230

icm[©]

References

- [B] K. Borsuk, Theory of Shape, Monografie Matematyczne, Tom 59, Polish Scientific Publishers, Warszawa 1975.
- M. M. Cohen, A Course in Simple Homotopy Theory, Graduate Texts in Mathematics #10, Springer-Verlag 1973.
- [H] S. T. Hu, Homotopy Theory, Academic Press, New York 1959.
- [Hd] J. F. P. Hudson, Piecewise Linear Topology, W. A. Benjamin, Inc., New York and Amsterdam 1969.
- [I-S] I. Ivanšic and R. Sher, A complement theorem for continua in a manifold, Topology Proceedings 4 (1979), 437-452.
- [M-S] S. Mardešić and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), pp. 41-59.
- [S] R. B. Sher, A complement theorem for shape concordant compacta, preprint.
- [R] T. B. Rushing, Topological Embedding, Academic Press #52, New York 1973.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ALABAMA University, AL 35486

Received 1 February 1984

L-space without any uncountable 0-dimensional subspace

by

K. Ciesielski (Warszawa)

Abstract. J. Roitman in [Ro] posed the following question: "Under CH is every left separated L-space of type ω_1 0-dimensional?". The paper contains a negative answer to this question. The construction gives also (under the assumption that there exists a cardinal κ s.t. $2^{\kappa} = \kappa^{+}$) an answer to two questions of Arkhangel'skii [Ar; Problems 11 and 12, p. 81]: "Is every regular left separated space 0-dimensional?" and "Does every completely regular space have a dense 0-dimensional subspace?".

Terminology and notation. Our terminology related to topology and set theory follows [En1] and [Ku] respectively.

A topological space Z is called left (right) separated if there is a well-ordering < of Z s.t. every initial segment of Z under < is closed (open).

$$hL(X) = \sup\{|Z|: Z \subset X \text{ is right separated}\} + \omega$$
.

By an L-space we will understand a regular space which is hereditarily Lindelöf and not hereditarily separable. Let us recall that a space X is heraditarily Lindelöf if and only if $hL(X) = \omega$.

Let H(A, B) be the set of all finite functions from a set A into a set B and let \mathcal{B} be a standard countable basis for the unit interval $I = \langle 0, 1 \rangle$ not containing the empty set. For $\varepsilon \in H(A, \mathcal{B})$ the standard basic set in I^A given by ε is denoted by $[\varepsilon]$, i.e., $[\varepsilon] = \bigcap \{I^{A \setminus \{\varepsilon\}} \times (\varepsilon(a))^{(a)} \colon a \in \mathrm{dom} \varepsilon\}$.

For a family $\mathscr F$ of subsets of a set X let $\tau(\mathscr F)$ denote the topology on X determined by $\mathscr F$ as a subbasis.

Auxiliary lemmas. The first lemma is a generalization of the Hurewicz Theorem [En2; Thm. 1.8.20, p. 81], that the Hilbert cube I^{ω} is not the countable sum of 0-dimensional subspaces.

Let $\mathscr D$ be the family of all sets of the form $F \times I^{\omega \setminus A}$ where $A \in [\omega]^{\omega}$ and F is a 0-dimensional subset of I^A .

LEMMA 1. If $D_n \in \mathcal{D}$ for $n < \omega$ then $I^{\omega} \neq \bigcup \{D_n : n < \omega\}$.

Proof. Let $D_n = F_n \times I^{\omega \setminus A_n}$ for $n < \omega$ where F_n is a 0-dimensional subset of I^{A_n} . We can choose a one-to-one sequence $\langle k_n : n < \omega \rangle$ s.t. $k_n \in A_n$.

Let $S_n \subset I^{A_n}$ be a partition between the faces $I^{A_n \setminus \{k_n\}} \times \{i\}^{(k_n)}$ (i=0,1) s.t. $S_n \cap F_n = \emptyset$ for $n < \omega$ and let $L_n = S_n \times I^{\omega \setminus A_n}$. Hence L_n is a partition between $W_n^i = I^{\omega \setminus \{k_n\}} \times \{i\}^{(k_n)}$ (i=0,1) s.t. $L_n \cap D_n = \emptyset$.

For $x \in [\omega]^{<\omega}$ let $I(x) = \{f \in I^{\omega}: (\forall k < \omega) [(\forall n \in x) (k \neq k_n) \to f(k) = 0]\}$. The intersection $L_n \cap I(x)$ is a partition in I(x) between $W_n^i \cap I(x)$ (i = 0, 1) for $n \in x$. Hence (see [En2; Thm. 1.8.1, p. 72]) $\cap \{L_n: n \in x\} \supset \cap \{L_n \cap I(x): n \in x\} \neq \emptyset$. So, the family $\{L_n: n < \omega\}$ of closed subsets of I^{ω} has the finite intersection property. The space I^{ω} being compact, $\bigcap \{L_n: n < \omega\} \neq \emptyset$. But

$$\bigcap \{L_n \colon n < \omega\} \subset I^{\omega} \setminus \bigcup \{D_n \colon n < \omega\}, \text{ and so } I^{\omega} \neq \bigcup \{D_n \colon n < \omega\}.$$

As an easy corollary to the above lemma we obtain the following Lemma 2. Let $K = \prod_{n < \omega} J_n \subset I^\omega$ s.t. $J_n = \langle a_n, b_n \rangle$ where $0 \le a_n < b_n \le 1$ for $n < \omega$ and let $D_n \in \mathscr{D}$ for $n < \omega$. Then

$$K \setminus \bigcup \{D_n: n < \omega\} \neq \emptyset$$
.

The next lemma is basic in our construction. We use the following notation: $\mathscr{E} = \{ \bigcup_{n < \omega} [\varepsilon_n] \colon \varepsilon_n \in H(\omega, \mathscr{B}) \text{ for } n < \omega \text{ and } \mathrm{dom} \varepsilon_n \cap \mathrm{dom} \varepsilon_k = \varnothing \text{ for } n < k < \omega \}.$

LEMMA 3. Let $D_n \in \mathcal{D}$ and $E_n \in \mathcal{E}$ for $n < \omega$. Then

$$\bigcap \{E_n : n < \omega\} \setminus \bigcup \{D_n : n < \omega\} \neq \emptyset.$$

Proof. Let $E_n = \bigcup_{k < \omega} [\epsilon_k^n]$ where $\operatorname{dom} \epsilon_l^n \cap \operatorname{dom} \epsilon_k^n = \emptyset$ for $k < l < \omega$ and $n < \omega$. Let $\langle k_n : n < \omega \rangle$ be a sequence s.t.

(*)
$$\operatorname{dom} \varepsilon_{k_n}^n \cap \operatorname{dom} \varepsilon_{k_m}^m = \emptyset \quad \text{for} \quad n < m < \omega.$$

Then

$$L = \bigcap_{n < \omega} [\varepsilon_{k_n}^n] \subset \bigcap_{n < \omega} (\bigcup_{k < \omega} [\varepsilon_k^n]) = \bigcap_{n < \omega} E_n$$

and by (*) there is a set $K \subset L$ as in the assumption of lemma 2. Hence

$$\bigcap \{E_n: n < \omega\} \setminus \bigcup \{D_n: n < \omega\} \neq \emptyset.$$

LEMMA 4. Let Y be a topological space with basis $\widetilde{\mathscr{B}}$, Z a 0-dimensional subspace of Y, s.t. $hL(Z) = \omega$ and \mathscr{B}_0 a countable family of open sets. Then there exists a $\mathscr{B}_1 \subset \widetilde{\mathscr{B}}$ s.t. $|\mathscr{B}_1| \leqslant \omega$ and

(*)
$$\forall U \in \mathcal{B}_0 \forall z \in U \cap Z \exists V [z \in V \subset U \& V \cap Z \text{ is clopen in } (Z, \tau(\mathcal{B}_1))].$$

Proof. Let $U \in \mathcal{B}_0$ and $z \in U \cap Z$. Then by 0-dimensionality of Z there exist open sets $V_1(z, U)$ and $V_2(z, U)$ s.t.

$$V_1(z,\,U)\cap V_2(z,\,U)=\varnothing\,,\quad Z\!\subset\!V_1(z,\,U)\cup\,V_2(z,\,U)\quad z\!\in\!V_1(z,\,U)\!\subset\!U$$
 and

$$Z \setminus U \subset V_2(z, U)$$
.

Moreover, by $hL(Z)=\omega$, we can choose $V_1(z,U)$ and $V_2(z,U)$ s.t. $V_1(z,U)$, $V_2(z,U)\in \tau(\mathscr{B}(z,U))$, for some countable $\mathscr{B}(z,U)\subset \mathscr{B}$. Thus $V_1(z,U)\cap Z$ is clopen in $(Z,\tau(\mathscr{B}(z,U)))$.

Let $Z(U) \in [Z]^{\leq \omega}$ be s.t. $U \cap Z \subset \bigcup \{V_1(z, U): z \in Z(U)\}$ and let $\mathscr{B}(U) = \bigcup \{\mathscr{B}(z, U): z \in Z(U)\}$. Then

$$\forall z \in U \cap Z \ \exists V \ [z \in V \subset U \& V \cap Z \ \text{is clopen in } (Z, \tau(\mathscr{B}(U)))].$$

Hence
$$\mathscr{B}_1 = \bigcup \{\mathscr{B}(U): U \in \mathscr{B}_0\}$$
 satisfies (*).

The example. The basic idea of our construction is taken from Hurewicz's example (under CH) of an uncountable space $X \subset I^{\omega}$ without an uncountable 0-dimensional subspace (see [En2; Example 1.8.21, p. 82]) and from the construction of an HFC-set from CH (see [Ro]).

THEOREM. Let us assume CH. Then there exists a left separated space $X \subset I^{\omega_1}$ of power ω_1 s.t. $hL(X) = \omega$ and without any uncountable 0-dimensional subspace.

Proof. Let $\tilde{\mathscr{Q}}$ be a family of all sets of the form $G \times I^{\omega_1 \setminus \alpha} \subset I^{\omega_1}$ where $\omega \leqslant \alpha < \omega_1$ and G is a 0-dimensional G_δ -set in I^α . Then $|\tilde{\mathscr{Q}}| = 2^\omega = \omega_1$. So, let $\langle D_\zeta \colon \omega \leqslant \zeta < \omega_1 \rangle$ be an enumeration of $\tilde{\mathscr{Q}}$ s.t. if $D_\zeta = G \times I^{\omega_1 \setminus \alpha}$ where G is 0-dimensional in I^α then $\alpha \leqslant \zeta$. Moreover, let $\tilde{\mathscr{E}}$ be the family of all sets of the form $\bigcup \{[\varepsilon_n] \colon n < \omega\}$ where $\varepsilon_n \in H(\omega_1, \mathscr{B})$ for $n < \omega$ and $\mathrm{dom} \varepsilon_n \cap \mathrm{dom} \varepsilon_k = \mathscr{Q}$ for $n < k < \omega$. Then $|\tilde{\mathscr{E}}| = 2^\omega = \omega_1$. So, let $\langle E_\zeta \colon \omega \leqslant \zeta < \omega_1 \rangle$ be an enumeration of $\tilde{\mathscr{E}}$ s.t. if $E_\zeta = \bigcup \{[\varepsilon_n] \colon n < \omega\}$ where $\mathrm{dom} \varepsilon_n \cap \mathrm{dom} \varepsilon_k = \mathscr{Q}$ for $n < k < \omega$ then $\mathrm{dom} \varepsilon_n \subset \zeta$ for $n < \omega$.

We define $X = \{f_t : \omega \leq \zeta < \omega_1\} \subset I^{\omega_1}$ s.t.

$$f_{\zeta}(\alpha) = \begin{cases} 1 & \text{for } \zeta = \alpha, \\ 0 & \text{for } \zeta < \alpha \end{cases}$$

and we choose $f_t \mid \zeta$ s.t.

$$(**) f_{\zeta} \upharpoonright \zeta \in p_{\zeta}(\cap \{E_{\xi}: \omega \leqslant \xi < \zeta\} \setminus \bigcup \{D_{\xi}: \omega \leqslant \xi < \zeta\})$$

where $p_{\zeta}: I^{\omega_1} \to I^{\zeta}$ is a projection. The point as in (**) can be chosen by Lemma 3 and the fact that I^{ζ} and I^{ω} are homeomorphic.

The properties of the space X.

(1) X is left separated.

Proof. Let $1 \in W \in \mathcal{B}$, $0 \notin W$ and $\varepsilon_{\eta} = \{\langle \eta, W \rangle\} \in H(\omega_1, \mathcal{B})$. Then $U_{\xi} = \bigcup \{[\varepsilon_{\eta}]: \xi \leqslant \eta < \omega_1\}$ is open and $U_{\xi} \cap X = \{f_{\eta}: \xi \leqslant \eta < \omega_1\}$.

(2)
$$hL(X) = \omega$$
.

Proof. Let us assume that $hL(X)>\omega$. Then there exists a sequence $\langle \varepsilon_{\xi}\colon \xi<\omega_{1}\rangle$ of elements of $H(\omega_{1},\mathcal{B})$ s.t.

(o)
$$X \cap [\varepsilon_{\xi}] \setminus \bigcup_{\eta < \xi} [\varepsilon_{\eta}] \neq \emptyset$$
 for $\xi < \omega_1$.

By the Δ -lemma [Ku; Thm. 1.6, Ch. II], we can assume that $\operatorname{dom} \varepsilon_{\eta} \cap \operatorname{dom} \varepsilon_{\xi} = \emptyset$ for $\eta < \xi < \omega_{1}$. Hence $E = \bigcup \{[\varepsilon_{n}]: n < \omega\} \in \widetilde{\mathscr{E}}$. Let $E = E_{\zeta}$. Then, by (**),

$$\{f_{\xi}: \zeta \leq \xi < \omega_1\} \subset E_{\zeta} = \bigcup \{[\varepsilon_n]: n < \omega\}.$$

So, there exists a $\xi < \omega_1$ s.t.

$$X \cap [\varepsilon_{\xi}] \setminus \bigcup_{\eta < \xi} [\varepsilon_{\eta}] = \emptyset,$$

contradicting (o).

(3) If $Z \subset X$ is 0-dimensional then $|Z| \leq \omega$.

Proof. Let $\mathcal{B}_{\lambda} = \{ [\varepsilon] \subset I^{\omega_1} : \varepsilon \in H(\lambda, \mathcal{B}) \}$ for $\lambda < \omega_1$.

By Lemma 4 we can define an increasing sequence $\langle \lambda_n \in \omega_1 \colon n < \omega \rangle$ s.t. $\lambda_0 = \omega$ and, for $n < \omega$,

$$\forall U \in \mathcal{B}_{\lambda_n} \forall z \in U \cap Z \ \exists V \left[z \in V \subset U \ \& \ V \cap Z \ \text{is clopen in} \ \left(Z, \ \tau(\mathcal{B}_{\lambda_{n+1}}) \right) \right].$$

Hence, if $\lambda = \bigcup \{\lambda_n \colon n < \omega\} < \omega_1$ then Z is 0-dimensional in topology $\tau(\mathcal{B}_{\lambda})$, i.e., $p_{\lambda}(Z)$ is 0-dimensional in I^{λ} . So (compare [En2; Thm. 1.2.14, p. 15]) there exists a 0-dimensional G_{δ} -set D in topology $\tau(\mathcal{B}_{\lambda})$ s.t. $Z \subset D$. But $D \in \widetilde{\mathcal{D}}$, i.e., $D = D_{\xi}$ for some $\xi < \omega_1$. Hence, by (**),

$$Z \subset D_{\xi} \cap X \subset \{f_{\zeta} : \omega \leqslant \zeta < \xi\}.$$

By the fact that every completely regular space of power less then continuum is 0-dimensional (see [Ro]) we obtain

COROLLARY 1. The continuum hypothesis is equivalent to the statement: "there exists an L-space without any uncountable 0-dimensional subspace"

Corollary 2. Let us assume CH. Then there exists a completely regular left separated space of type ω_1 without any 0-dimensional subspace of power ω_1 . In particular, such space does not contain any dense 0-dimensional subspace.

Remark. If we assume that there exists a cardinal $\varkappa > \omega$ s.t. $2^{\varkappa} = \varkappa^+$ then, using our construction, we can define a left separated space $X \subset I^{\varkappa^+}$ of type \varkappa^+ s.t. $hL(X) \leq \varkappa$ and without 0-dimensional subspaces of power \varkappa^+ . In particular, X does not contain dense 0-dimensional subspaces.

Our construction for $\varkappa > \omega$ differs from that for $\varkappa = \omega$ only in the proof of Lemma 1: for $\varkappa > \omega$ the proof is based on slightly different methods (see [Mi; Corollary A, p. 282]).

References

- [Ar] A. V. Arkhangel'ski'i, The structure and the classification of topological spaces and the cardinal invariants, Uspehi Mat. Nauk 33 (1978), pp. 29-83 (Russian).
- [En1] R. Engelking, General Topology, Warszawa 1977.
- [En2] Dimension theory, Warszawa 1978.
- Ku] K. Kunen, Set theory, Amsterdam 1980.
- [M1] A. W. Miller, The Baire category theorem and cardinals of countable cofinality, J. Symb. Logic 47 (2) (1982).
- [Ro] J. Roitman, Basic S and L, an article for "Handbook of Set-Theoretic Topology".

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY PKIN

00-901 Warszawa

Received 4 May 1984

^{4 —} Fundamenta Mathematicae CXXV. 3