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so enthilt jede andere Nebendiagonale mindestens 2 Elemente, die kongruent 0
modulo 2~* sind, deren Produkt also kongruent 0 mod 22¢7Y und damit auch

ol my
mf
die modulo 27! nichttriviale Nebendiagonale zu einer geraden oder ungeraden
Permutation gehort. '

(Fiir s = 1 ist die Determinante trivialerweise eine n-te Potenz.)

Falls fiir einen Primteiler p von ggT keine zwei Primpotenzanteile in der Folge
dtsr Drehnenner dieselben sind, bestimmt die Lage der nichttrivialen Nebendiagonale
die Permutation dieser Primpotenzanteile,

Im Zusammenhang mit Formel (3) folgt somit aus () und (B) die Aussage (2b)

des Satzes.

kongruent 0 modulo z* ist.

= & n-te Potenz mod 2, je machdem ob
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Embedding inverse limits of interval maps
as attractors

by

Michal Misiurewicz (Warszawa)

Abstract. We prove that the inverse limit of the map 4x(1—x) of the interval [0, 1] onto itself
can be embedded as an attractor into a C*® diffeomorphism of any manifold of dimensjon at least
3 and into a homeomorphims of any manifold of dimension 2.

1. Tnverse limits of dynamical systems. We start by recalling some topolo-
gical facts.

Let I be a compact space and T: I =T a continuous map. We may regard our
system (I, T) as an inverse system ... L1l 2 1 and consider its inverse Limit.

o0
It is a subset K of the product of an infinite number of copies of I: 111, defined as
o
K = {(t)%0: T(ty) = tyy forn=1,2, 3, .}

Denote by %, the projection of K to the nth coordinate: Y ((t)iZo) = t,. There
exists a unique map t: K — K such that ¥, o7 = To¥,forn=0,1,2,.. Itis
given by 7((t,)i%0) = {T(t:))iz0- Notice that since T(t,) = tu-1, the nth coordinate
of ((f,)o) is equal to £, (for n1). We consider K as a topological space with

©

topology induced by the product topology in []I. The map < is then a homeo-
: 1]

morphism. We call 7 the inverse limit of T. This notion is an analogue of the notion
of a natural extension of a measure preserving endomorphism.

If #: K — K is a homeomorphism and #: R — I a continuous map such that
@ o7 =T, ¥, then there exists a unique map &: K — K such that PoT =79
and ¥ = ¥, . ®. This & is continuous. Thus, the inverse limit is the simplest
homeomorphism having T as a factor. This property can be used as a characteri-
zation of an inverse limit, up to conjugacy.

2. Problems and resvlts. We want to embed an inverse limit of a continuous
map of an interval into itself into a diffeomorphism (homeomorphism) of a mani-
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fold onto itself, as an attractor. This means that for a given map of an interval
we want to find a diffeomorphism (homeomorphism) with an attractor such that
this diffeomorphism (homeomorphism) restricted to the attractor is topologically
conjugate to the inverse limit of our interval map.
Since there are several nonequivalent definitions of an attractor, we have to
say which one we choose. We say that a set C is an artractor for a map f: M — M if:
(i) there exists an open set UcM such that cl(f(U))c U and C = (')Of"(U),
nz

(i) fl¢ is topologically transitive.

Because of the condition (if), we need to consider only transitive maps of an
interval (an inverse limit of a map is transitive if and only if the map itself is transi-
tive). Hence the results of [1] are of no help here.

In this paper we consider the simplest transitive continuous interval map,
namely

- T: I~1, where I=1[0,11 and T(t) = 1—[2t—1].

We obtain the following results:

THEOREM A. The inverse limit of T can be embedded as an attractor into a C*®
diffeomorphism of any manifold of dimension at least 3. :

In fact, our example is even better than C* (see Section .

THEOREM B. The inverse limit of T can be embedded as an attractor into a homeo-
morphism of any manifold of dimension at least 2. ‘

‘ Clearly, the results are the same for all maps conjugate to T'(e.g. x > 4x (1 —x)).
Apart of some obvious modifications of the examples given here, the problem in
the general case seems to be more difficult (especially if the orbit of some turning
point is dense), but we do not consider it in this paper.

We shall construct two examples. The first one will be used to prove Theo-
rem A; the second one to prove Theorem B. ‘

The attractors of diffeomorphisms are studied often from the point of view
of ergodic theory. One takes the Lebesgue measure restricted to U, looks at its
images under the iterates of f and studies limits of subsequences of their averages,
In our example the limit of these averages is a measure concentrated at one
point. We show reasons why this phenomenon seems to be difficult to avoid.

3. Geometric description of the first example. We take a set
@ 4=[-1,1x[-%,4]=R%
Then we take a smooth map ¢: 4 ~ R? which is one-to-one on the set

® Ay = (=1, Dx[~$,4],

. iom®
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glues together the segments {—1}x[0,34] with {—1}x[~4%,0] anc} similarly
{1}x[0,4] with {1}x[—4, 0] (see Fig. 1). As a consequence, the points of the
form @(+1,1), te(—%,%), are interior points of ¢ (4).

Y

Fig. 1. The sets A and @(4)
Now we take a set
) ' B=Ax[-1,1]cR?
and define a map y: B~ R® by
) Yix, 3, 2) = (9(x,),2) -

Next we define a map g = (4, 9, gs); B— B and then f: W(B)_T Y (BY
will be its factor under . The map g is st}'etchjng in the di'recti('m of x axis (.the
graph of this stretching part is shown on Fig. 2) and leaves invariant the 'foha.txon
consisting of 2-dimensional leaves parallel to the y,.z-plane. In the dm?ctlons
of y and z axes the map is a contraction and is chosen in su(fh a way that g is one-
to-one and stays smooth after factorizing through . The lmage_s of the left an.d
right halves of B are shown on Fig. 3 (x and y directions) and Fig. 4 (x and z di-
rections). ) .

The details of the construction are given in the next section. I am g1v1§1g the
formulae instead of saying',there exists a C* map such that ...” even if the existence
of such maps (functions) is evident. This is because of two reasons. The first reason
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Fig. 2. The graph of g,
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Fig. 3. The image of g,
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Fig. 4. The image of g,
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is that I want to obtain a'map with the properties described in Remarks 1 and 2
(Section 7). The second reason is that I want to give an example which can be
examined also with computers (if someone finds it interesting to do s0) (M.

4. Details of the first example. We define a function o: R —» R by
1 for t< -1,

1 1
1—26xp<—i~t:—1) for t>—1.

a(t) =

It is a standard thing to check that ¢ is nonincreasing and of class C*.
Next, we define a function &: R R by £(2) = %[a(a(——St))—a(a(St))].
Levma 1. The function & has the following properties: )

(i) & is nonincreasing,

@i) ¢ is of class C®,

@) £@) = 1 for t<—%

Gv) £¢) = <1 for 124,

(v) & is odd,

(vi) —16<&()<0 for every t.

Proof. (ii) follows from the definition of & and smoothness of .

To prove (jii) and (iv), notice that if #>1 then o(f)<o(l) = —1 and a{a("))
—1 and if t<—1 then o() =1 and o(c(®) = () = —1. Consequently, if
t<—1 then £() =1[1—-(=Dl=1 and if t»L then &() = H(-D-11= —1.

(v) holds since &(—1) = %[a(zr(St))—a(a(—St))] = —£&(1).

To prove (vi), we have to make some computations.. Since o' is nonpositive,
(o o )" is nonnegative, and consequently & is nonpositive. For t<—1, ¢'(z) = 0.

For t>—1 we have:
o'(t) = —2exp <1 - -—1—>('1—->z,
2 t+1) \#+1
ol ()]
) 2 141/ [\1+1 t+1
Therefore o'(t) attains'its minimum if t+1 =%. We have (-1 = —8exp(—2),
and hence ‘ . o )
lo'(t)|<8exp(—%) for all 2.
Thus
|(aoa)'(t)|<64exp(—-3) for all ¢,

(%) Note, that to find a trajectory 2,F(2),FX(p), ... it is enough to find ¢ such that p(q) = p,
then to find g, g(¢), %@); ..., and take their images by . '
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and consequently
d
Zlo( &)

<320exp(—3) for all ¢.

Since exp(3)>2.715*>20, we get |£/(2)|<16 for all ¢. This end
. 3 . s th i
(@) follows from (vi). H ® proof of (.

Now we take the set 4 given by (2) and define a ma;
t A 2 -
mark 2 in Section 7) P A= R by (e Re

(6 @ (x,3) = (2x+(x*—y?)E(x), 2+ 2xpE(x)) .

Lemma 2. The map ¢ restricted to the set A, (given by (3)) is one-to-one.
Proof. We shall show first that if (x, y) € 4, then

a
(7) ..&

p (x,»)>0
and

0, dp 7
3 s —Z ? 8
® 4o D (x,y)>[ay‘ G+ ;”;n(x,y)]z‘

’

where ¢, is the ith coordinate of ¢.
-~ We have:

a(PI ( — 2

™ X5 ¥) = 24+ 2xt (x)+ (x2 —p) E'(x)
g(fi( =

P x,¥) = 2+42x¢(x),

W1 e O
3 (s )+ E(x,y) = 2xy&'(x).
If %s[xl<1.then ¢(x) = —-Sgn;t and E'(x) = 0, and hence:

0o, :

Fx—(x,y) = 2——2]x|>0,
0p, ‘
~——ay (x,») =2-2]x|>0,

09, 00,
—-— (X, )+ — =
% (x, ) . (x,)=0.

Thus, (7) and (8) are satisfied in this case,
Assume now that |x|<+. We have

=y E2x2E () >3 (~16) = 18 and.

x¢(x)>~-%.
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Therefore:

0y 2 16 24 09, 2 8
x>l = —, ——(x, 2—-=-,
o VP25 5= 5 gy NP5

0, 20, 11 32

(X, )+ —(x, <2 == 6=—.

oy & y)‘ Oox 382 53 ! 15

Hence, (7) is satisfied, and sincs 4-3%-§>(33), (8) is also satisfied.

Now we go back to the general case. Denote by D,y the derivative of ¢ at
(x,y) € 4. Take a vector (x,f) € R™N\{(0, 0)}. Then the scalar product

0

(10 B)- Do ) = e )P+ [%”;— .+ —%’»(x,y)] o+ 22 e )P
is positive by (7) and (8) (in other words, the matrix Do, is positive definite).
Take a point (xo, yo) € Ao and set p(t) = (xo+10t, yo+1). As long as p(r) stays
in A,, the function t - (a, B To(p))—o(p(0)] is increasing. Hence, if 7 # 0,
then o (p(?)) # ¢(p(0)). Since 4, is convex, this proves that ¢ is one-to-one
in 4,. ® ‘

It is casy to notice that ¢ glues together certain segments, as described in
Section 3, so the following property also holds:

Lemva 3. All points of the form ¢(1, 1) and o(—1,1), where te(—}%, %), are
the interior points of ¢ (4). B

We take the set B given by (4) and define a map g: B R® by

(9) g(x,y,z) = (91(3‘),92(95,}’), gs(xsz))y

where (cf. Remark 2'in Section 7)

(10) - gu(x) = L | 3P ()4
; ‘ il 1 1— -
1y ga(x, ) = s(x)[(y_ys)lié_(zg_(ic)_)Jrg(Hl) ——‘f(zglﬂ]
where ‘
-1 if x>0,
12) 0 = { i if» ZO
13 g%, 2) = Ilz 24500 Lﬂ%"@_

LemMmA 4. We have:
M (=1 =g: (D= -1 and g;0) =1,
@) gi(-D =1, g1(1) = -1, g.(®)>1 for xe(—1,0) and gi(x)<~1 for
X€ (07 1): ' .
) (-1 1) = S5

)
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Proof. (i) follows immediately from (10) and Lemma 1 (iii), (iv) and (v).
To prove (ii), set n(x) = x*+3x*¢(x)+4x. We have

14 1) = 14+3(x2+ 20 EE)+ 1 +x2E(x)) .
If |x}>4 then x£(x) = —[x] and £'(x) = 0. Hence,
(13) ) = 14+30-x)* i |xzi.

Assume now that [x]<%. We have then x£(x)> —|x| and &(x)> —16 and
hence by (14),

7' @)>14+3(=2|x]+1—16x%) = 14+3[(1~|x])* —16x?]

>14+3[($)*=16-3)*] = 1.

From this and (15) we get in a general case
, =1 for xe{-1,1}

1 2

a9 ’7(’“){>1 for xe(—1,1).

Since #(0) = 0, we have sgny(x) = sgnx for all xe[—1,1], and consequently

g1(x) = 1-n(x)sgnx. Hence,

an g1(x) = —1'(x)sgnx,

Now (ii) follows from (16) and (17).

From (ii) it follows that g, is monotone on [~1, 0] and on [0, 1]. Together
with (i) this gives (iii). &

Lemma 5. (i) Forevery x e [—1, 1]anda, b € [}, %], we have |g,(x, a) — b
<la—b|—a—b]3. lg20x¢, @) —ga(x, b)
(ii) For every xe[—1,1] and ye[—%,3], we have |g,(x, y)| <

27

. 1+
Proof. To prove (i), set ¢t = ——i(g@ Since t € [0, 1], we have

lg26e, )= g2, B)| = l(a—a?)t+4@+1) (1 =)~ B ~b%) =B+ 1) (1~ 1)|
= [[(a=a%)~ (@ ~b")]1+3(a~b)(1-1)]

< max(((@a—a®)= =5, Ha~bi).
But

@ +ab+b* = 3(a*+2ab+b*)+}(a® ~2ab+ b = }|a—~b|?,
and therefore, taking into account that a*+ab+b2<3-(3)?<1, we get
@=a*)—®—b*)| = |a~b|[1 —(a®+ab+b*)]<|a=b|—L|a—b]?,

Also la—bl<|a—b|—}a~b|* since |a—b|*<'$. This ends the proof of ).
Now we prove (ii). Since '

18 (=3 = 1-3y*21-31)? = 2 for

3 BIES N

icm
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we have

(19) ly—r31<3-3)° =47 for

Also 2+ 1Dt @E+1) = fy<7y. Hence,
19206, M| = [(p—p)t+3+ DA< for

<%.

yI<t. B

Lemma 6. (i) For every x, a, b e [~1, 1], we have |g4(x, a)—ga(x, b)| = Txla—bl.

(i) For every x,ze[—1,1], we have 193(x, 2)| <%

Proof. (i) follows immediately from (13). To prove (ii), we estimate: |ga(x, 2)|
<isti=4 8

From Lemmata 4(iif), 5(ii) and 6(i), it follows (since 2<% and $<1):

Lemva 7. We have g(B)=B. B

We continue to investigate the properties of g.

LemmA 8. The map g is one-to-one.

Proof, The map g, is one-to-one on both [—1,0] and (0, 1]. For a fixed x,
the map g,(x, *) is one-to-one since (y— 33y >0 (see (18)) and [F(y+1)J'>0. Also
gs(x, *) is one-to-one (it follows immediately from (13)). Hence, g is one-to-one
on [—1,0]x[—%,3]x[-1,1] and on (0, 11x[—%,$1x[-1, 1]. Therefore it
remains to prove that if (x,y,2)€ [-1,0]x[—%,¥1x[-1, 1] and (%,5,%)
E(O, 1]X[—"§‘,%]X[—-1, 1]: then g(xrysz) # g()’é,)”l,f).

Suppose, in contrary, that g@x,y,2) =g, 7, D Since g:(x) = 9:(%), s}
= —s(%) and g,(x,¥) = g2(%, §), we have (denote ¢ = (1+&(g:)/D:

(20) 0= [(y—y3)t+%(y+1)(1_—1)]+[(?—fa)t+%(9+l)(1—t)] .

Also gi(x, 2) = ga(%, 2), and hence fez 4t = 52— 3. Thus, ¢ = +(E—2), and
consequently t<+. Therefore (we use also (19)),

(p=y)+Ep+DA-D> —Frh+535 = 7o5

For 7 instead of y, we obtain the same estimate. But this contradicts (20). B
Levada 9. For p, g€ B, we have (p) = (@) if and only if W(a(p) = ¥(9(@)-
Proof. Assume that ¥ (p) = ¥(g). By Lemma 2 and the remark following it,

we have either p = (—1,u,v) and ¢ = (—-1, —u,v), or p= (1,u,v) and ‘q

= (1, —u, v) for some we [—%, 4], ve[-1,1]. One can easily compute that in

the first case

4() = (—1,u—i, ot} and  g(@) = (=1, w=t T D),
and in the second case '
g(p) = (—=1,4*~u, 730—3
In both cases, ¥(g(p)) = ¥(9(@)-

and g(g) = (—1,u—1 {fgv—3).
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Assume now that ¥(g(p)) = ¥(g(q)). By the same arguments as before, we
have either g(p) = (-1, u,v) and g(g) = (=1, —u,v) or g(p) = (1,u,v) and
g(@ = (1, —u, v) for some ue[—%,%] and ve[—1, 1]. In the first case, the first
coordinate of p and g has to be either —1 or 1. If one of them is —1 and the other
one is 1, we get a contradiction with (13). If both of them are 1 or both of them
are — 1, we can use the arguments, that for a given x, the maps g,(x, -) and g4(x, )
are one-to-one (see the beginning of the proof of Lemma 8) and that if |x] = 1
then the map g,(x, -) is odd. We conclude that the second coordinates of p and ¢
have the same absolute value but opposite signs and the third coordinates of p
and g are equal. Consequently, ¥ (p) = ¥ (g).

In the second case, the first coordinate of both p and ¢ is 0, and we simply
use the argument that for a given x, g,(x, ©) and gs(x, -) are one-to-one. Hence,
p=q &

In view of Lemmata 7 and 9, there exists a unique map f: ¥ (B) - ¥ (B)
such that

21 | Yog=rfolh.

Lemma 10. The map f: W(B) » ¥(B) is a diffeomorphism onto its image.

Proof. By Lemmata 8 and 9, f is one-to-one.

From the computations in the proof of Lemma 2, we see that the Jacobian
of -y is nonzero at all points of the set By = 4,x[~1, 1]. By (9), the Jacobian
g, g, ’
—a;(x, y)‘E (x, 2). From Lemma 4 we have gj(x) 5 0
for every x e [—1,1] (at x = 0 we consider one-sided derivatives). From (11) we
compute that

0 ¢ -
S = s a-ay L) 1L f(zgl(x))}

of g is equal to gi(x)-

which is nonzero for every xe[~1,1], ye[—14, %, since both 1—3y* and % are
. i 1
positive. From (13) we compute that —agzi(x, z) = 4 # 0. Hence, the Jacobian

of g is nonzero on the whole B. Therefore it remains to check the behaviour of Sat
the regions where either p or f(p) is close to ¥ (B\B,).
The first of these regions is a neighbourhood of Y~ [—4, $1x =1, 1]).
If x is cose to —1, then £(x) =1, @(x,y) = Qx+x2—)?, W+2xp), gi(x)
= 1+x*4+3x%+4x, g,5(x, ) = y—® and gy(x, 2) = T5z+%. Setting u = x+1, we
get: Y(x,y,2) = (®~3*—1,2up,2) and g(x,y,2) = @ +u—1,y~y3, ez +14).
We claim that in this region

@) SO 1,2) = (W DIO0+ 12+ 322+ 142 [0+ 12+ 3621,
=t~ (w+1)=1], dz+4) .

e ©
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Indeed, for f defined as above, we have
FGx,p, 2) = (@ =y =y +3 Q)+ 11+2[@> - y2)* +3 Q)] -1,
= 2up [ Quy)? — @ =)= 11, t57+3)
= (=) +i2y +y* + D+ 20 +yH -1,
—2uy WPy? —ut+ 32— 1), t5z+3)
= (P +u)*~(y—r*-1,203 + ) (y—»"), 152 +3)
=¥(g(x»,2),

ie. (21) holds. Since there is only one f satisfying (21), (22) holds.
The formula (22) shows that f is of class C®. We shall check that its Jacobian
is nonzero. We have to check it in a neighbourhood of y({—1} x[—3, 41x [—1, 1]),
but this set is compact and therefore it is enough to check it on this set. If x = —1
then u = 0 and thus ¥(—1,¥,2) = (- »*~1,0,2). Set v = w+1. We have to
compute the Jacobian of f for ve[—4,0], £ =0, ze[—1,1]. It is equal to
30241440 0 O
0 v+l 0| = 2@+ +17.
0 0
This is positive for v e [~%,0]. This ends checking in the first region.
The second region is a neighbourhood of the set w({l}g[—%,-}]x[ul,l]).
In this region we have x close to 1, {(x) = —1, Px,y) = @x—-x*+y*, 2}.;—2xy),
G1(0) = 1=x34+3x%—4x, §x(x,9) = ¥’ =y, §s(x,2) = lez—‘% (we use tildes to
distinguish these formulae from those valid for the first region). T? compare the
formulae from the first and second regions, we define two symmetries: I(x,p, 2)

= (=x, =y, —2), $,(x,7,2) = (x, 5, —2) We have:
97 o 0 9405, 7, 2) = Sy(—2x+x7=y%, —2y+2xp, —2)
= @x—x2+)% 29 —2xy,2) = ¥ (x,7,2),
957 o 0 8y(x, ¥, 2) = 9(2x+x* =7, 2y +2xp, —2)
= @x+x*—y% W+2xp,2) = (%, 7,9,
95 ogoy(x,p,2) = 32((1—x)3+(1—x)—1,y3—y, —T5z+d)
= (1=3x+ 382 =23+ 1—x—1,"~y, f22—%) = glx,y,2) -
Hence, if we set
(23) F=97"0f08,

then, taking into account that if x is close to 1, then g,(x) is close to —1, we have:

_"?[olp:: 9;10f0-91,°\91_1°l//°‘91='92-.1°f°‘l’°‘91
0 epegey =07 ey e8ye it ogo g =¥l

3 — Fundamenta Mathematicae CXXV. 1
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Therefore (23) describes £ in the second region (as f). Since clearly 9, and 9, are
diffeomorphisms, this ends checking in the second region.
The third (and last) region is a neighbourhood of the set

l//({o} X [_%" %‘]X ['—1’ l])'

Since it is contained in ¥ (Bo), ¥~ is a diffeomorphism there, and consequently
it is enough to prove that ¥ o g is a diffeomorphism in a neighbourhood of the
set {0} x[—%,31x [—1, I]. If x is close to O, then g,(x) is close to 1 and conse-
quently £(g; (x)) = —1. Hence, go(x,») = +s(x)(y+1) and g,(x, 2) = 2. ¥ u is
close to 1 then &()= ~1 and hence W (u, v, w) = (2u—(@u*~v?), 20~2u, w).
Denote, as in the proof of Lemma 4, (x) = x +3x2€(x)+4x Then we have

(b agd)(x,9,2) = Y (1~ n(, 5@ (P+1), 72)
= (2-2I()] = 14207 ()] — ()P + 2 (r+1)?,
50+ DIn], £2).
By (16), #'(x)>0. Since 7(0) = 0, we have sgny(x) = sgnx and hence $(x)In(x)!
= =n(x). Thus, og)(x,y,2) = (I-(n(N))]+75+1D2% —3p+Dn(), &2)
Consequently, o g is of class C*®. It remains to show that the Jacobian of Vog

is monzero for x =0, ye[—},%], ze[—1, 1]. But at such point this Jacobiar
is equal to

0 ZO+1) 0
~3(+Dr'(x) 0 0 = g3+ (»+1)’y'(x)>0.
0 0 =

This ends checking in the third region and the whole proof, B

Lemma 11. We have f(i (B)) <inty (B).

Proof. By Lemma 5(ii) and Lemma 6(ii), we have g (B)=[—1, 1x[—25, &%
x[—%, #]. As in the beginning of the proof of Lemma 10, we see that the Jacobian
of ¥ is nonzero at all points of B,. Hence, all points of ¥ (int B) are the interior
points of (B). But by Lemma 3 and in view of (4) and (5), also the points of the
form ¥ (1, p) and 1/1( 1,p), where pe(—%,1)x(~1,1), are in the interior of
¥ (B). Hence (since ;<% and #<1), all points of ¥ (g(B)) are in inty (B). B

Denote by n: B-— [—1, 1] the projection onto the first coordinate:

24 : n(x,y,2) =x.
For every p ey (B) set
(25) h(p) = n(y~*(p)).

Notice that if y~'(p) consists of more than one point, they have the same first
coordinate. Therefore, the above formula defines a map 4: Y (B) - [—1, 1]. Clearly,
h is continuous.

LeMMA 12. We have hof = g, o h.
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Proof. By (9) and (24), we have
(26) ‘ Tof =(gioT.
From this, (21) and (25), we obtain

hof=Tol  of=nogey  =g,oncy t=9g,0h. B
Set
@7 C= Qof"(tl/(B))-

LEMMA 13. Let (x,)5% 0 be a sequence of points of [—1, 1] such that g,(x,) = Xy
forn=1,2,3, ... Then there exists exactly one point p & C such that h(f~"(p)) = x,
for all n20. »

Proof. Set Q,=g"(n"'(x,). For n=1,2,3,.., we have, by (26),
g (i) en Mgy (x) = 77" (%,-,), and hence Q,=Q,—;. Since for every n=0,

n~1(x,) is a closed rectangle with sides parallel to the y and z axes, it is easy to
deduce from (9) and the continuity of g,(x,-) and gs(x,-) that'each 0, is also such
rectangle. By Lemma 5 (i), the length of O, along the y axis is at most (%), where
£(#) = t—413, and by Lemma 6 (i), the length of Q, along the z axis is at most
F9"2. But |{'(t)] = |1—3¢?|<1 for te[0,%] and {(0) =0, and hence limC"(%)

= 0. Also hm(—ﬁ)" :2 = 0. Consequently, the set ﬂ Q,, consists of a smglc point.

We call th1s point g.
We shall show that the pomt p = Y(g) satisfies the condltlons from the con-
clusion of the lemma. For n=0,1,2,... we have

P = V(@ ev(g"(n () = (@ ) =70 6)

and therefore p e C and h(f~"(p)) = X,

Suppose now that some point ¢ C satisfies 2(f~"(§)) = x, for all n>0. Then
we have pef"(h™(x,) = ¥(9"(n"*(x)) = ¢(Q,) for all n=0. Since (QyZo i
a descending sequence of compact sets, we have ﬂ ¥(Q,) = ‘p( ﬂ Q,,) and there-

fore p=p. B

Levma 14, We have h(C) = [-1,1].

Proof. Since g;([—1, 1]) = [~1, 1], for every x & [~1,1] we can find a se-
quence (x,)r%o satisfying the hypothes1s of Lemma 13 and such that'x, = x. For
p from the conclusion of Lemma 13, we have pe C and h(p) = R(F D)) = xo
=x. B

LemmaA 15. The map gy: [—~1,1] = [—1, 1] is conjugate to the map T: 11
(given by (1)).

Proof. Both maps expand lengths of all submtervals on which they are one-
to-one. Therefore they have no homtervals (intervals, on’ which all iterates are
one-to-onc) Hence, since they have the same kneading invariant, they are con_]ugate
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PrOPOSITION 1. The map flc: C — C is topologically conjugate to the inverse
limit of T.

Proof. Denote by H: [—1,1] — I the conjugacy between g, and T. Let
7: K — K (the inverse limit of T) and ¥,: K -» I'(n = 0, 1, 2, ...) be as in Section 1.
By Lemma 12, hof|c = gy o h, and hence (Hoh)of|c = T (Ho h). Since f| is
a homeomorphism and H . h is continuous, then, as in Section 1 (with K = C,
%= flo and ¥ = H.h), there exists a continuous map &: C - K such that

(28) Pofle=109
and
(29) Hoh=%Y5.9.

Take a point ¢ = (¢);,e K and set x,= H ), n=0,1,2,... For
n=1,2,3,.. since T()=t,_;, we have g,(x,) = x,.;. By Lemma 13,
there is exactly one point p & C such that A(f"(p)) = x, for all n>0. The above
condition is equivalent to (H o k)(f ~"(p)) = t, for all n>0. We have by (28) and (29):
Hohof 7" =¥0®of "=¥yot "c®, and since Yoot "= ¥,, we get
Hohof "= ¥,o® for all nz0. Therefore, there is exactly one point p € C such
that ¥,(®(p)) = ¢, for all n0. Since g is the unique point of K such that
Y’,,(g) = t, for all n>0, we have &(p) = ¢. This proves that & is one-to-one and
onto. Since @ is continuous and C is compact, it follows that @ is a homeomorphism
from C onto K. In view of (28). & is a conjugacy between f|; and . B

PROPOSITION 2. The set C is an attractor for f: y(B) — y(B).

Proof. Set U = inty(B). Since the set f(y(B)) is compact, we have clf(U)
<f(y(B)), and by Lemma 11, clf(U)= U. Again by Lemma 11, Yy @BY=Ucy(B),
and in view of (27) we get C =\ f(U).

nz0

Since T is transitive, so is its inverse limit (a lift of a dense orbit is a dense
orbit). Hence, by Proposition 1, f|. is also transitive. H

Proof of Theorem A. Let M be a manifold of dimension n3>3. We take
a set D=9(B)x[~1,1]""% and a C® map F: D— D given by E(p, q)
= (¥(p), 39). The map F'is a diffeomorphism of D onto its image, and since F'(p, ¢)
= (V"(p), 3-9), by Propositions 1 and 2, F has an attractor Cx {0}"~2 such that
F restricted to this attractor is conjugate to the inverse limit ot 7. But D can be C*®
embedded into M and F can be extended to a C* diffeomorphism of M onto itself
%n a standard way (notice that f preserves the orientation — this is computed for
instance in the proof of Lemma 10 — and so does F). B

5. Images of the Lebesgue measure in the first example. We denote by A, the
Lebesgue measure in R’ Since ¥ is a diffeomorphism on B, the image of A;
under  is equivalent to Asly;y. Hence, instead of ijnvestigating the images olt"
Zslys under f”, we may investigate the images of ;| under g"(n=0,1,2,..).
: Further, since the foliation in directions of y and z axes is invariant fo,r g
it is enough to investigate the images of Aglg=1,1; under the iterates of g,. But i;
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is easy to check that g, satisfies the conditions given by Thaler in [5], sufficient
for the existence of an ergodic invariant infinite measure equivalent to |-y,
with the density having a singularity only at — 1. Therefore the averages of those
images converge to the measure concentrated at —1. Consequently, the averages
of the images of A3)ys) under the iterates of f converge to the measure concentrated
at (=1, 0, 7%) (a corresponding fixed point of f). The same can be told about the
averages of images of a measure concentrated at one point, for almost every point.

Nevertheless, since there is an infinite ergodic measure invariant for g, and
equivalent to Aql;-4,1), for almost every point p e (B) the closure of its orbit
contains the whole C. The convergence of the averages of the measures &y, 6,
8p2(pys -+ tO @ measure concentrated at one point means ounly that the trajectory
of p will stay for longer and longer times close to this point and go away for re-
latively short periods (although, for a typical point, these periods are not bounded
from above).

From the ergodic theory point of view, more interesting situation would be
if those averages have converged to a measure with a whole C as a support. The
reason why this does not happen, is that gj(—1) = 1, or equivalently, that Df(_l,(,’;—a)
has no eigenvalue of absolute valug larger than 1. We shall show that this cannot
be changed.

PROPOSITION 3. Let V be an open subset of R andlet F: V —» Vbea C L diffeo-
morphism with an attractor C such that © is conjugate to Fl¢ by G: K— C. Then
DF ey (Where © = 020 € K) has no eigenvalue of absolute value larger than 1.

Before proving Proposition 3, we shall prove two lemmata.

Lemma 16. Let ¥ = ¥5'(10,%)) and let Z be the connected component of Y
containing ©. Then Wolp: Z —[0,3) is a homeomorphism.

Proof. Set X = {(t.)%0: fo€[0,%), 1, = 27" for n =1, 2,3, ...}. Clearly,
XcY, @cX and Wyly: X — [0,4) is a homeomorphism. Hence, X<Z and it is
enough to show that Z\X = &.

Take a point u = (u,)i=0 € Y\X. Let k be the smallest positive integer such
that u, # 2 *u,. Then the sets

(o eK: to€[0,4),1, = 27" forn=1,2, o k}
and
()0 e K: 1€ (0,9, 1y = 27 for n=1,2, ... k=1 and f, = 1-27"%}

are both open in ¥ (since 27, <27*1), disjoint, and contain @ and u respectively.
Hence, u¢ Z. &

Lemma 17. Let F: V — V be a continuous map. If UcV and peV are such
that for every n0 there cxists p, € U such that F "(p,) =D, then p E" QOF "(U).

Proof. Since p, € U and F*(p,) = p, we have pe F™(U) for every n>0. Hence,
pe N FY(U). ®

nz0.
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Proof :of Proposition 3. Suppose that DFgey has an eigenvalue of ab-
solute. value larger than 1. Then F has a local (strong) unstable manifold at G(6)
of positive dimension; (cf. [4], Chapter IX, Theorem 5.1.). This manifold, inter-
:vsected with ‘any neighbourhood of G (@) contains a set homeomorphic to an open
interval and containing G(@). By Lemma 17, this set is contained in C. But this

contradicts Lemma 16. B . :

6.. The second example. The method of constructing the second exdmple is
very §1mi1a.r to that of the first one. There are two main differences: instead of 3 di-
mensions, we shall use only 2, and instead of a diffeomorphism we shall obtain
only a homeomorphism.

To stress the similarity we shall use similar notation.

We take the set 4 given by (2) and define g: 4 — 4 by

90x, ) = (g1(x), 9%, 3)) »

where g,(x) = 1-|2x| and g,(x,y) = s(x)-L(y+1) (s is given by (12)).
. Now we have .to define new ¢. Close to {1} x[—%, %] we use formula (6).
Since for x close to 1 we have {(x) = —1, we get

(30)  o(x,y) = (2x—x*+»*, 2y~2xy) in a neighbourhood of {1} x[—4%, 4.

Since glues together {1} x [0, 4] with {1} x [—4, 0], to define ¢ in a neighbourhood
of {~1}x[—3%,3], we have to look at the images of {1} x [—%, 0] and {1}x0,%]
under g:. It is easy to see that they are {—1}x [}~ ;2is, +— 1355 and {—1}x
. : = G
x[%_i_z-”s“'y +—123,] respectively (n = 1, 2,3, ...). Since g" is linear on {~1}x
%[—%, 3] if we impose the, following conditions on ¢:
() ¢ glues together slightly larger segments, namel 11
. s mamely {1} x [ —7r, 4 -
With {~1}x b= =] (1 = 1,2, 3, ), o
‘ (i) ¢ is a homeomorphism (onto its image) on the rest of A (except also
{I}x.[,“—g-,\%], where we already know that ¢ glues two segments),
(i) @ is continuous on the whole A4,
}hen, as in thIe first example, there exists a unique f: @(4) - @(4) such that
o = @og. Itis clear that a map o satisfying (30) and (i) — (iii) exi
@(4) looks like on Fig. 5. €0 O () oiste The set

9
pr]

Fig. 5. An approximate shape of the set ®(4) in the second example
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Now one can follow the scheme of Section 4. Since the proofs are mostly very
similar and often much easier than in Section 4 (one does not need any proofs of
smoothness), we omit this part of deduction, stating only the final result:

PRrOPOSITION 4, The map f: ¢(4) — @(4) is a homeomorphism onto its image,
preserves the orientation and has an attractor C such that fle: C - C is conjugate
tor. B

Theorem B is an immediate corollary to the above proposition.

7. Remarks.

Remark 1. In the first example, from the definition of s, &, ¢, ¥ and g it
follows that:
¢ is real analytic except at the point ¢ = —1,
¢ is real analytic except at two points given by |t] = %,
¢ is real analytic except on two lines given by jx| = &,

W is real analytic except on two planes given by [x| = +
g is real analytic except on 7 planes given by x = 0 (1 plane),
x| = & (2 planes) and |g,(x)] = ¥ (4 planes).

Therefore, by the definition of f and the end of the proof of Lemma 10, the
map f is real analytic except on 6 surfaces (the images under ¥ of the planes given
by x| = 4 and |g;(x)| = -

Remark 2. In the first example, from (22) and (23) it follows that in the
neighbourhoods of the sets

Y~} x[-4,31x[-1,1]) and ¥({1}x[-%,3]x[-1, 1)
(i.e. the sets on which the hyperbolicity of f fails) the map f is given by polynomials
(of at most third degree). To understand better the action of f in these neighbour-
hoods, one should make a suitable coordinate changes (translations by (—1,0)
and (1, 0) respectively). Then in the first neighbourhood (more exactly — its pro-
jection into R?), (g, gz) has the form (x,¥) = (x+x3, y—») and ¢ has the form
(x+iy) = (x+ip)? (here we identify R?* with C).

The formulae in the second case are similar.

Remark 3. In the first example, the stable and unstable foliations look like
in the case of pselido-Anosov maps (cf. Figure 1). Hence, one can hope that some
methods similar to those of M. Gerber [3] can be used to find real analytic examples.

Remark 4. In the second example, a question arises whether it can be made
smooth. 1 do not see any principal obstructions, but the complicated structure
of the stable and unstable foliations makes the problem more difficult than in the
three-dimensional case.
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Essential mappings and transfinite dimension
by

P. Borst and J. J. Dijkstra (Amsterdam)

Abstract. We construct a compact metrizable space with inductive dimension w+1 that
admits no essential mappings into Henderson’s' (w-+1)-dimensional absolute retract JOH,

1. Introduction. A continuous mapping f: X —I" = [0, 17" is called essential
if there is no continuous extension g: X — oI" of f|f~*(8I"), where 8I" is the
geometric boundary of 1" The following characterization is well known (see €.g.
Engelking [1], 3.2.10).

1.1 TueorEM. A normal spuce has dim > n iff it admits an essential mapping
into I". ‘

D. W. Hendorson [2] has attempted to extend this result to transfinite inductive
dimension.

1.2 DepNiTION. Ind(9) = —1. Let o be an ordinal and X a normal space.
Ind(X)<a if every pair of disjoint closed subsets of X can be separated by a closed
set with Iad <o (S separates A and B in X if X\S is the union of disjoint open
sets U and V with AcU and BeV).

1.3 Dermrrion (Henderson). For each countable ordinal « we define a com-
pact metric space J® its ,boundary” T° and a point preT™

@) if « is finite then J* = I° 7% = 8I* and p* = (0,0, ..., 0).

(i) If we have a successor a-+1 we define Jo*1 = Jox I, T*™ = (T*x ) v
L (I*x{0,1}) and p*** = (p*, 0).

(iii) If « is a limit, put K? = JP U LF for'every p<«, where L# is a half open
arc such that L¥ n J* = {p#} = (the end-point of LPy. J* is defined as the one-point
compactification of the discrete sum @ K 1o =0NU (JA\T#) and p* is the
compactifying point. L pex

A continuous mapping f from a space X into J* is called- essential if every
continuous g: X — J* that satisfies glf ™ (T") = f1f ~1(T%) is an onto mapping.

The following two theorems are due to Henderson [2].

1.4 THEOREM. J® is an absolute retract and Ind(J%). = a.

1.5 THEOREM. If there is an essential mapping from a normal space X into J*
then Tnd(X) =« or Ind(X) does not exist.


GUEST




