@ ©
icm STUDIA MATHEMATICA, T. LXXXI. (1985)

On the pointwise ergodic theorems in L, (t<p< x)
. by
R, EMILION (Parisj*

Abstract. Using M. A. Akcoglu’s estimate {1] we show that
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for any fel, (I <p <o) and any positive operator T on L, which verifies
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or more generally sup [[(1—k) ¥ k' T||, < 1. For such operators (which are not necessarily
O<ket i=0
contractions) we also oblain the pointwise ergodic theorem in L,.
Introduction. Let (X, .7, u) be a o-finite measure space and T a positive
operator on L,(X, 7, =L, 1 <p<cc.
M. A. Akcoglu’s powerful estimate [1] is
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for any feL, and any positive contraction T on L,.
A trivial example shows that a positive operator Ton L, (1 <p < x¢)
which verifies
I+ ...+T"!
(%) supﬂm——-———mﬂ <1
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is not necessarily a positive contraction on L, (1 < p < x): take X = {1, 2},
0 1+e

00
Of course, the converse is true.
Tun this paper we show that M. A. Akcoglu's estimate [1] yields an

il =pl2' =1 and T=

J with & > 0 small enough.
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estimate and the pointwise ergodic theorem for positive operators on

. x n
L, (I < p < o) which verify (+) or more generally 051’:pl(1 -0 Y KT <1.
<k< i=0
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been introduced by Professor A. Brunel. The mean ergodic theorem is
proved in [4]. I would like to express my gratitude to Professor A. Brunel
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1. We recall the

DEFINITION. A resolvent on a vector space B is a family (1¥3),., of
linear operators on B such that Vi=Vy=~(A—mVy ¥, for all A, u> 0.

Examples of resolvent are
@ Ti

V., = —5w77 Where Tis a linear operator on B;
= L ’

Vi=f[e ™Tds where ()5, is a semi-group of operators.
0

Ergodic theorem for resolvents on Ly were obtained by D. Feyel [2]
and R. Sato [7], [8].

The following appears as a consequence of M. A. Akcoglu's estimate [1]
and the Hille-Yosida theorem ([6], p. 261).
(1.1) THEOREM. Let V= (AV));50 be a resolvent on L, (X, #, p)(l <p<w)
such that AV, is a positive contraction Jor any A > 0.

Then, for any feL, one has

(12) lisup |27, 11 1< =211,
>0 p—1
(1.3) lim+ AVif exists and is finite ae. on X,
10
(1.4 lim AV,f exists and is finite ae. on X.
A=+

Proof. Since L, is reflexive and AVl <1, one sees that T, = strong-
lim AV, exists (see e.g. [4]). Ty is a positive contraction on L, and the

A=+ on
resolvent equation V,— Vi= =V, V,+uV,V, (as #—+0) shows that
Vi = ToVa(= ¥; T,). This implies that T, = T2 and thus H = To(L,) = To(L,)
is a Banach space. See also R. Sato [7].

Therefore, (AV;), ., can be considered as a resolvent on H which verifies
s- im AV;h="h for any heH and consequently the Hille-Yosida theo-

A+
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rem ([6], p. 261) shows that AV;h= (e * A hdt for any heH, where

0
Ah= lim e ™exp(nt-nV,)(h). Since nV, is a positive contraction, one
n-+ o

sees that T,=A4,0T, is a strongly continuous semigroup of positive
contractions on L,. Note that (T)),_, = Tg.

t
Now, put §,f= [T.fds for any feL, and > 0.
0

o
I D,=1k2"" k=1,2,...} and D= l:JoD,,, one has

. St
suva‘l = sup §'—'f= lim sup 5/
t>0 I teD n—++w teD, t

for any feL}.

Also note that

2—n

k=1
§5f=_11; sz—n(%f Tufdu> for any t =k27"eD,.
t =

j=0 J

Hence M. A. Akcoglu’s estimate [17] applied to T;-» gives us

2""
1 k-1 1
sup S[f = S\lp-k" Z sz__,,('ZT"'J. Tufdu)
iteDy tollp :;Nl =0 o
p |1 ( P
5= Sp-n S| S — ISl
S1r>~1“2"“ z f, 1!
This implies
S,
(1.5) sup 3Ll < P jfl for any feli,
t>0 -t p—1

Now, for any >0 and h= T, f, feL}, an integration by parts gives

w

Vih = /IBMM S'fdt < (sup _S_"/_‘) Ae—lttdt.
’ >0 I
0 0
Thereflore,
" @ S
AVih < sup§‘7f“ flze“*‘tdt =sup‘~'ti
=0

[}

t>0

and

p
”il:]SAV,_ H| < FI“f”-
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Thus, if feL, and h = Tyf, one obtains
14 .
lsup V311 = llsup 2V; (/I < = [I/1].
>0 >0 P

Hence, for ahy feL,, llsup|AVifl 1l < };-pwl—HfH. This proves (1.2).
A>0 -
We now prove (1.3). Inequality (1.2) shows that the set C
= {f] lim A¥,f exists a.e. on X is closed in the strong topology of L,.

e + }
Indecd, if s-limf, = f with f, & C, then, for any ¢ > 0 and f, € C such that
ILfi=7Il <& we have

— , - v T (e 2,
I lim AVe f=2 VeI < B V(=R i 127V (F=Ll ] < 5

Hence feC. o

Now, L, = Iny V@ (I-2¥,)(L,), where Inv V= {feL,| AV,f = f for any
A >0} (see eg [4]). It is clear that InvVc C.

On the other hand, if f = (I~aV,)(g) for some x > 0 and 4 &L, then

i f =V I—aV)g) = AV,(I=AV))g = AV, g =22V (V, ).
Since V,yeL,, lim AV,g =0 ae. on X and since supAV,(V,g) < +%
i=o0t im0
a.e. on X (1.2), one has lim A*V,(¥,¢) =0 ae. on X. Therefore, lim‘ A, f
g Pvest
=0 ae. on X whenever f0=(1——1 V) (g)-
Hence C contains Inv V(I —aV,) (L,).
Since C is closed, C = L,. This proves (1.3).
To prove (1.4) consider similarly the set ' = IfeL,) lim AV,f exists

Ao
ae. on X}. C'is closed in the norm-topology of L,(12). LetfeL, f*=T,f
= lim pl, f verifies AV, f = AV, f* for each 1 >0 (see the proof of (1.2)).

at oo
Therefore, to prove that f eC’ it suffices to show that J*e (" and since ' is
closed, it also suffices to prove that uV,feC' for each u > 0. This is casy:
one has

. An A . t .
WS = T = Vaf) = 72 =5 s

. A
Since pV, f e L,, one has uVf< +oovae.on X and lim /Tu
Aok o A=
ae. Since sup|AVif| < +o0 ae. (12, one has lim Zlfmm,/'mo ae.
i>0 Ao A=
Therefore  lim AV,pV,f = uV,f ae. on X. Thus, u¥,feC’ and (' = L,.
A=+ oo .

Note that - lim AV, f= T,f ae. on X.
A=t

icm

W =l f

Pointwise ergodic theorems in L, 175

DoRcmark. In the proof of (1.1) one has seen that AWV f=inT,f
= l e AT, f)ds where (Ao is a strongly continuous semi-group of

contractions on Ty(L,). Note that (A0 T)s0 is a semi-group on L,.

Now, if (U)o is an arbitrary semi-group of L,-positive contractions,
(1.5) shows that

t
fu.saf,
0
fgg s o1 Il for any feL,.

This implies (see [3])

{U, fds
0

(1.6) im & —y s

! ; ae. on X.
t-0

On the other hand, for any f = L}, any t> 1, one has

t
- U, fds
n 1 $Us n+l 1 2
e & e Uj <0 . ~
n+1 nj;o if < t n n+1j‘§00]‘f= where n = [r].

. . 1 n—1 X
Since lim - ¥ U{f exists and is finite a.e. on X [1], one has
nt+w B g

}U,fds
(%)) lim &

1+ o0

exists and is finite a.e. on X.

Note that (1.6) (resp. (1.7) implies (1.4) (resp. (1.3)) (Abelian theorém
[10], p. 197), and conversely (1.4) (resp. (1.3)) implies (1.6) (resp. (1.7)
(Tauberian theorem [10], p. 209). .

2. We recall "[4] that in any Banach space B a sequence (a,),.y Which
ao+ e +a,,

verifies M = sup

< +0o0 necessarily verifies

e
2.0 (1=K Y Ka, is defined for any k: 0 <k <1
i=Q
and ‘
a0
(2.1) sup (1=K Y. K ajl < M.
0<k<l i=0
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(2.2) DermTION. An operator T on B will be called a C-contraction (resp.
A-contraction) if

I+ ... +T"Y
supl——*T’—‘_“<1

neN

nz1

(resp. sup [[(1-K) 3, KT <1)
0<k<1 i=0

As we said, a C-contraction is necessarily an A-contractiop (2.1), and
a C-contraction on L, (1 < p < o0} is not necessarily a contraction (see the
Introduction). sominated dic

We can now state the dominated erg ' -
(2.3) TueoreM. Let T be a positive A-(or C-)contraction on L, (1 < p < 0);
then, for any felL,, one has

0
; p
1—k) Y K TS| < =11l
24 ||os<111;1<)1l( )i=zo l“ h p—1
I+ ...4+T"? p
L < @ — s
(2.5) sup " S \ep_lllfll
N LA i i d is finite ae. on X
26) f*(x)= lim —-——T—————f (x) exists an e. ,
n—+ow
™f
lim =0 ae on X,
@7 n—to N
n— 1 [ ——
(2.8) strong-lim1+ exists and L, =Inv T+(I-T)(L,) [4].
n—+w n
Remarks. ~

—  (24) generalizes a result of S. A. Mec. Grath [5].
— (25) and (2.6) generalize [1].
- lim(l—k)i K T'f exists a.e, on X as k- 17 (1.3) or as k— 0" (1.4).
i=0
— Tf*=f*
Proof. (24) is a consequence of (1.2), (2.1) and (2.2). Indeed,

0 . o0 Tt .
(I*k)igokl T‘f=ﬁigzom (Wlth k= 1/(].'*‘1))

is a particular case of positive contractions resolvent ((2.2) or (2.1))."
(2.5) is an immediate consequence of (2.4). Indeed, for any neN, n2 1,

icm
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any k: 0 <k <1 and any feL, one has

I+ ... +T | I+ .. 47t
S i

1 =
n 'fls;Flgolellf]

n

1 o
SM — 1 (3
nk"“(1-k)(1 k)‘_;ok T/l
1 o
€ e 1—-k iT
11—k R, 1 =0 X KTl
Se sup (1—k) Y K'T'|f| (take k = 1—1/n).
O<k<1 i=0

This inequality also appears in [2], p. 154, [8] and [3] (in the continuous
case).

(2.6) is a consequence of (1.3). Indeed, for any feL}

fim 23 S a
im e = lim A mAT
1m0t i=0 (;L+1)1+1 et 1;09 f

= klilln‘(l-k) Y. k' T'f exists and is finite ae. on X (1.3).

i=0

Since T'f is positive, the tauberian theorem [10] in the form given
in [4] shows that
. T4 T
lim —MM———
/n—)+uu

and thus for any feL,.

f exists ae. on X for any fel}

(2.7) is an immediate consequence of (2.6) as
Sp=1I+ ... +T" 1Y),

3. Remarks. Any positive C-contraction on L, (resp. on L,) is necess-
arily a contraction [4].

As we said in [4], any strongly continuous semi-group (T),5, on
t

a Banach space, such that sup t™!||[ T,ds| < 1 is necessarily a contraction
t>0 0

semi-group; (1.5) is an estimate for such semi-groups (if T is positive on L),

01
If p=2 then T= [0 ;)H: J is a C-contraction on L, if and only if

46 +85—~5 < 0; the best value possible is T= [g (3]/2] and ||T)| =3/2 > L.

If Tis a mean-bounded positive matrix then T is necessarily power-
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bounded ([4], Theorem 4.2, and [9], p. 11, Prop. 34) and lim T"

n—+ o

T+ ... +T"!
= lim P"where P= lim (——t——f———) (9], Lemma 3.3, p. 11); there-

n-—++w n—+ oo

fore one has lim |T"|| <1 for any positive C-contraction matrix.

(1]
(2
31

[4]
(5]

[6]
|

[8]
[9]
[t0]

n—+
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Borel’s theorem for generalized functions
by
H. A. BIAGIONI] (Campinas) and J. F. COLOMBEAU (Talence)*

Abstract. Generalized complex numbers and new generalized functions were introduced in
order to give a meaning to both the value of any distribution at any point and to any finite
product of distributions. In this paper we prove: Given any sequence (c,) of generalized complex
numbers, there is a generalized function f on R such that S®(0) = c, for all n. This result shows
a coherence between generalized numbers and functions similar to that of the classical case.

Introduction. One of the authors introduced a generalized mathematical
analysis in order to give a mathematical sense to any finite product of
distributions and to classical heuristic computations done by physicists, see
Colombeau [1], [2], [3], [4]. This generalized mathematical analysis deals
with new generalized functions, more general than distributions, and with
generalized complex numbers such that, if G is any generalized function on
Q < R" open and if xeQ then G(x) is defined as a generalized complex
number. )

In this paper we prove Borel’s theorem in this setting: given any family
{C4)zenn Of generalized complex numbers, there is a generalized function G on
R" such that, for any ae N",

. a[al G)(O)
———— = C,.
(6x';1 v OXEn
This shows a deep connection between our generalized functions and our
generalized complex numbers, similar to the classical case. The proof is more
technical than the classical one given in Narasimhan [5], since we have to do
more detailed computations and estimates.

We use the concepts of generalized functions and the terminology
defined in Colombeau [3]. According to Colombeau [3], we consider an
algebra C* such that if G e %*(Q) and xeQ then the value G (x).is defined as
an element of C*,

* This work was done when the second-named author was visiting professor at the
University of Sao Paulo, Brazil, in July —September 1983 thanks to financial support from
FAPES P and IME USP,
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