aV)
= 0 since V—P = oV x [0, 1).

To prove (2), since = (N, V) T (N, P) = 0 for all ¢, and since &k <m—3,
by Engulfing Theorem 7.4 [Hd], we can assume that K< V. Similarly, let W be
a regular neighborhood of K in ¥ such that P< ¥, Then, by Corollary 2.16.2 [Hd],
N—W = 0N x I In particular, there is a strong deformation F: N— W xI—N—W
from the identity to a retraction F,: N— W - 8N. Let @: V—P — 3V be a re-
traction. Then, F)(N—¥xI) defines a strong deformation from N— ¥ onto ON.
Hence, (2) is proved.

The following proposition will be used in the proof of Theorem 3.3, and
generalized by Theorem 3.4 below. It is a stronger version of Corollary 3.4 [S],
but a special case of Theorem 4.1 [S]. However, we take liberty to include here its
simpler proof.

PROPOSITION 3.2, Let Ky and Kf be polyhedra in the interior of a PL mani-
Jold M™, m > 6, which are polyhedral concordant by a polyhedron L¥* 1, If k <m—3,
then M~K, = M—K,.

Proof. Fix an { = 0, 1. Let &, be a regular neighborhood of K; in M. From
Theorem‘ 8.7 (2) [C], there is a finite complex 0,o K, such that )

dimQ; = max{3, dimX} <m—3
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and the torsions of K;<L and K;c @, are equal. Therefore, by Theorem 24.2 [C],
there is a map ¢;: O; » N, such that @ QiiﬂgN,x{i}cNix{i} v L is a simple
bomotopy equivalence. Then, by Theorem 12.1 [Hd], we have the following com-
mutative diagram:

ot o

o, N;
v
\\ «/
Py

where P, is a subpolyhedron of dimension <k and Q, -+ P, is a simple homotopy
equivalence. Now, by Lemma 7.3 [Hd], there is a subpolyhedron T; of N; such
that NM K, U Ty = XN K, PicTy and dimT, <k+1.

Let L* = (Pox[—1,0D) u (Xox {0 UL U Xy x{1}) (P, x[1, 2)). Then, it
is straightforward to show that the inclusions Pox{—1}<L* and P, x{2}=Lt
are simple homotopy equivalences. Hence, M—P, & M—P, by Theorem 3.2 [S].

On the other hand, M—P; MK, for each i = 0,1, by Lemma 3.1 above.
Therefore, the proposition is proved.

THEOREM 3.3. Let K and Kf be polyhedra in a PL manifold M™ m>6 and
M = @. If K, and K, are shape concordant by a compactum Z and if k <m—3,
then M—~Ky, = M—K;.

SuBLEMMA. There is a homotopy equivalence g': Kox{0} — K,x {1} such
that if U is an open neighborhood of Z in M x I, then g' is homotopic to the inclusion
Ky x{0}=U.

Proof. By hypothesis, for each A =0, 1, the inclusion i;: K;x{A} > Z is
a shape equivalence. Since K; is a compact absolute neighborhood retract, there
is a map h: Z — K, x{1} defining a shape inverse of i;; consequently, the map
g’ = hiy: Ky x {0} - K, x {1} is a homotopy equivalence and the following diagram

Kx{1}

g' 2 U

://
Kox{0}

is commutative in the shape category for every open neighborhood U of Z in M x L.
Therefore, g’ is homotopic in U to the inclusion K, x {0} = U.
Proof of Theorem 3.3. By Proposition 3.2, we only need to show that K,
and K, are polyhedrally concordant by a polyhedron L of dimension at most k+1.
Let g: K, - K, defined by (g(x), 1) = ¢'(x, 0) where ¢’ is a map obtained
from Sublemma. Up to a homotopy, we can assume that g is a PL map. Let P_,
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= (K x 0P U (K x{1); P a simplicial triangulation' of the mapping cylinder
M(g) of g; and {4;]i = 0,1, ..., } the collection of all simplices of P~P_, in
-order of increasing dimension.’ P ]

Let U,oU;> ... be a sequence of compact-PL-manifold neighborhoods of Z
in M defining an ANR-system associated to Z. For each n, since g'=i: K,x {0}
«U,, there is a map f,: P — U, such that

@) f,|P-; = identity, and
(D) filx, tDeMxif xeK,, tel

‘Furthermore, by general positioning ([Hd], p. 102), we can assume that each.f, is
a-nondegenerate PL map. .

Observe that if v: P — Ky x {1} is the natural deformation retraction, then
#,0 = f..10; hence, f, and £,,, are homotopic in U, for each n. Consequently,
{f,} is -a shape equivalence since {f,v} is a shape equivalence. By choosing sub-
sequences, we can assume that the sequence U,o>U,> .., satisfies Lemma 2.1.
Set § = 2k+2—m. . ) )

Let us consider the sequence Uy U;> .. ® U1y, Where sp = uo(1)+
U2+ o+ po(2(k+ 1)~ (m+1)+1) (refer to Theorem 1.4) and where o = 2%°
(refer to Lemma 2.4). For each i = 0,1, ..., w, let w; = (w~1)(so+1)a. We will
homotope f,,, (rel. P_;) to map h: P — U, such that h(P)=Lc Uy, dimL < k+1,
Lo (Mxdl) = P_; and h: P — L is a homotopy equivalence. Therefore, X, and
X, will be polyhedrally concordant by L, and the proof will be complete.

We proceed by induction. For each i>0, let P, =P_, u {417 <i}: Then,
we will-use the following inductive statement: /i_, = Swo is homotopic (rel. P_,)
to amap #;: P — U,, such that there is a compact subpolyhedron L, of U,, satisfying
the following properties:

‘(@) dimL; < ki1,

®); L n (M x0l) = P_y,

(©); h(P)=L;, and

(d); ki Py— L; is a (simple) homotopy equivalence.

When i =0, Py = P_, U {point} and there is nothing to prove.

Assume that h; has been defined for some /< and let 4 = Ay4q. Assume
that dimd4 = r; then =(P,P) =0 for all g<r—1. Hence, it follows from
Lemma 2.2 that, for each ¢ <r—1 and j<w;, the homomorphism n(M(f)), P))
- m{M(f;~1), P,) is trivial; consequently, so is 7y(Uys L) = w (U, L), for
wq(M(fj):Pf) = TE,I(M(/‘lij),P,) = (U}, L) since Syl = vk (where Tyt Uy,
<U)) in U; for eachj< w; and since hylP; = hy|P;: Py - L is a homotopy equiva-
lence (see the proof of Lemma 2.5 (a)). : o ‘ :

" Let N'be a tegular neighborhood .of L, in U,, that meets: M x oI regularly.
For convenience, let FfN denote Frg, N. Then, since N-L; 2 FtN'x [0, 1) by
use of Corollary 2.16.2 [Hd], we- obtain: - S . i
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1) Im (@) =Im(j,) where
Jwt ”r(Uwr.-u_'Ns FrN) —» ﬁr(_Uw;—nn N), .
Iy TE,(UW,, N)~ nr(wa—u: N)

are inclusion-induced homomorphisms (refer to Lemma.2.5 (b));

. (2) nfUsy— N, FrN) = n(Uji-1),— N, FrN) is a zero map for each j<2r—
—(m+1)+1 (<r) and each A with w;_; <Ax <w,—a (from Lemina 2.4). Observe
that A takes s, different values, S ‘ ; : :

Now, consider I|A: (4, 4) = (U,,, N). By (a), there is a map o: (4, 8A)—
=+ (Uyymq— N, FrN) such that ge2h|(4, 84) in (Uy,,, N) and g(4) n (M x3I)
= @. Furthermore, by the property (2) and Theorem 1.4, there'is a homotopy
H: (AxT,04% 1)~ (U,,_,—N,FrN) from g to a PL embedding ¢: (4, 04)—
= (U, l——N » FIN). By use of the homotopy extension property, we can extend ¢
to a map §r: P — U, such that Y|P;hy|P;: P, — N and y(P) n (M xdl) = P_,.
Then, W|(P;u A): (Pyud)—>Nugp(d) is a (simple) homotopy - equivalence.
Now, since N L; and ¢(4) N N = ¢(4) n FrNeM x I, it follows from Lemma 1.2
that there is a subpolyhedron T.of M x I with dimT<(r—1)+1 = r<k+1 such
that TndMxI)eL;, ¢(4d) nNeT and NNL,UT. So, Nu o (ANL,uT U
U @(4) = L, say. Observe that L, satisfies (a),,, and (b);4,. Now, if 8: Nu
U @(A4) = Ly, is a corresponding strong deformation retraction, define %;.|P;,,
= OY|P,.y; then, using the homotopy extension property, we extend h,,; over
the whole P with h.;~hy~h_y in U,,_,. Then, A, satisfies (c);+; and (d);4;-
So, the proof of the inductive step is complete.

Now, define h = h,, and L = L,. Then, the properties (b), and (d), show
that L defines a polyhedral concordance between K, and K. Therefore, the proof
is complete.

THEOREM 3.4. Let X, and X, be compacta in a PL manifold M™, M = @ and
m = 6. Assume that Xy and X, satisfy ILC in M and are shape concordant by a com-
pactum Z< M x I If X, has the shape of a polyhedron K* k<m—3, then M—Xo~
~M~X,.

Proof. Fix an = 0, 1. From the proof of Corollary 1 of [I-8], there is
a polyhedron Kfe M (k< m-3) and a regular neighborhood N; of K; in M such
that X,= N, is a shape equivalence and N;—K,~0N,x[0,1) = N;—X;. Con-
sequently,

) M=X, M~K, .

Define Z" = (Ko x [—1, 0]) U (N {01 u Z U (Ny x{1}) U (K x [1, 2]). Then,
Kyx{~1}cZ* and K, x{2}=Z" are shape equivalences. Hence, K, and K; are
shape concordant; therefore, M~ K, & M—K; by Theorem 3.3. So, by (), M—X,
& M—Xy; and the proof is now complete.

Remark, With a little care, when 8M 5 @, we also can show that Theorems 3.3
and 3.4 also hold true if X, X, < M.
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L-space without any uncountable 0-dimensional
subspace

by

K. Ciesielski (Warszawa)

Abstract. J, Roitman in [Ro] posed the following question: “Under CH is every left separated
L-space of type w, 0-dimensional ?". The paper contains a negative answer to this question. The
construction gives also (unaer the assumption that there exists a cardinal » s.t. 2% = #%) an answer
to two questions of Arkhangel'ski} [Ar; Problems 11 and 12, p. 871: “Is every regular left separated
space 0-dimensional?” and “Does every completely regular space have a dense 0-dimensional
subspace ?”, :

Terminology and notation. Our terminology related to topology and set theory
follows [Enl] and [Ku] respectively.

A topological space Z is called left (right) separated if there is a well-order-
ing < of Z s.t. every initial segment of Z under < is closed (open).

hL(X) = sup{|Z|: ZcX is right separated}+w.

By an L-space we will understand a regular space which is hereditarily Lindelsf
and not hereditarily separable. Let us recall that a space X is heraditarily Lindelsf
if and only if AL(X) = w.

Let H(A, B) be the set of all finite functions from a set 4 into a set B and
let # be a standard countable basis for the unit interval I = (0, 1) not containing
the empty set. For ¢ & H(A, %) the standard basic set in I4 given by e is denoted
by [¢], i.e., [¢] = () {14\ % (e(a)*™: a e dome}.

For a family & of subsets of a set X let 7(#) denote the topology on X
determined by & as a subbasis,

Auxiliary lemmas. The first lemma is a generalization of the Hurewicz Theo-
rem [En2; Thm. 1.8.20, p. 81], that the Hilbert cube I is not the countable sum

of 0-dimensional subspaces. )
Let 9 be the family of all sets of the form Fx I where 4 € [0]® and F is

a 0-dimensional subset of I4,
Lemva 1. If D, e D for n<o then I® # ) {D,: n<w}.
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