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On the transformers of the Zahorski
classes of functions

by

Grzegorz Krzykowski (Gdansk)

Abstract. Let. i (i = 1, ..., 5) denote the Zahorski classes of functions defined on interval
I = (0, 1). By H.4, we denote the set of all increasing homeomorphism # of interval I onto itself
which leaves # invariant, i.e., such that for every f& i fo he ;. In this paper it is shown that
there are proper inclusion H.g 2 Hoyy,, for i = 1,2, 3. We give a characterization 'of the class
H_4, and the examples of homeomorphisms showing that classes H.uys\Hu, and HuN\Huys are
nonempty. We also establish the inclusion Hoa, D Hp4 where Hpgis the class of homeomorphisms
preserving bounded derivatives. '

Let g be a homeomorphism of (0, 1) onto itself, g0 =0,g)=1LHKFis
an arbitrary family of real functions defined on (0, 1) then g is said to be a trans-
former on & if fo g € & holds for every fe #. Let Hy denote the class of trans-
formers of #. .

M. Laczkovich and G. Petruska in [7] have given a necessary and sufficient
condition for g to be a transformer on a class of derivatives. ;

In 1950, Z. Zahorski [9] considered a hierarchy of classes of functions, 4,
k=0,..,5 The largest class, .#,, turned out to be Darboux. and first class. of
functions: the smallest, .45, turned out to be class of approximately continuous
functions. He showed how the classes of derivatives and bounded derivatives, fit

into the scheme. .
In the present paper we study a hierarchy of classes H; k= 0, ..., 5 (for

the sake of simplicity we use the notation Hy, k=0, ..., 5) and consider a number
of related properties.

Throughout this paper the word “set” means a Lebesgue measurable subset
of open interval (0, 1), the word “homeomorphism” means an increasing homeo-
morphism of (0, 1) onto itself. By a «function” we means a real function on (0, 1).
A" = (0, 1)\4, |d] being the Lebesgue measure of the set 4 and d(4, a) being
the density of the set 4 in the point 4. As usual, d*(d, a) and d™ (4, 4) denote the -
righthand side and lefthand side densities and 4(A4, &) the upper density.

We begin with the definition of the Zahorski classes of sets.

DernTION 1. Let E be.a nonempty set of type F,. We say E belongs to class:
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M, if every point of E is a point of bilateral accumulation of E;
M, if every point of E is a point of bilateral condensation of E;
M, if each one-side neighbourhood of each x e E intersects E in a set of
positive measure;

My-if for each x € E and each sequence {1} of closed intervals converging
to x and not containing x such that |I, n E| = 0 for each n, we have

Tl

m ———— = 0;
o dist(x, 1)
M, if there exist a sequence of closed sets {,}22., and a sequence of positive
0

numbers {#,},=; such that E = |) F, and for x€F, and each ¢>0 there exists
n=1
a number &(x, €) = 0 such that if 4 and 4, satisfy hhy>0, hihy <e, [h+hy|<e(x, o),
then
{_En (x+h, x+hy)|

>y s
Il T

M if every point of E is a point of density of E.

DeFINITION 2. Let f be real function defined on an interval J = ©, 1),
k=1,2,..,5 We say fis in class M, if every associated set of f is in M,. The
associated sets of f are all sets of the from E(f) = {x: f(x)<a} or E¥X f)
= {x: f{x)>a}, for weR.

DEFINITION 3. Let Hy, i = 1, ..., 5, denote the class of all homeomorphisms h
such that for all fe .#,, fohe 4,.

LeMMA 1. he H; if and only if for each Ae M, i eM, (G =1,..,5)

Proof. Let / be a homeomorphism such that for every Ae M;, h™'(d) e M,
Let f.€ #;. Observe that E(f . k) = B~YEL(f)). Since E(f) e M,, K™Y EL()) e M,.
Thus, E(fs k) e M;. In the similar Wway we may prove that F(f . k) € M;. Thus, we
see that e H,. Let he H, and 4 € M,. Then there exists a function f€.#, such
that 0<f(x) <1 for all x € 4, and f(x) = 0 for all x ¢ 4 (see [1]) .Therefore E°(f o k)
= h7(A). Then h™'(d)e M,. :
" We are now ready to establish inclusion relationships for H,,i = 1, ey S0

THEOREM 1. The following proper inclusions holds: H, SHyoHyo H),.
.~ Proof. Theorems 1.1 ([3], p. 9) and 3.5 ([3], p. 16) show that .4, = Ay and
that H, is the set of all homeomorphisms. Let 4 ¢.Hy, and ¢ = h~%. By Lemma 1
there exists a set A e M,, such that g(4) ¢ M,. Then, there exist yeg(A4) and y>0
such that [(y,y+7) NngA)| =0 or [(y=n,9»n g(4)] = 0. Suppose  that
17 y+m) A g(4)] = 0 (in some way, we obtain the result for the second condition),
Let' x = g7*(y) and x+é&=g~Y(y+&). Since AeM,, |(x,x+e) n A]>0. Let
B={t: te(x,x+e)n 4 and d(4, t) =1}, Let B* denote the set of type F,,
such that B*< B and |B* = |B|. Thus B* € M and also B* e M,. Since |g (B®)]
=0, h ¢ H,. This completes the proof of the-inclusion  H, o Hj. )
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Let us now focus our attention on the inclusion Hy> H,. The proof is similar
to that of the inclusion H,>H,.

Suppose that 2 ¢ H;. By Lemma 1 there exists a set 4 € M, such that g(4) ¢ M,
(g = h™*). Then, there exists y e g(d) and a sequence of closed intervals {I,}2,
converging to y, such that |, ng(4)] =0 and |I|>cdist(y, I,), where ¢>0,
(n=1,2,..). Suppose that x =g~*(»), J,=g"*1), (n=1,2,..). We may
assume that for all ne N4 nJ,| = 0 (if there exists n, € N such that |4 n J, | >0,
then there exists a set .4* such that 4* e M5 and |g(4*)| = O, then by Lemma 1
g™t ¢ Hy). Since 4 € M,, we have

o
o diSt (X, I,

Let B = (0, 1)\6 J,. We have Be M. In the same way we obtain the result
n=1 o

for aset E = (0, D\ U J,,,, where {J, }i= isa sub;sequence of the sequence {J,};4.
k=1 o

Choose a subsequence {J, i, of sequence {/;}s; such that d(U J,,x)=0.
o0

k=1

Let E = (0, D\ U J,,. Since d(E, x) = 1, thesset Ee M. It follows that Ee M,
k=1

and g(E) ¢ Ms. Thus h¢ H,. This completes the proof of all the inclusions.

We now prove that the inclusions are proper. We construct three examples.
Let the homeomorphism g, map some set of positive measure onto a set of measure
zero, Thus Ay = g7t ¢ H,.

o0
Let 4 =(0,x]u U J,, where J, = (a,,b,), d(4,x) = 1, xe(0, 1), x<a,4,
n=1 © . ,
<byy1<ay<b, = 1. Let B = (0,x]u U 1, where I, = (g, by), X<dhy1<bpiy
n=1
<ay<by =1 and
- Gpers @)l _
lim —— =

n—o n+1

a>0.

Define the homeomorphism g, by the formula g,(f) =¢ fo¥ all te(0, x],
ga(ay) = ), go(b,) = b, (n=1,2,..), and g, is linear on each interval (a,, b,)
m/ T Y . n 9 Ay - N K
or (by1 a':,) (n =1,2,..). The proof that h; = g, 1 e H,\H, follows immediately

from Lemma 1.
We now show that Hj 5 H,. Let

. (1 +1+r>
E=(0’x]ungw(x+;l’x % njs

where .
xe@,1), ln@p-D>r>0, dEx)=1.
Let
y ! L, ——}——>r!>0 and. d¥(4,x)=0.
4° (O’x]mng.!,(”ﬁ"”;*’")’ a1 " ,
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Consequently A ¢ M,. Define the homeomorphism g3(¢) =t for all ¢e (0, x],
G50+ 1jn) = x+1fn, gylx+1fn+r) = x+1ntry (1= no,me+1,..) and gy is
linear on edch interval (x+1/n, x+1/a+r,) or (x+1/(n+ 1)+, X+ 1/n), n'= n,,
no+1, .. and (x+1jng+r,, 1) . Thus d¥(4,x) =0 and g4(E) = 4, s0h,
= g5 ¢ H,. We now show that /i; € H;. Let De Ms, and {P,};%; be a sequence
of closed intervals not containing x and converging to x such that [g,(D) n P,| = 0,
for each ne N. It follows that [D n Q,| = 0, where Q, = g5'(P), n= 1,2, ...
Since D € M,, we have

10
moveo AISECE, O)

There exists 5 = s(n), k = k(n) such that

inf(Q,) € [asy> Gsey~1)  and  sup Qe (”a(n)-k(n)+1 » Aswy k() »

where
’ a, = x+1/n, b, =x+1/n+r,.
‘We have -
IQnI - [Qn (gl (axa as—l)] ](as—h as—k+1)l ](as-—lt+1’ as-—k) ) in
dist(x, Q,) dist(x, Q) dist(x, Q,) dist(x, Q,)
Since »
m — [[eX =0, I(as.-la G 1)| =0
nmew dist(x, 0,) nw  dist(x, Q) ’
we obtain
lim (s~ 1> sty -y + 1| -0,
Ao Ag(y—1 =X
that is, lim k(n)/(s(n)—k(n)) = 0. Observe that
} ot 1 +1
L R T
dist(x, P,) = ag—x 1/s T s~k

It follows thatn]inoao | P,|/dist(x, P;) = 0, which means that g3(D) € M5 (at the other

points .of the set g4(D), the definition of the M y-set holds, because g, is linear from
each s;de), and the proof of the theorem is complete, )

i . 4 ] f ' X
( EF)INI‘IION C ~upper density of the set at the po nt a denote y

dy(X,-a) = sup{liTn IXn I"l}

sseo |

o

- ©
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where supremum is taken for all the sequences of intervals {I,}:2; for with I, = a
(that is the endpoints of I, converge to a) and there exists a positive number ¢ such
that |I,|>c-dist(a, Ly (n = 1,2, ..).

LemMA 2. For every X< (0, 1), X is M,-set if and only if there exists a sequence

of closed sets {F,},%1 and a sequence of positive numbers {fj,} =1 such that X = G E,
and for every n and x € F, we have dy(X’, x)<1-n,. »=1

Proof. This is only a reformulation of the definition of M ,-set (see [6]).

LeMMA 3. For every X<(0,1) and ae (0, 1) we have

@) 0<d(X, a)<dy(X, @)1

(i) If d(X, a) exists then dy(X,a) = d(X, a).

The proof of this lemma can be found in {6]. :

We shall use the following notation (p,-property for the sets 4, B): A<, B
means that 4B and there exists a sequence {F,};%, of closed sets and a sequence.

of positive numbers {n,};%; such that 4 = {J F, and for every n and xe F, we
have d (B, x)<1-1,. =1

DEFNITION 5. We say that the homeomorphism g satisfies condition (H)
if for every pair of perfect sets 4, B such that 4=, B, we have g( D=, 9(B).

THEOREM 2. A necessary and sufficient condition for g~* € H, is that g satisfies
condition (H). . .

Proof. Suppose g satisfies condition (H). Let fe.#,. Then there exists
a p,-system for f (see [2]), that is, a system of perfect sets (A, A r=1,2,..,
n=r,r+1, s Y1, Vg5 . — i8 an enumeration of the rationals, satisfying

. ® w .

L U A:r = Eyr(f)a . U -A;r = Ey,.(.f)’
n=r n=r

2. ‘Axrcpanr'H > A;rch;:d ’

and if y,<y,and n > max(s, ), then

3. A, A, Ao,

But since g preserves the p,-property, the system of sets {g(4), g(43)} is
a pa-system for fo g% By Theorem 5 (see [2]), fog ™" €4 if and only if there
exists pq-system for fog~'. Then fog™*e., and g~ e H,. Suppose that
g~Ye H,. At first we show that if 4 is a closed set, B is a perfect set, A=B, and
sup {di(B’, x)} <1~n<1 then g(4)=,g(B)- '

X &

Let E = B, U 4, where By is a set of type Fo, |B,} = |Bl, BycB and every
point of B, is a point of density B,. It follows from the inequality dy(E’, x)<1—n
for every x € 4, that Ee M,. From Lemma 1 we have g(E) €M, By Lemma 2
thers exists a sequence {F,}y of closed sets and a sequence {f}eey of positive

0

numbers such that g(E) = | F, and for every n and y € F, du(g (B, ) <1—1iy'
n=1
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Thus g(4d) = (Jg() nF, and for every n and yeg(4d)n F,, we obtain
n=1 :

dy(g(E"), y)<1-n,. From the inclusion E'> B’ it follows that d,(g(B’), y)<1 _—

and then g(4)<,,g(B). Now let 4, B be a pair of perfect sets such that 4« oB
0

By the definition of p,-property we have 4 = |J F, where {F,};%, is a sequence

n=1
of closed sets and there exists a sequence {5,};%; of positive numbers such that
for every n and x € F,, dy(B’, x)<1—n,. Since F, is closed, we have g(F,)=,. g(B)
-]

which gives us that g(4) = | g(F,)<,,g(B). This completes the proof of theorem.
n=1

THEOREM 3. The homeomorphism classes Hs\H, and H,\Hs are nonempty.

Proof. Let C be the Cantor set in (0, 1) and let {G}{%, = {(a;, b;)}{%, denote
the sequence of the interval contiguous to C. Define for i = 1,2, .. I = [2,+
+27%=27Kp+2)", a;+27¥ where p is such that |G| = 377 /c>k(z) and k(i)is
such that 27*9<(b,—a)/4. Let us denote for i, k and j=0,1, ..,k x; =
inf (T) +j/k| I . Moreover, let for i = 1,2, ... and k>k(i)

k Xy Xy
= U (xs—ls X1+ '—b——}:)i
s=1 P

where p is such that b,—ag, = 377,

. k Xy— Xgo . \
Hy. = U (xsulsxs—l"' o if bi"'ai<3_l

§=1 2
and
k
Hy = L_)l(x —uX) if by~a; =14,
D=Cu U( N U Im)u U U Dy,
i=1 i=1 k=k{i)
and

@ ] @ ]
H=Cuo @GN UIyu U U H,.
i=1 k=k(l) i=1 k=k(l)

“ " For the sake of simplicity of our notation we keep on writing
4; = G\ U Iy (j=1,2,.).
ke=k(j)

J. Lipinski in [8] proved that D ¢ M,. !
We show that for every a ¢ H, dy(H', @)<1—4. In the proof we are using the

. d
method presented by J. Lipiriski in [8]. He proved that for all a e C\ U {a;, b},
ie=]
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<] o0
d(iU1A“ a) = 1. By inclusion 1p1 A H, we get d(H,a) = 1 and by Lemma 3(ii)
dy(H', a) = 0. The set

iyl( i\ U Iik)U U U Hik

i=1 k=k()

is open and it follows that for all a belonging to this set we have d(H,a) =1 and,
by Lemma 3(ii), also dy(H', @) = 0. It remains to prove that d(H', a)<1—1/8
o

for ae ) {a, b;}. J. Lipifski proved also that for all j=1,2, ...
=1

d(Udpa)=1 and d*(U 4,,8)=1.
i=1 e

It follows that for all i = 1,2, ...

) d~(H,a)=1 and d*H,b)=1.
Observe that if J<(a;, b;) and 1n 4; # @ then
) I =12,

We show that for all i = 1,2, ... dy(H’, a)<1—1/8. Let {I,};, be a sequence
of closed intervals such that {I,,},,,i1 converging to a;, I, =(a;, by) and there exists
¢>0 such that |I|>c-dist(e;, I,). Thus, for estimation of the mean density
|I, 0 H|/|I,] we need only consider the case where for every n there exists k = k(n)
such that I, = Hiy.

Indeed, if it was not true then, by conditions (1), (2),

|, n H|/|L| Zmin(1, 1/2) = 1/2.
We have inequality

dist(a,, I) = 275 —2"Xp+2)~* <dist(a;, L)< |[L)/e

0

Tl @7 =274+ 2)™ ) Hul <Ll e
and '

/1L <1/(e(p+1).
Let m = m(n) be a number of points x, € T, included in interval I,. Then

LA Hal  (m=1)260] _ 1 (m—1)
LI 7 Ul 1)k 2(m+1)

Observe that
(m— Dk | Ll <L) <+ Dk Tl .
Then ,
m—1 kL[ g] =2
m+1" kL Tal+2

5 — Fundamenta Mathematicae CXXV. 1
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and .
o 0 Hyl 1k=2/(c(p+1)
1Ll T 2k+2/(c(p+D)”

Since the sequence {I,};%, converges to a;, k(1) — oo, Thus, there exists N such
that for every n>N

1, 0 Hyl /1,1 2118 .

Hence lim |, n H|/|IL|>1/8 so Tm |I, n H'//ILi<1-1/3, and consequently
n-ro n-ro

dy(H', a)<1-1/8.
By the same estimation for points b; (i = 1, 2,...) and (1), (2) we have then
for ae H d(H', a)<1-1/8,

Define g(x) = x for xe(1/3,2/3)u Cu U (GN U I),
1=1 k=k()

g(x) = x, (S =0, lz 2,.., k), g(xs—-l""(xs-’xs—i)/z) = Xy +(xs_xs—1)/p

where p>2, x,€ ;=G and |G| = 37F and g is linear on the contiguous intervals.

It is easy to verify that g(H) = D. By Lemma 1 h = g~* ¢ H,. To show that h e Hs

we now prove that g fulfils the hypothesis of Theorem 5 [4], that is g is absolutely

continuous homeomorphism, g’ is essentially bounded and for every x0€(0,1)

there exists #.€ N such that x, is the point of dispersion of the set {x: g'(x)<1 [n}.
If x, € G;, where |G,| = 377, we take n greater than p and we have

{x: g'()<1in} " G; = @, so d({x: g'(x)<1/n}, Xo) =0,

Let xoe C\'U G;. Since {x: g'()<1}=(0, D)\ G 4;, d({x:g’(x)<1}, %) = 0.
i=1 i=1

The case where x, equals a; or b, is obviously reduced to a combination of
the preceding cases. By the definition of the homeomorphism g, g’<2 on the set
of its existence, that g’ is essentially bounded. On the intervals contiguous to Cantor
set homeomorphism g is intervals linear, so g is absolutely continuous, hence ap-
plying Theorem 5 [4], we get the desired result.

Now we construct an example of a homeomorphism which is in Hy\Hs. Let
x€(0,1). Let for n>ny, where 1/n,+x<1, p, = ln+x, q,=p,+r,, where r,

= (/=) ~1/m)ni(n+1). Let 4= (0, x1U U (s ). Then d(d, x) = 1. Now,

n
let g, = (p,+4,)/2 (n=n,), and define the homeomorphism by the following for-
mulae g(t) = ¢, for 0<t<x, g(p,) = p,, g(g,) = gy for all nzn,, and g is linear
on each interval (p,, ¢,) or (¢,, p,_). From Lemma 1 we conclude that h=g~'¢ H;.
To prove that he H, we use Lemma 1. Let EeM, and x ¢ E. We have g(E)
(-]

U g(F,), where {F,}", is a sequence of closed sets and for every n and x, € F,,
n=1

dy(E', %9)<1—n,, where 7, is positive for all ne N,

icm°®
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If {L,}2, is a sequence of closed intervals converging to y, and |I,]/dist(y, 1,)
>c¢ (¢>0), then for j=j, [9(E") n LN} = |E NJj\/\J;, where J; = g'l()'j), and
|}l > ¢-dist(xo, J;), Where xo = g~(y,). This follows from the linearity of the
homeomorphism g on each side of the point x,. :
Hence
—IgEYAIL —|E B
lim —~——-’g( ) = lim LaL/] <l-pn,.
1) 173l ’

n=oo n-w

Thus for every yo € g(F,), dy(9 (E"), yo)<1—n, arid Lemma 2 implies that g(E) e M,.

Now, let xe E. We need only to show that there exists ' n>0 such that
dy(9(E"), x)<1—n. Since Ee M,, there exists 5,>0 such that dy(E', x)<1-n,.
Suppose {I,}2%. is a sequence of closed intervals converging to x and there exists
¢>0 such that |I,|>c-dist(x, I,). S

We will show that there exist n, and ¢;>0 such that for all n>ny |J
>cy-dist(x, J,), where I, = g7'(J,), (n = 1,2,..). Let I, = [a,, b,], ne N. Then
|7, > ¢~ dist(x, I) if and only if b,—a,>c(a,~x) (we assume that x<a, for all z),
Then there exist k¥ = k(n), s = s(n) such that

inf(/,) € [Pagy+ 1 Pse) > . SUp(J,) € (Pat) ko) + 1> Psiy—xem] -+
By the estimation )
e+ D+x<a,<1fs+x, Y(s—k+1)+x<b,<l/(s—k)+x
we have 7
b=ty _ Us—B)=1f(s+1) _ k+1
1(s+1) T st

ay—x
Then
lim (k@) +1)/(st)—km)=c.

The sequence {I,},4 converges to x, then this inequality in}plies that k(z), s(n)
converge to co. Thus there exist ¢;>0 and n, such that

: Val > [(Pss Pyt 1) - k-1 oe
dist(x, J,) WAl

s—k+17 %"
Next, we estimate the expression |I, n g(E)|/|I,l. g'1/2 at every point which
exists, so ) ‘
I, 0 g BN = 9@, 0 EN\RIZEE A Tl L
We estimate expression |J,|/|],. . T
First we can see that

d(g’—l) (u) =2 for u‘E (PM qf’l)

dau
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and
dig™" ! 1 ,
O w=— for ueluurd.

Then we have
Ll =Wal =1L, O (g1, q;+1)]_|g~1(," A(Peris Qe+
+1, 0 (oo P=197H(E 0 (Gs, P+
1L, O Pymiet 1o Gomie D =197 Ty O P15 damr )l +
+1 O o ir o D= =197 Tn O (@~ 15 Ps=))]
S(A=2/Gs+ 3N, O Gas15 P +(1=2/(s =T+, O (@5 -k415 Po-)]
Srgpaf/2+ s /2 |
That is,
Wl 2 L =3 ot t /1T F o 1 M) -
By the estimation |/,| and the definition r, we see that
Ts+1 s—k+1
Ll E=DG+DE+D)

Ts—k+1 §

L~ =k G—~k+D(k~1)

Observe that s = s(n), k¥ = k(n) converge to oo and s—k>1. Hence there exists
0<d<2 and: ny such that for every n>n,

Fsrg | Fs—kt1
<d,
IZ,] 12|
that is, there exists #,>0 such that
@>1— -0>ny, for n>n,.
1L 2

The set EeM,. By the definition of M,-sets there exists ny>n, such that for
all n>n,

|E T, S
My -
, (A ¥
Consequently
l__*g &) A L > ! for n>
IInl 2’7:’71: ’ n1 .

Finally, [im |g(E") n LJ/II,|<1~3%.%, and we obtain the desired inequality
n—+ao
with 7 = {n.7,.

THEOREM 4. If the homeomorphisms g and g~* satisfy a Lipschitz condition
then both g and g~ are in H,.
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Proof. Let g and g~ fulfil a Lipschitz condition with constans I, and I re-
spectively. We show that g fulfils the condition H of Definition 5. Let A and B
be a perfect sets, and suppose A<, B. We shall prove that g(d)y=,,q(B). We first
prove that if {I,}7.; is a sequence of closed intervals converging to y and there

" exists a constant ¢>0 such that |I|>c-dist(y, L), for n=1,2,..., then there

exists ‘a constant ¢;>0 such that |J,|>c, dist(x, L), where J, = g1,
x=g"*(), n=1,2,.. Denote I, = [a,,b,]. Since |7,|> c-dist(y,,), we have
(by—a)/(@,—y)>c for all ne N (we consider a,>y).

Let J, = [a,, b}], ne N. Then

/ bn\"‘dn = g(b,’,)—g(af,)sL(b,’,—aﬁ,)

and
b,’,»-—a;,}_l_b,,—__a,‘a,,—y lcl=i_
ap—x  Lay—ya,~y L1 L
Thus
|l>cy -dist(x,J,), where ¢, =c/(L-]).

w0
Let 4 = |J F, where {F,}5%,
n=1
dy(B', x)<1—y,, where 7,>0. Let {,};2, be a sequence of closed intervals con-

verging to y such that |[,|> ¢-dist(y, I,) with ¢>0, then we have

is a sequence of closed sets and for every x € F,

lgB) il _ 1gB)ngUal 111BnJ

il where  J, = g7 (1) .
1) lg (I Ll |7
Since |J,|> ¢, -dist(x, ), Im | B’ A J|/|J,|<1—n, and thus Im|g(B') n LI/IL,)
11 . .
<1—-i7n,,. This completes. the proof of the inclusion g(4)c,,g(B). By Theo-

rem 3 we have g~ e H,.
The proof that g e H, is similar.

PrOPOSITION, Let bd denote the class of bounded derivatives on (0, 1). Let Hy,
be the class of homeomorphisms such that fo hebd for every bounded derivative f.
Then Hy,= H, and the inclusion is proper.

Proof. Let he H,, and E e M,. By Theorem 2.6 ([3], p. 96) there exist fe BA
such that E = {y: f())>0}. If g = k™" then g(E) = {x: f(h(x))>0}. Let ueR.
By Theorem 2.5 [3] E%(foh)eM, thus g(E) = E°(foh)e M, and so g~*
= he f14.

"“A. M. Bruckner in [5] gave the example of a homeomorphism # such that
and b~ satisfy Lipschitz condition but 4 ¢ Hy4. Thus, by Theorem 4, # is the ho-
meomorphism such that he H, and h¢ Hyy, so the inclusion js proper.
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Products of Baire topological vector spaces
by

M. Valdivia (Valencia)

Abstract. Let I be a set whose cardinal number is larger than X,. In this article it is proved
that there are dense subspaces of ¢o(J) with additional properties which are Baire and whose product
is not Baite, The same properties are obtained taking IP(I), 0<p< o, instead of cq(f).

1. Introduction. All the linear spaces we shall use are defined over the field K
of real or complex numbers. If E is a set, we denote by E® the countable infinite
product of copies of E.

Oxtoby [5] proved that the continuum hypothesis implies that there is a com-
pletely regular Baire topological space whose square is not Baire. Actually, Oxtoby
uses the hypothesis that the union of <2% subsets of Lebesgue measure zero of
real numbers has Lebesgue measure zero. P. E. Cohen [2], using forcing techniques,
gave an absolute example of Baire spaces whose product is not Baire. Later
Fleissner and Kunen [3] gave new examples of Baire spaces whose products is
not Baire space without using additional hypothesis of the theory of sets. In this
article we give examples of Baire topological vector spaces whose product is not
Baire using in part techniques of Fleissner and Kunen [3].

Given a set I and an ordinal « we denote by card I and cardo the cardinal
numbers of I and o respectively. If f<a, [8, af is the interval of ordinal numbers
closed in # and open in o, ie.,

[B,a = {6: p<é<a}.

We represent by w, the first ordinal such that card w;>¥,. We suppose [0, «]
endowed with the order topology. A subset of [0, af is said to be stationary if it
meets every unbounded closed subset of [0, «]. Let y be the first ordinal such that -
card I = card y and let T, be a mapping from [0, y[ in [0, [, » = 1,2, .. We shall
need the following results: o

(a) If card y>w, the set

{e<y: T,(0,aD<=[0,0f, n= 1,2, o}

is unbounded and closed in [0, [,
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