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On some dynamical properties of S-wnimodal maps
on an interval

by

Tomasz Nowicki (Warszawa)

Abstract. A globally expanding mapping is introduced. It has a uniform hyperbolic structure
on the set of periodic points and on the set of preimages of the critical point. For S-unimodal
mappings the existence of one such structure is equivalent to the existence of another. When the
iterates of the critical point are away from the critical point itself, then the mapping is globally
expanding.

0. Introduction. The aim of this paper is to present some results on the dynamics
of S-unimodal mappings of an interval. The results are related to the results of
Collet and Eckmann [1], Guckenheimer [3] and Misiurewicz [4].

In Section 1 we introduce two notions:

1. global expanding — which means that the length of every interval with two
consecutive critical points of f” as endpoints expands exponentially under .

IL. wniform hyperbolic structure on the set Per(f) which means that there are
two constants K> 0; A> 1 such that if f°(x) = x then | f(x)| > K2* and on the
set of preimages of the critical point C.,,, i.e., if f"(x) = ¢ then | )] > KAm
This notion in another form appears in. [1].

In Section 2 we prove that if f is globally expanding, then f has a uniform
byperbolic structure on Per(f).

In Section 3 we show that a mapping has a uniform hyperbolic structure on
Per(f) if and only if it has a uniform hyperbolic structure on C_ .

In Section 4 we demonstrate that if f has an uniform hyperbolic structure on
Per(f) then for n large enough f" has no restrictive central point. Hence f has
sensitivity on initial conditions (see [3]).

In Section 5 we prove that if f has a uniform hyperbolic structure on C_,and
for some K>0; 1> 1 and every n we have | f "(£(c))] > KA" then the length of the
interval of monotonicity of /" diminishes exponentially with ». Hence, if f ' has no
sinks and the images of the critical point are separated from the critical point itself,
then £ is globally expanding (see [1] and [4D).
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In Section 6 we estimate how fast an iterate of the critical point comes back
to its neighbourhood (see Lemma 2.7 [1]).

I would like to acknowledge many very helpful and stimulating discussions
with W. Szlenk.

1. Assuniptions, notation and definitions. Throughout this paper we shall deal
with a C3 mapping f: (0; 1> = {0; 1) with f(0) = (1) = 0.
We assume that

(L1

i.e., there exists a unique ¢ €(0; 1) such that f is strictly increasing on (0, ¢) and
strictly decreasing on (¢, 1) and f has a nonpositive Schwarzian derivative:

fis S unimodal,

S(x) 3 (f "(X)> '
S = - < for xsc¢.
T =56 "3\ 7e
For technical reasons we assume moreover that
1.2 | f* )] > )x—el

for some $>0 and every x e (0, 1).
We define  and L by
n=sup|f'(x)] L= sup]|f(x).
%(0,1) (0,1)

We shall use the following notation: for n = 0,1, 2, ...

fo = id; fn+1 =fn Of; xn =f”(x) .
We define:
C‘" = {x: (fn)'(x) = 0} ts C"W = Ulc"‘n I
©
G = {ci}iwl,....m Cp = UIC” »

Per,(f) = {x: f'(x) =}, Per(f) = Gil’er,.(f)-

We define 4, as the family of connected components of (0, I)NC-,, cardC_., = r,,

4, = {Ai}tao,...,r,,-
Observe that:

1.3)

for m<n we have either 4}, 5 4% or 4l n 4l =@,

icm°®
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We state following properties (see IL4 in [2]):

(14) If Sf<0 and Sg <0 then S(fog)<0 and Sf"<0.
(1.5) If §f<0 then |f’] has no positive strict local minima.
(1.6) If zeC_, then for some k<n, z; = c. |
(1.7)  The endpoints of f"(4}) belong to C, u {0}.

We denote by |4] the Lebesgue measure of a set 4.
We mean by (a, b) an interval with endpoints ¢ and b, not necessarily a <b.
For a given point @ different from ¢ we define &’ by

f@)y=f(@ and o #a;
by definition ¢’ = c.

Throughout the paper the letter ¢ is reserved for the critical point, z for prei-
mages of ¢, p and ¢ for periodic. points. The natural numbers will be denoted by
N, n, k, s, j, &, L Ag, A, Am, Ac are fixed estimates (larger than 1) of f'.
Kz, Ky, Ky, K ... are fixed positive numbers, defined later on.

DrrmNITION 1, We say that f is globally expanding if there exist two constants
Kg>0 and Ag>1 such that for every n=1,2,..and i =0,..,7, '

/(D] > Ke gl 43] .

DERINITION 2. We say that f has a wniform hyperbolic structure on the set of
periodic points if there exist two constants Ky >0 and Ay > 1 such that, for every
n=1,2,.. and every p e Per,(f) (i.e. p, =p)

1Y @) > Kyl -
2. Global expanding.

Proposition 2.1. Assume that f is globally expanding and fulfils (1.1) and (1.2).
Then f has a uniform hyperbolic structure on the set of periodic points.
Before the proof we note that under the assumptions of Proposition 2.1 we have

@1

and hence we have

LeMMA 2.2. Under the assumptions of Proposition 2.1, f has no periodic attracting
orbits,

Proof of Proposition 2.1. Suppose that for a periodic point p of a sufficiently
large period we have

diamd4, = max |A,,1<—A
oisr, Ky

22 Ps =P
and
2.3) 1Y () <A for some A<Ag.
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We assume that
24 p¢C, {pj}j=0,...,s—-1 nC.,=60.

The other case will be discussed at the end of the proof. For simplification we set
g(x) = ). By (1.1) and (1.4) we have Sg < 0. For any n there is an i = i(p) <r,,
such that p e 45, We denote the endpoints of 4%, by o” and ", «" <p <" Since
Sg <0 we have by (1.4) and (1.5) [{(g"Y ()| 2 |(@")'(x)| either for all x e (", p) or for
all xe(p, .

There are two possibilities:

1° The above inequality holds for any » large enough for the same side of p.

2° There are infinitely many changes of sides.

Suppose 1° holds for o", the other case being handled similarly. By the Mean
Value Theorem and by (2.3) we have for some y e (", p)

23) lg"(2)—g"@")] = (g") W) I[P~ < 19" (0)] |41)

ns
< ams 1 /'I,—"s - i J:_ .
: Ky £ \AE

By (2.5) and (2.3) we have g"(e") - p as n — co. This together with (2.4) implies
that for large n g"(a", p) N C_ = @, and hence «" = a"** = ..., which contradicts
diam4, — 0. Suppose now that 2° holds.

‘We choose n such that

@™ @ >1@"Y eIl for

and hence

xe (@ p)
and

(g‘"“’)'(p)l>l(g‘"“’)’(X)l for xe(p,p'*).

‘We claim that «” = o"** and 8" = p"**, for n large enough. Inequality (2.5) holds
for o™ and B"*"™. Suppose a"s# «"*!. Then

Wt e C_gy\Coy and g"'”(oc"*vl) eC,.
By the Mean Value Theorem we have for some y  (g"(2"*4), g"(p)) as o1 ‘e (e*, p)
dist(C,, p) < 19" @) —p| = 1’ 19" ) ~g"(p)]
, <, S l9'Cl 19"~ g"(n)] < L 19" = g"(p)] 5
recall that
L = sup [f(v)]

xe(0,1 .
As C,is  finite set, by (2.4) dist(C,, p) > 0. Thus the above inequality contradicts (2. 5)
and proves " = ¢"**, The proof of p" = f*** is similar.
In view of (1.7) we have g"(a"), g"(B") & C,» and so we can set g"(@") = ¢,
and g"(") = ¢, We have

G vs = G EY) = 0" = g(e,), = oy

icm
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By Definition l‘of global expanding and (2.3) we have

@6 lr-pl< % A M TR iz e sl s s=p]) 5
@7 ic/c,,q-s—Pl = lg ()~ 9P < L], ~p ,
= L*|g"(@")—~¢"(P)l < L*|(¢") (P)| |o"—p| S LS2"|a"—p| ,
2.8) IP=cpasl = 19" @) ~g" "B < g" ™Y (p)] [p—B]
< Ll (o [p~f"I S L* 3| p—pr] .
We put (2.7) and (2.8) in (2.6) and obtain

] -+ 5 qns s
2.9) o e x A SRS o = pl + LA™ p— )

1
- _‘Ml‘—(n-i-l)sLsins n_. an
ya L [o"~ B

1 L s A ns )
=50 G ws

For n large enough (2.9) contradicts (2.3), which, completes the proof for any
p ¢ C,. Suppose now that p € C,. Hence for some m, ¢,, = p. Thus there is a unique
periodic orbit with this property. By Lemma 2.2 there are no periodic attracting
orbits; so (/) (p)]>1 and we can take Ay = min(ig, (/) (®)*") > 1.

3. Uniform hyperbolic structure,

DeriNiTION 3. We say that £ has a uniform hyperbolic structure on the set C_,
if there are two constants K> 0 and A¢ > 1 such that for every natural n and every
ze(0,1) if z, = ¢ then [(/)(2)| > K¢le.

This definition is similar to Definition 2. Proposition 3.9 states that uniform
hyperbolic structures on sets Per(f) and C., are equivalent.

First we quote some lemmas, which will be useful in the sequel.

~ LemMMA 3.1 (= Theorem 1.3 in [4]). Assume that f is S-unimodal and has no sinks.
Then for every open interval U containing a critical point ¢ there exists a number
m = m(U) such that for every x € (0, 1) if x, ¢ Ufori = 0, ..., m—1 then L) > 1.

Taking U smaller, we may assume |(f7)(x)] > 4 > L. Set Ay = A'™. Since U is

open, there exists a Kj, >0 such that for every x e (0, 1) and natural n:

if ;¢ U for i=0,. then (Y ()] > Kag e -
© LEMMA 3.2 (= Lemma 2.6 in [1]). Let f be S-unimodal, x, yedi, Then
=3l = ((SYE Y 0D) 12 =21 -
As in Section 1, x' is defined by f(x') = f(x) and X' # x.

wyn—1
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Levma 3.3 (= Lemma IL.5.6 in [2]). Let f be S-unimodal with no stable periodic
orbit. Define
A= {xr x ¢ (x, %), 1= 1,..,n—1; x,€(x, %)}
Then every connected component of A™ is of the form (p, q') with p, = p and q, = q.
' Moreover A" C_, = @.

LemMa 3.4. Assume that f is S-unimodal and has a uniform hyperbolic structure
on Per(f). Then there exists a K>0 such that if p, = p then |(f") (p")| > Kij.

Proof. Since f(p") = f(p) we have
S
Tl

I

n
nru

.

G YN =Y E) L) = '(f")’(.l))

By (1:2) we have

r

/() —es] = l f[fxx)ux

c

&
G2 25[1)”‘(‘[2 >

and similarly, since n = sup |f"(x)|, we have
xea(0,1)

33) 1/ ()=l < ; o=l
Hence
r_. 1/2
(.4 p-c ;(?) )
p—c n,

We use again (1.2) and the definition of #
1T 3/2
f@ (5"

F'(p) "

In order to complete the proof we put (3.5) in (3.1).

Slp'—¢
A L
nip—c

3.5

" 9\
In definition 2 we can replace Ky by Ky (ﬁ) . Hence we may assume that

Y () > g Ay -
COROLLARY 3.5, Under the assumptions of Lemma 3.4
(" ool > K Ay «
For every component of ™ this is directly implied by Lemma 3.3 and (1.5).
LemMA 3.6, Under the assumptions of Lemma 3.4 there exist two constants K> 0,
A>1 such that for every x (0, 1)

Fxig@x,x) for i=0,.,n~1 then |(fY()|>KA":

icm°
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Proof. Suppose x; ¢ (x,, X,), i <n. There exists a sequence

0=j,<..<ji<Jjo=n
such that

xp € AT xp e AT L x = xy e o

It is obvious that x, ¢ (x;,, x),) for s < ;. By Corollary 3.5 for fixed j large enough
we can find a A, > 1 such that for s>j | /% > A1. We take an open interval Us ¢
containing no periodic points of period less than j+1. Let k be minimal with x, e U
We see that for some »<m we have

k=j —and Jji—j>j for i<r.

We now have

r—1
YN = 1 G =TT G, Y

By Lemma 3.1 [(f*)(x)] > Ky A4, and the assertion follows for

A= min(lg,dy) and K= Ky.

For the simplicity of further estimations we can modify

g to 4 and Ky to min(Ky, K) .

COROLLARY 3.7. Under the assumptions of Lemma 3.4, if (a,b) is such that

(@ b)) N (@@, @) © (b, b)) =B for  0<i<n

then
(@, bl > (@, b)| Kn ¥y -

Proof. This is an immediate consequence from the Mean Value Theorem and
Lemma (3.6).

Lemma 3.8 (= Corollary 11.5.8 in [2]). Iff is S-unimodal and has no stable periodic
orbit then the set C., is dense in (Ca, ¢y

PROPOSITION 3.9, Assume that f is S-unimodal with no stable periodic orbit.
Then f has a uniform hyperbolic structure on Per(f) if and only if f has a uniform
hyperbolic structure on C..,,. .

Proof. The only if part of the proof is an, easy consequence of Lemma 3.6.

The if part: We assume that, for every ze Co, if 2, = ¢ then

(/7Y () > Kedes
Suppose there is a periodic point p of period s and aA < A such that (f*)'(p) <A™
We may assume (f*)'(p) > 0, otherwise we take 2s instead of s. Let zy, 2, be_ tw.o
points of C.., nearest to p with p & (z1, 2,). By assumption f has no stable periodic
3 — Fundamenta Mathematicae 126, 1

Kc>0, /’Lc>1.
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orbit; hence we have f(z;) <z, <p and f*(z;) >z, >p. In consequence (zy, z,)
S j‘f(zl, 25). )
We define two sequences " and " by:

at = Zj, ﬁl =23,
@ = (s z)) @ B = () (e 22)) B (see Fig. 1).

flottls pos

FF (23 oo -
z; . / e
/'/
P
2
fo(z1)
gt oo

Fig. 1

By an analogous argument we have for every n
an<an+1 <p <ﬁn+1 <ﬁ"-
Since Sf<0, we have for every n: either (/™Y(a"*%) < (f™)
: /<0, : <™ @) or (fey(p**
< (f™)(p). Suppose that the first possibility holds. We have for some j < s Vi ’(z ) = 1):
and, by the definition of o, f™*/(o"**) = ¢. Hence B
2> () ()= (Y@
o Y@ty | Koagt
A (reH) ~ L

)b J ﬂ 8
= K, (—L°> ;'3’>Kc(zc-> e

For n large enough we obtain a contradiction, which completes the proof.

4. Central points and sensity lt)'
DBFTNI'IION 4. For n> l, we say that X € 0, 1) is the “al ﬁxé l70”lt Q
] y
if Xn x and (f) (X“CD> 0. ( ) “ ff

Remember that in (x, ¢) we do not necessarily have x < c.

DEFINITION 5. W i P opn g s 5
(., € say that the central fixed point x of | S is restrictive if f"(x, x')

Dynamical properties of S-unimodal maps 35

Lemma 4.1 (= Lemma IL7.8 in [2]). Assume that f is S-unimodal and. has no
stable periodic orbit. Let p be the restrictive central point for f". Then fip,p)
A, p)=@ fori=1,.,n-1 _

PROPOSITION 4.2. Assume that f is S-unimodal and has a uniform hyperbolic
structure on the ‘set Per(f). Then there is an N such thot, for all n> N, f* has no
restrictive central points.

Before the proof we quote a theorem proved by Guckenheimer in [3], which
will show some consequences of Proposition 4.2.

Let us first introduce the notion of sensitive dependence. We say that f has
sensitive dependence on initial conditions if there is a set ¥'=(0, 1) of positive
Lebesgue measure and an ¢ > 0 such that for every x € ¥ and every neighbourhood U
of x we have a ye U and an n30 such that [x,—y,| >& '

TreoreM G (see [3]). Let f be S-unimodal with no stable periodic orbit. Then f has
sensitive dependence on initial conditions if and only if there is an N such that, for
all n> N, f" has no restrictive central point.

Proof of Proposition 4.2. (See Fig. 2.) Suppose that pis a restrictive centra
point for f*. There exists a unique g € (¢, p’) such that g, = g and a unique z € (¢, 9)
with |(f"' ()| = 1. We define y e{c, g) by

Y = sup [(SY ) -

xe(c,q)

cn L\f"

. Fig. 2
We shall estimate [(f"Y'(»)—(™'@}:

@n 1Y) = (Y@ =1 f (fM'(xdxl <1 } 1Y () dx] -

g
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For x ¢ C_, we have

n—1 n—1 n-
42 Y@ = (’l;IO fx)) = SZIO F0x)(fY (%) iIJ:f ‘)
. iy
o (fn)( ) Zf (xv)' (f.)(x) .
)
In view of (1.2) we have
@y o< L Ty Z krvey,

By Lemma 4.1 and by (3.4) we have, for s<n and x €, y),

12 1/2
4.9 |xg—c| = <~9-) [x—c] = (ﬁ) lu—c|.
n n

By this and the definition of y we get from (4.3)

Y h " 1 Y/, Ny
o wvers(}) 2 (oversioro > ).

s=1
We put the above inequality in (4.1) and obtain by integration

nwl

(Iy,, =+ Z [7s ~u,l>

“o  UYoI-1< (g)

By Lemma 4.1 we infer that Corollary 3.7 holds for (s, 39 as (a, b) and f*~* as o

Hence

%)) [Pn=10,] 2 Ky |y~

and

(4.8) Zlus_yl lyu unl Z)L,, ,.< Iyn""urJ 1 R
: “Ka 2ﬂ~1 ’

in consequence we have
il(f")'(y)|-1|<(9) < [CRL)

y,, U,
Ky(lg=1)

Uu—c¢

).

icm
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Thus, in view of the fact that |(f")'(»)| - o0 as n — oo for some K> 0 independent
of n, we have

Uy—q
Uu—c

_ |G

u—c¢

Upy=n
u—c

.9

=

>K;

in order to complete the proof it is now enough to show that the quotient on the left
side of the last inequality tends to 0 as # — co.

We set |(c, p')| = d; so by (3.4) we have

w\L2
I(p,p')lsd(l+(5) )

In view of Lemma 3.2 and Lemma 3.4 we have by |( MW =1
4.11)

(4.10)

|t —pl 2 Ju—p'| (Ka 2)"1* .

Since p is restrictive, u, € (p, p’), and we have

4.12) lu—p'| < Ty = K d(g)~1?  for some K, >0
A

and

4.13) lu—c| = |p'—c|=lu—p'| 2d(1- Ky Az"?) .

Using again Lemma 3.2 and Lemma 3.4, we obtain

@14 "G ~1"@)| > Kadigp'—al,

but as

lp—ql =

. W 1/2
lp—al+1p"—4ql = Ip—p'léd(l-k (5) )

we can write

n 1/2
(4.15) d(1+ (§> )>(Kg/1}‘1+1)lp'—ql
and
1/2
(+(5) )
4.16) =gl <|p'—ql < ——"—"=.

Kglg+1
By (4.13) and (4.16) for some K, >0 we have

()

(Kadg+1)(1~K 25"")d

W—q

@17 <K,\g"
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The last inequality contradicts inequality (4.9) for large n, and thus the proof is
complete.
We can obtain a stronger result if we assume that
L@ =10 el 1 1@l
is not too sma.ll
PROPOSITION 4.3. Under the assumptions of Pr oposztwn 42, xf we have addztm-

nally for every n
1y )l > K™,

where K >0 is independent on-n, and A is fixed by Definition 3, then fordt,, = (c,d)
with a, = ¢ we have
|4l > Ky YAV

Jor some n-independent Ky >0 (see. Fig. 3)...

Ch "

Fig. 3

Proof. Let 4{> 4}, ,; then 4} contains a central ‘point p (or p') of f*. Let
pedi,,; the case with p' e 4}, can be handled similarly by Lemma 3.4. By
Lemma 3.2 and Proposition 3.1 we have for some K, >0 .
.18) 17", o> Ky del(p, a)l -

Again by Lemma 3.2, (1.2) and the assumption we have for some K3 >0

El“n"cl Zleprr eyl Zlensy P1| > Ky(de Agnlz)jlzlct”‘}’ﬂ

Hence for some K, >0
en—c|> > Ky A e—p|® .
Combining this inequality with inequality (4.18), we obtain the assertion.

icm©
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*. 5.-The length ‘of the interval of monotonicity. In this section we -shall deal with
a functlon for which there ex1st two constants Kc >0 and Ag>1-such’ that for
gvery n *

) YDl > Kol

and if 7, = ¢ S

o YOI > Kol ,
Such functions have been studied in [1], where it was also proved that, if f has

no sinks and dist(C,, c)>0 (see [4]), ‘then f satisfies (5.0) (Appendix in [1]).
First we prove.a consequence of Lemma 3.2:

“ " LEMMA 5.1. Let f be S-unimodal. Let A = (a, b) with a;, = c for:some k<n.
Let ye(a, b) such that ( f")”(y) = O. Then for every x € (a,y) we have

¢.1) lx,.—ﬂnl> /- l(f""‘) (xk) (f” -ty (ci)l“zlxrd”2
T
and
. - B ‘92 . " . i " v .
2 (Y Gl> pm [(F* 2 (e (Y @) 1x—el .
Proof. By Lemma 3.2 and (1.2) we have
(5.3) R N I VA C ) B i C Y

((f " ()
ey

3
AU (AR A (A Ry NG Pre—cl?,

172
(e 1)(01)) |xkj-1.’cx|

which proves (5.1). Again by Lemma 3.2 we have

= el (Y () - (/Y @) x—al .
In view of (1.1) we may estimate

5.5) : Y Ix=al > |x,— gy -

Now we put (5.4) and (5.5) in (5.3) and simph:fy

.4 = c]¥? >

1G> l(f" M CH] I(f" *y e (Y G Y @1 - [ —el -
As ("5 () (Y (x) (f"Y(x), the proof is complcte
, PROPOSITION 5.2. Let f be S- ummodal and satisfy (5.0). Then for some K >0
qnd A>1 and every n
diamd, < Ki7".
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Proof. Let 4\ e4,, 4t = (a,b), ay= ¢ =b,, r<k<n. Suppose first that
c€/"(4}). There is a z € (a, b) such that z, = ¢. We shall estimate separately |(a, 2)|,
I(z, b)| being handled similarly. Let u € (a, z) with [(f"Y®)| = 1. By Lemma 3.2
and (5.0) we have

1> ]ull*zn' >K(17/212/2]u'—z| .

It is now enough to estimate |u—a}. By Lemma 5.1 and Lemma 3.2 we have for
xX=u

\92
69 1> 4 e (Y@1Y @ (Y @l =l

If |(fYW) =As" then by (5.6) |u—a|<K,A5"™
(f"-.k) (uk)| > Ac and by Lemma 5.1:

1> Ju,—ay| > Ka(Ao A ") 2y~ |12

I [(f%(W)] <AS" then

and hence

[—c] < KAg™? .

Let Al= 4} and 4] = (w,v); z, ue (W, a), w, = ¢, s <k (see Fig. 4).

n
{0

=y A

“ag wz
Fig. 4

k_PysCorollary 3.7 and (1.3) |f%(4d|> KslAl| and by Proposition 4.3
|S*7*(f°0v, @)l > K| f*w, @)]. Hence

|£*0w, a)l > K |(w, @)| > K|(z, a)]
But

LS5, @)l = W=t + =] < |(F2Y @]+ Ky Ag™?

This proves the assertion in the case ¢ e f"(45).
Suppose ¢ ¢ f"‘(A) For some j: A< 4] and as g, = ¢ we have by the first

gart g)f the proof [4}] < |4}} <KgA™k It is now enough to show that n < 2k (see
18,

icm°®
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Fig. 5

Let us consider /=" and f*~" on the interval
: fr(A:) = (a, b) = (d,, C) .

Since f*~"(a,) = ¢ we have a fixed point of f*~" in the interval (a,, a;) and hence
f**a,, a)) s c. Thus 2(k—r) > (n—r), which completes the proof.

COROLLARY 5.3. Suppose that f is S-unimodal with no sinks. If dist(Cy, ¢)>0,
then f is globally expanding.

This has been also proved by K. Ziemian by anather method in her Ph.D.
thesis (Warsaw University). T

The proof of the case where cef"(4:) follows directly from Proposition 5.2.
Otherwise the direct use of Lemma 3.1 is necessary. We omit the details.

6. The time of comeback.

Proposition 6.1. Let f be S-unimodal without a stable periodic orbit. Then
there exists a K>0, andang,>0 such that, for every € (&, 0), if le,—cl<e
then n> K|loge].

Proof (see Fig. 6). Let Aby; = (z,¢) and 453} = (¢,2); m = c.

As at the end of the proof of Proposition 5.2 we have n < 2k and there is a fixed
point g of f* in (z, z’). Let n be the smallest positive integer with |¢,—¢| <e. We
have by (4.2), as L= sup | f'(x)|

xe(0,1)

61 1<I(HY@-(fY@I< JSup I(f")”(x)l lg— 61<n L"(L" -
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If n =k then

1
> le,—el > lg—el = lg=c| > g L7

If 7> k then there is no fixed point of f* on (z, z'). This folldws directly from the
fact that if / has a fixed point in (z, ') then it has a central point, and hence n = .
We define y by |y—c| = y~*L™%"*%, By (6.1) for n we have y e (z, 2’). We have

YO = 1Y Ol LGN <L gly—cl S L7,

We may assume that, for xe(z,2), |x,~c|>|¢,~c|; otherwise cither [z,~—c,|
= |¢;x—c¢| < |¢,—c|; which contradicts the minimality of n, or there is a v € (z, 7')

) ISR\

Fig. 6
withiv, = ¢, which contradicts the definition of z.. Assume ¢, > ¢, the case ¢, <c¢
being handled similarly. We construct the line 2(x) = L~"(x—¢)+ ¢, and define T'by
F=H(T). Since there is no fixed point of £ on (z ) and by (1.5) (/") l¢e,m| <L ™"

we have |T'—c¢| > | y—c|. By definition |T—c| L™"|T~¢|+|c, —c|; hence for some
K,>0 independent of n we have :

o> ley—e] = [1=L™"| [T—c| > |1 =L |y—c| = KoL
and .
. ‘ logKsfe
L 2n> R
B e logL -
which implies the assertion.
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