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On boundedly order-complete locally solid
Riesz spaces

by
IWO LABUDA (Poznasd)

Abstract. This is a continuation of [L]. In particular, the terminology used therein will be
kept here. The paper is devoted to a study of boundedly order-complete spaces, ie., spaces
having the Bounded Order-Completeness property (BOC)(%).

§1 is preliminary and relates BOC to other conditions of similar type; Corollary 1.4 is
perhaps of some independent interest. The main result of § 2 (Th. 2.6) asserts that Hausdorff’
locally solid universally complete Riesz spaces have BOC. In § 3 spaces in which BOC already
implies local order-closedness are investigated. In particular, the following result (Th. 3.1) is
proved:

Let (L, t) be a locally bounded-solid Riesz space having BOC, If L admits another order-
continuous metrizable locally solid topology, then (L, ) is locally solid-order-complete(?).

Some applications are given in § 4, where the BOC property is characterized in terms of
different “lateral” nets.

This paper should be treated as a continuation of [L]. In particular, the
same terminology will be used and, to some extent, developed further.
Notational conventions and the terminology not explained in [L] or here are
-as in [A&B]. Recall only that the adjectives “bounded” and “boundedly”
always refer to topological boundedness, other notions of boundedness being
qualified. :

As the general Archimedean Riesz spaces are concerned, the same point
of view as in [L], § 4 is adopted, i.e, whenever convenient, a space L is
automatically identified with an order dense subspace of its universal
completion [, and L’ is taken to be C®(2y).

§ 1. Preliminaries. In this section a discussion relating the Bounded
Order-Completeness property (BOC) to the Dedekind Completeness (DC)
and the parallel “pseudo-properties” is given.

A locally solid tRs (L, ) is said to have

Bounded Order-Boundedness property (BOB) or to be

(') This is the “Levi property” of Aliprantis and Burkinshaw [A&B] and the “weak Fatou
property” of Luxemburg and Zaanen [6].
(?) ie., a Nakano space in [F], [A&B]}.
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boundedly order-bounded (%) if:

1 0<x,1, (x) t-bounded =(x,) is order-bounded,

ie, Ixe L so that x, < x for all «.

It is fairly clear that (L, 7) baving BOB must necessarily be Hausdorff
and therefore Archimedean. Assuming additionally that L is DC, BOB
becomes:

Bounded Order-Completeness property:

2 0<x,1, (x,) -bounded =x, 1x (ie, supx, = x exists in L),
In fact, it is easy to see that the following holds.

L.1. ProposirioN. DC+BOB = BOC, ie., (L, 1) is boundedly order-
complete iff it is DC and boundedly order-bounded.

“Pseudo-analogues” of the above properties may also be considered (cf.
[L]1, § 0), namely:

Pseudo-Order-Boundedness property (POB):

To<x, T, (x) 1-Cauchy =3xe L, x, < x for each o,
whereas under DC one has

Pseudo-Order-Completeness property (POC):

2 0<%, 1, (x,) v-Cauchy = x, 1 x.

Similarly to BOB, POB implies Hausdorffness. On the other hand, POC
does not imply DC since even (topological) completeness does not imply DC
in general. When sequences replace nets, one obtains o-properties: ¢-BOB,
o-POB, etc. ...; trivially ¢-BOB implies o-POB,

The following easy propositions shed some light on the significance of

the properties under consideration. (L, 7) is the topological completion of
(L, 7).

1.2. PROPOSITION. An F-normed lattice (L, 9) has ¢-POB iff (L, §) embeds
in (L2, 79,

Proof. Since L is full in L% the “if’ part is clear. Moreover, the
metrizability assumption is not needed in this case. “Only if”: by [A&B],
153, any £eL is a difference of upper elements § and Z. It is clear that j and
Z are in L’ if 0-POB is assumed. ‘

. 1.3; Prorosmon. 4 Hausdorff locally solid tRs (L,t) has BOB if
L* =D

Proof. By a maximality argument ([L], 3.3), the inclusion L’ = L* i
always true. By [L], 2.5, L* = {ye [": L, is bounded}. Since L, 1y in L, by
_ BOB there exists an xe L such that y < x. It follows that vel?ie, L* = |2,

1.4. CorovLAry. If (L, @) is an F ~normed lattice having BOB, then it has

(%) This is the Levi property of Fremlin [F].

icm

_ Boundedly order-complete Riesz spaces 247

the unique F-lattice enlargement (L, ¢%). In particular, (L%, 0°%) = (L%, ¢%),
ie, (L%, ¢% is enlarged.

. Proof. Suppose (M, p) is an F-lattice enlarging (L, ¢). Then
(L2, 0% = (M, p) continuously ([L], 3.2). On the other hand, M < L* ([L],
33) and L* = I’ by the above. Hence M = L’ and consequently u = g’.

Finally, in order to have a more complete picture of the situation, recall
the following facts.

1.5. By [L], 1.6, POC+locally pseudo-s-o-c = locally pseudo-S-O-C .
= MCP and the o-version of this result is also valid.

1.6. By [L], 1.5, BOC +Iocally s-o-c = locally boundedly S-O-C and the
o-version of this result is also valid. .

1.7. By a theorem of Amemiya (cf. [K&AJ, p. 378, Th. 2 and [L], § 5 for
some comments concerning this result), in metrizable spaces ¢-POC implies
completeness or, equivalently, o-POC implies locally o-pseudo-S-O-C.

It is therefore natural to ask for an analogue of this result, replacing
“pseudo” by “bounded”. Such an analogue exists and will be treated in some
detail in § 3. :

1.8. In nonmetrizable spaces even DC+MCP = completeness is an open
problem and, by the Nakano theorem, locally boundedly S-O-C spaces are
complete.

§ 2. Universally complete spaces have BOC. Let L be a universally
complete Riesz space and let © be a Hausdorff locally solid vector topology
on L. In view of the results of Fremlin [4], § 3, there is little hope that it will
be possible to decide whether such < is locally boundedly order-complete,
since it would imply in particular that the real-valued measurable cardinals
do not exist. However, quite remarkably, it is possible to decide that the
whole space (L, 7) has BOC. The remaining part of this section will be
devoted to the proof of this result.

The proposition which follows may be found e.g. in [A&B]. Since it will
be used below, a simple proof is provided for the convenience of the reader.

2.1. ProrosiTiON. Let L be a o-laterally complete Archimedean Riesz
space and t© a locally solid topology on L. Then

(i) For any disjoint sequence (x,) = L., x,— 0 ().

(i) For any x,}0, x,—0 (7), i.e, T is o-order-continuous.

Proof. (i) Indeed, let u=(0)- ), nx, =sup{nx,}. Then x,<(1/nu

n=1

-0 (7).
(ii) Consider L as a subspace of C®(€2;) and take x,]0. It will be

sufficient to show that for each &> 0 there exists uecL, such that .

0 < x, < (I/nu+ex, for ne N. To this end put E, =cl{te Q. x,(f) > ex, (1)}

2 - Studia Mathematica LXXXI.3
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where “cl” = closure in ©;. One has
(a) Xy K Xp X, + Xn Xap B, S X1 XE, T EX1

Consider v,:= X yg,, neN; v,|0 since ev, = ex1 xg, < X, | 0.

o0 <]
(b) Xy KE, = D) X XENE 4y = O (Ui Vrer)s
i=n i=n
and (v;—v;44), i=1,2,..., is a disjoint sequence in L.. By o-lateral

completeness sup {i(v;—v;4+1)} = (0)- Y. i(vy—v;+y) = u exists in L. Now, for

i=]

each neN,
() Xy Xg, = Z (Oi=viry) S (/) Y i(o—041) S (Un)u,
i=n i=n

and by (a), x, <(I/n)u+ex,, which ends the proof.

2.2. Remarks. (1) Those familiar with Amemiya’s theorem mentioned in
the preceding section will note that its proof as well as the one above are
variations of the same idea.

(2) A vector topology t on a Riesz space L is said to be exhaustive
(= pre-Lebesgue [A&B]) if x,— 0 (r) for any disjoint order-bounded (x,) in
L. In view of the ¢-lateral completeness of L, (i) above means precisely that t
is exhaustive.

(3) The elements {xyy,: xeL, ne N} appearing in the proof of (ii) are in
L since L has the principal projection property ([A&B], 23.4) and XXg,
corresponds to P,(x) where P, is the projection defined by the element
(Xa—eXy)s .

In what follows (L, 1) is a Hausdorff locally solid tRs. Additional
assumptions will be specified whenever needed.

Recall that the topological completion (L, %) is a Hausdorff locally solid -

Riesz space containing (L, 7) as a f-dense Riesz subspace (sup and inf are
extended by continuity on L, cf. [A&B], 7.1). However, L need not be order
dense in L or even regular in L. Let solL be the solid hull of L in L.

Recall that 0 < ¢ is a weak unit of L if e A x = 0= x = 0, and that this
happens iff x = sup {x A ne} for each xeL.

2.3. PROPOSITION. Suppose L is a-regular in L. Let e be a weak unit of L.
Then e is a weak unit of L.

Proof. It will first be shown that e is a weak unit of sol L. Observe that,
by the assumption, it makes no difference whether we take countable
suprema in L or L. Let 0 <wesol L and let ye L be such that w < y. Then

sup{w A ne} =sup{w Ay Ane}=wAsup{y Ane}=wany=w.

Hence e is a weak unit of sol L. Now, solL is clearly order dense in L. If
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u Ae=0 for some 0 <uelL, the same would hold for some 0 <z <u in
sol L, which is impossible. Thus e is a weak unit in L.

Assume that L is universally complete. Then 7 is o-order-continuous on
L, whence L is o-regular in L. Furthermore, since © is exhaustive, (L, 7) is
order-continuous and therefore, in particular, Dedekind complete ([A&B],
10.3 and 10.5). In virtue of 2.3 above, representations may be chosen in such
a way that

1) C(@) = C*(Q) =L™L = Cc=(@y),
) L9XQL‘5’XQI;€ L

where R is a Riesz isomorphism into and L is a solid order dense vector
subspace of C®(Qy). :

In particular, the restriction R|C(Q,) injects C () Riesz isomorphically
into C(Qp) in view of (2). By using some ideas connected with the
Weierstrass—Stone theorem, a more precise information about R and the
connection between 2, and Q will be derived.

To simplify notation put @ =Q,, @ =Q, and define an equivalence
relation in @ by putting

I, ~t; < VxeC(Q) Rx(t,) = Rx(ty).

Let g: Q— O/~ be the corresponding quotient map. Let & = €(g): C(3/~)

- C($) be defined by

D(f)=foq.
Put
C(£/q):=the image of & in C($), _
C**(Q):= {fe C(): fis constant on ~ equivalence classes}.

The following facts are to be noted.

(3) C(£3/~) is Riesz isomorphic to C(@/q). The isomorphism is given by &,
which is moreover a multiplicative isometry such that P(rp~) = Ko (see
[S], 4.2.2).

(4) C(R/q) = C*™(Q) ([S], 5.27).

(5) Q/~ is a compact space.

The proof is well known. Here is the argument. As g is continuous, £/~
is quasicompact. It has to be shown that it is Hausdorff. Let X = the image
of @ by f; it is compact. Therefore the product X = (ITx,: fece= () is
compact. Define ¢ = (f: fe C*™(Q)). For any projection pr, on the f-axis,
pryoe =f is continuous, whence ¢ is continuous from € -— X. Let
Z = ¢(8). The decompositions {¢~!(z): zeZ} and {g7'(s): sefd/~} are
identical. Therefore {3/~ admits a continuous one-one map onto a Hausdorff
space Z, and hence must be Hausdorff,
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Now, denoting still by R its restriction to C(£2), by (3) and (4) we have
the following situation:

C@~)aiz C™ (@)=

onto

C(Q),
R -1
Xe > Xs ™Ky~

moreover, in view of the definition of ~, it is clear that the elements of the
Riesz subspace #~'oR(C(Q))= W separate the points in @/~. By [S],
7.37, W is dense in C(€/~) (with the uniform norm). Furthermore, a unit of
W, #~1oR(yg), equals yg., a unit of C(Q/~), and so the uniform
convergence transported onto W from C(Q) and the uniform convergence
induced in W from C(Q/~) are equivalent. So W is a dense and complete
subspace of C(Q/~), ie, W = C(Q/~). In other words, C(Q) and C(@/~)
are Riesz isomorphic. Consequently
(6) R: C(Q)—> C™(Q) is an isomorphism onto
and, by a theorem of Kaplansky ([S], 7.8.1),
(7) 2 is homeomorphic to Q/~.

As Q is homeomorphic to @/~, C®(Q) is Riesz isomorphic to
C*(@/~), and so it may be assumed right away that Q =/~ and

C*®(Q/~) = C®(Q). Under this identification q: @ — Q is the quotient map
and
(8) RIC(Q) =

Now, given any quotient map ¢: Q- Q, the operator %(g):= xrx0¢
from C®(Q) into C* () may be considered. There is no reason, in general, to
have

%(g): C2(Q)—C=(Q),

since it may happen that to a point teQ corresponds a nonmeager
equivalence class t/~ in Q. However, in the case considered here we have
2.4. PROPOSITION. Suppose Q = Q/~. Then 4(q)|C®(R) = R, i.e, under
the identification accepted above R is of the form %(q) on the whole C*(Q) and
%(g) =R: C*(@Q)—LcC2(R).
Proof. Since & = R on C(Q), ®: (C(Q), 1) (L, ©) is continuous where
T =t|C(Q). Note that given 0 <feC®(Q), one can define f"=f A nyg,,

n=1,2,...Then f,1f pointwise and so f"—j (z) by the s-order continuity
of 1.

In particular, C(Q) is t-dense in C®(Q) and therefore @ may be,

extended, say to @~, by continuity. Obviously, we must have &~ = R, Hence
O(f") =f"oq—Rf (). It follows that (i) f"oq1Rf in C*(£). On the other
hand, clearly, f"oq?foq pointwise, whence (i) f"oq?fogq in C*(f).
Finally, (i) and (i) imply Rf =foq =%(g)f (C* is “regular” in C%).
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2.5. CoroLLARY. Let E be a closed nowhere dense G; (in ). Then q~*(E)
is so too (in Q).

Proof. Let E be a closed nowhere dense G,; then by [E], 1.5.11 there
exists ge C () such that g~* {0} = E. Then f = 1/ge C®(@) and E = {1: f(1)
= o0}. Then ¢~ *(E) = {1: %‘(q)f(t) =00} and %(q)f =Rfel c C”(Q), ie,
q~'(E) is nowhere dense.

2.6. TueoreM. Let L be a universally complete Riesz space and suppose
that L admits a Hausdorff locally solid vector topology 1. Then (L, t) has the
Bounded Order-Completeness property.

Proof. It may be assumed that L = C*(£,). Let x,T be a t-bounded
net therein. As (L, ©) is order-continuous, it is in particular locally s-o-c.
Consequently (L*#, 1~ #) is a locally boundedly S-O-C ([L], Th. 4.2) order
dense subspace of C®(;). A fortiori, (L**, v *#) has BOC. Now, in view of
24 and of what has been shown before, we may assume that there is a
quotient map ¢q: Qr — Q, such that R = 6 (g): C*(Q,)— L c C*(Q;), where
R is the embedding of L into L. In particular,

X,=%(q)x Tx"* in L *.
Consider moreover the following two functions in C* (Q,):
s:=t>s(t) = lim x,(t),
and ’ )
x:=supx, in C*(Q,).
Denote §=%(g)s, X = %(q)x, and let
D, = {teQp: s(t) # x(t)}.

Claim: Dy, is a countable union of closed nowhere dense sets, ie.,
a meager subset of Q.

it is

To see this, consider the function y, = x—x,; y, >0 and y,|. Let y(t)
= lim y,(t) = infy, (8) = x()—s(2). Let E, = {reQ: y(t) = I/n} =N {t: y,(t)
= 1/n}; it is closed and so either nowhere dense or containing a closed-open
set, say A. Then z = (1/n)x,eC(2,) and y,—z = (x—z)—z, = 0 for each a,
i€, x—z = supx, = x: a contradiction. Consequently, E, is nowhere dense
and D,, =) E, is as claimed.

Now, it is clear that

s<xr*gx
Hence
AP:={teQp: 5(f) = o} = AZ:= {te Qp: 5(t) = X(t) = 0}

is contained in a closed nowhere dense set

A ={teQp: x**(1) = oo}
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Consequently,
A= {teQy: s@t) = x(t) = o}

is nowhere dense in €, since A3 = q(4g) = q(AZ, 4), and the latter set is
nowhere dense. Finally, AQ:= {teQ;: x(t)= o0} c AZUD,,, a meager
set in Q;. As AP is closed, it must be nowhere dense, ie, xeC®(Q,),
which ‘ends the proof.

2.7. CoroLLARY. Let L be laterally complete and suppose that v is a
Hausdorff locally solid topology on L. Then (L, t) has the BOB property.

Proof. It may be assumed that $*(Q;) = L = C®(Q,) where §°(Q,) is
the collection of step functions (see [A&B], 23.29). Now, it is easy to see that,

for each xeC®, there exists an s belonging to $*(€,) (and even to S*(2,))
exceeding x. Hence L is full in C*(Q,) and the result follows.

§ 3. Spaces in which BOC implies local order-completeness. This section is

devoted to some “bounded” analogues of a theorem of Amemiya, as

indicated in § 1. (L, 7) is a locally solid tRs.

3.1. Tueorem. Let (L, 1) be locally bounded and have the c-BOC property.
If L admits a metrizable o-order-continuous locally solid topology A, then (L, 7)
is locally solid-order-complete. '

Proof. The existence of 1 implies that any order-bounded family of
positive disjoint elements in L is at most countable. By ¢-BOC, L is ¢-DC.

In view of ([L&Z], 29.3) L is DC and has the countable sup property. In .

particular, A is order-continuous. Embed L as a solid order dense vector
subspace of C*(Q), with Q = Q. By the representation theorem of [5], on
the g-algebra BP(Q) of subsets of 2 which have the Baire property there
exists a finite Lebesgue complete o-order-continuous submeasure #(:) such
that C*(€) is Riesz isomorphic to L° = L°(BP(Q), u(:)), the latter being
the (universally complete Riesz) space of equivalence (mod the difference on a
meager set) classes of BP (Q)-measurable functions = the space of u-classes of
p-measurable functions.

Denote by u the topology of convergence in u(:)-submeasure. Then
(L, 7) = (L°, 1) continuously by [3], 3.6. Another, more conventional proof of
this fact is as follows. The topology r, being locally bounded, is metrizable
and therefore (L, 7) is an F-lattice by Amemiya’s theorem. Hence ¢ 2 ulL by
[A&B], 16.7.

Now, let {n"!B}, ne N, be a base of neighbourhoods at 0 for v, where B
is a solid, pseudo-convex(*) and bounded T-neighbourhood of 0. The
following lemma will be needed.

o 3.2. Lemma. Let V be a solid subset in L°. Denote ¥V = {xeL® I(x,) = V,
X, x}, and V* the closure of V in (L°, y). Then V = P,

(*) ie, there exiéts a constant k > 2 such that B +B c kB,

Boundedly order-complete Riesz spaces 253

Proof of 3.2. Indeed, x,,‘—°’»x means that there exist yne L% such that
|x,—x| < y,|0. By the Egorov Theorem, y, — 0 u(:)-uniformly. It follows
that x,— x u(:)-uniformly, whence ¥ < V*. Conversely, suppose V3x,— x
in (L°, p). By passing to a subsequence it may be assumed that X,— x
u(:)-almost everywhere, whence again u(:)-uniformly. Moreover, it may
also be assumed that |x,| < [x| (replacing x, by (x, A |x]) v —|x]). Let E, T
be measurable subsets such that u(E,)— u(Q) and x, XE; = Xxg; uniformly
in n for each ie N. By the diagonal process find (x,) such that

fx,,j—xl <1/i onE,forj>=i ieN.

Clearly [x,,j~x| < 2|x|. Consequently, .
%0 — %] < (L/8) g, + 21 201, L O

and therefore xeV, ie, V¥ V.

Remark. The reader not familiar with submeasures may treat p(:) as
a (positive finite countably additive} measure and then check that the
standard results from measure theory, used in the proof above, generalize
immediately to the case of u(:).

We return to the proof of Theorem 3.1. Applying Lemma 3.2 to the

) ‘ neighbourhood B, one concludes the following facts.

(1) B* is p-complete, pseudo-convex and solid (by its very definition).

(2) B* < L. .

Indeed, V* = ¥ and it is well known that ¥ = {xeL®: Ix,e V with x, 1x}.
As B is t-bounded, so is (x,), whence xeL by ¢-BOC.

Now, by (1) and (2) the base {(1/n) B*} defines a metrizable locally solid
vector topology  on L such that p|L< 7 <t However, as B* is u-
complete, 7 is an F-space topology and therefore # = . In particular, B* is
7-bounded. It remains to show that B* is order-complete. To this end take
x, 1 = B Then (x,), being bounded in (L°, ), bas its sup, say x, in L°, As u
is order-continuous, x, — x (4), ie, xeB* as the latter set is p-complete.
Hence B* is order-complete. This ends the proof of the theorem.

It has seemed more compatible with the character of this paper and the
previous one ([L]) to formulate the above theorem as it is, i.e., by stating the
additional condition on (L, 1) in terms of the existence of the topology A.
However, as indicated in the proof, one can equivalently speak about Riesz
spaces of measurable functions over appropriate submeasure spaces (see [5]).
Then the condition of the metrizability of A corresponds to the assumption
that L < L® over a o-decomposable submeasure space (which can be replaced

" by an equivalent finite one). On the other hand, in many concrete function

spaces of measurable functions a (positive countably additive) measure space
(T, Z, pu(:)) is a starting point of their construction. Then often even if
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(T, Z, pu(:)) is quite arbitrary, L = L°(T, X, u(:)) has the property that
any xe L is supported on a o-finite measurable subset of T: This condition
could be translated back to the abstract setting by imposing e.g. that A is
Hausdorff- order-continuous and, for any xe L, the principal band generated
by x in L° has the countable sup property. But such a formulation seems to
be somewhat far-fetched.

For the measure theoretic notions used in the next theorem see [5]
or [F].

3.3. THeoreM. Let (T, %, u(:)) be a measure space, and L a solid vector
subspace of L°(T, X, u(:)) such that any xeL is supported on a a-finite
subset in X. Suppose (L, 1) is locally bounded and (L, 1) has o-BOC. Then
(L, 1) is locally s-o-c (and therefore locally ¢-S-0-C).

Proof. The parenthetical statement is clear in view of 1.6. Now, let u be
the topology of convergence in measure on sets of finite measure. Consider
0<x,7Tx in L. It is clear that the support of x, say E, is contained in the
union of the supports of x,s and therefore is o-finite. Consider L(E)
={xyg: xeL]. Then u|L(E), ie, the topology of convergence in measure
on sets of finite measure for the o-finite measure pz(:)= u(:)|ZNE,
is metrizable o¢-order-continuous. Hence by the preceding theorem
(L(E), t|L(E)) is locally S-O-C. In particular ([F], 23 B), t|L(E) can be given
by a t| L(E)-continuous, semi-order-continuous Riesz F-norm, say g. Let g
be the corresponding soc Riesz F-seminorm on L defined by

(%) = g (xxg).

. Define ¢(x) =sup {gx(x): E€Z’} where Z° denotes the o-finite subsets
in Z. It is easy to see that g is a soc Riesz F-norm on L. Since (L, 1) is an F-
lattice, T > g (cf. the proof of 3.1). Now, let x, — 0(g) and find the o-finite set
E such that the supports of x,’s are contained in E. Then x, — 0 (gz), whence
X, =0 (z| L(E)) and it follows that x,— 0 (r). Consequently, o > 7.

3.4. CoroLrary. If (L, 1) in 3.3 above has BOC then it is locally S-0-C.

Remarks. (1) Theorem 3.1 for Banach function spaces is due to
Lux.emburg. apd Zaanen [6], 7.7, who have shown that the so-called Lorentz
seminorm is in fact equivalent to the original norm in the presence of the
weak Fatou property (= ¢-BOC). The proof here is more topological in
nature, and perhaps can be adopted to solve the following

ProsLEM. Is the theorem true for solid F-sublattices in L° (over a finite
measure space for simplicity)? :

Then of course one seeks the implication ¢-BOC = “locally boundedly
8-O-C” as 7 is no longer locally bounded. Let me mention in this context
that Costé ([2], Th. 1) claims this result to be true, but his proof is
erroneous. )

(2) The restriction to the Riesz subspaces of L° over a o-decomposable
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submeasure space is apparently not accidental as the use of the Egorov
Theorem seems to be essential (cf. [L&Z], § 10).
(3) Let |of be the absolute weak topology of I, ie. the one defined by
the seminorms
o 2x x| (x])

where x' is a continuous linear functional (and thus a member of the order
dual (1)~ of I.). Then |o] is a (nonmetrizable) Hausdorff locally solid-convex
topology such that o (l, I))) < o] €| |l In particular, given x, 1 < [, such
that (x,) is |o|-bounded, it is norm bounded and (since [, has BOC)
X, Txel,. Thus (I, o) has BOC. Now, let (e,) be the unit vectors, ie., e,
=(0, ..., 0, 1, ...) with the one in the nth position. It is easy to see that, if |o]

o0
were locally s-o-c, ) e, would be |o|-subseries convergent, whence || |-
n=1
subseries convergent by the Orlicz-Pettis Theorem. However, |le,||,, =1 and
s0 |o] is not locally s-o-c. This shows that the assumption of metrizability in
3.1 is essential.

§ 4. Applications. In this section some characterizations of the properties
considered above, in terms of more or less “lateral” nets, will be given. (L, 7)
is a Hausdorff locally solid Riesz space.

Agree to say that a net (x,) = L, is laterally increasing (denoted x, 1) if

VB >a,

Suppose that P is a property of L, t, or (L, 7) stated in terms of an
increasing net. Then L, 7, or (L, 7) has the lateral property P if it has P with
respect to the laterally increasing nets.

For instance, (L, 7) has the lateral BOC property if:

Xg—Xy A X, = 0.

x, 1 in L, (x,) t-bounded = x, IxeL.
Similarly, L, t, or (L, 7) has the disjoint property P if V disjoint (x,) < L.,
the corresponding (laterally increasing) net of finite sums of x,’s has P.
For instance, (L, 7) has the disjoint BOC property if:

(x,) disjoint and perfectly bounded == (0)-) x, exists in L.

Here obviously, (0)-) x, means the sup of the net of finite sums of x,'s.
A family (x,) in a topological vector space is said (after Orlicz) to be perfectly
bounded if the net of finite sums of x,’s is bounded.

4.1. ProrosiTioN. Let (L, t) be a Hausdorff locally solid DC Riesz space.
(L, 7) has the BOC property iff it has the lateral BOC property.

The proof proceeds as in Abramovich [1], where he has the result for

normed lattices, and is based on the following simple

4.2. LEMMA. Suppose that (L. 1) is as above and has the lateral BOC
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property. Given any (x,) < L, such that x,1xe L' and (x,) is t-bounded, we’

have xe L.

Proof. One can assume that [' = C®(2,) and L is a solid order dense

subspace of C*(2;). Let

E, = closure {te 2,: 2x,(t) > x(1)}.
Then xyg, Ix and xyg, < 2x,. Thus (xzg) is t-bounded and consequently
xeL.

Proof of 4.1. With the same notation as above, suppose that x, 1 is not
order-bounded in C*(2;). Then there exists an open-closed set EeQ, such
that - x,xg T +ooxg. Consider C*(E)={xy; xeC®(2.)} and L(E)
= {xxg: xeL}. Observe that C*(E) is a universal completion of L(E), (x, x)
is 7| L(E) bounded, and moreover

VyeC®(E) L(E)ax,xg AyTy.

Hence, by 4.2, ye L(E), ie, L(E) = C*(E). Now, by 2.6, 7| L(E) = C*(E) has
BOC, which contradicts the fact that x, y; T c0xg. Consequently, (x,) is order-
bounded in C*(E), ie., has sup therein. Applying again 4.2, we find that this
sup is in L, which ends the proof.

4.3. CoroLLARY. Let (L, 1) be a Hausdorff locally solid DC Riesz space.
Then (L, ©) has ¢-BOC iff it has disjoint ¢-BOC (i, iff for any perfectly
0
bounded disjoint sequence (x,) < L., (0)- Y. x,eL).
n=1

Proof. It is essentially the same as that of 4.1, noting that the lateral
sequence x, T defines a disjoint sequence y,:= x,~X,; (Xo =0), and
ao

(0)- Z Yn = SUP Xy,

44 Lemma. Let (x,), yeI“ be a disjoint famlly in L. Suppose that for
any subsequence (y,) < I, (0)- 21 Xy, exists in L. Then (x,) is perfectly bounded
in (L, 7).

Proof. Denote by & (I') the family of finite 'subsets of I'. Suppose that
for some sequence (e,) = % (I) the corresponding sequence (2 xy) is not

=l
bounded. Then, passmg to a subsequence if needed, we may assume that for
some positive sequence of reals tending to 0, say (a,), a4, Z x,¢V for some

closed neighbourhood V of 0 in (L, 7). Now, it is easy "to see that, by
truncating e,’s properly, one may obtain a disjoint subsequence (e, ) such

that
a"k E x‘/¢V'
vee;‘k
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In other words, (x,) is perfectly bounded if, for any disjoint sequence

(e)) = #(I), the corresponding sequence of sums is bounded. Let e = Z e,-
n=1

By assumption x = (0)- Z x,eL. Hence (¥ x,)2 | is order-bounded and the

result follows. e

4.5. PROPOSITION. Suppose that (L, t) is DC and admits a Hausdorff order-
continuous topology. T hen (L, 7) has the BOC property iff it has the disjoint
BOC property.

Proof. By the representation theorem in [5], L may be treated as a-
solid vector subspace of C®(), with Q = Q;, such that C*(Q) admits a
Hausdorff order-continuous topology u and decomposes into (the product of)
disjoint bands C*(£,) {xxa' xeC*(Q)}, yer, with y| C*(Q,) metrizable.
Consequently if we put, for 'each Y, L, —LnC‘”(Qy) and 1, =t|L,, then
(L,, 7,) has the property that

1) BOC <« ¢-BOC <> g-lateral BOC < disjoint g-BOC.

Take x, = Ly, (x,) T-bounded. With the obvious notation, x,,1x, and by (1)

x,eL,. Now, given any sequence (y,) = I', let E = closure( |J @, ). Then (cf.
n=1

[5], loc. cit)) the topology u|C*(E) = {xyz: xe C®(Q)} is metrizable, whence
again (L(E) = {xyz: xe L}, y|L(E)) has the property (1) above. It follows that

X, xe T xxze L and, since xyz =(0)- Z x,,, the family (x,) is perfectly

bounded in (L,7) by 4.4. Hence x—(o) Y x,eL, by the disjoint BOC
property. Moreover, as Q\|J @, is nowhere dense ([5]), x, T x, which ends the

_proof.

4.6. Remark. One could consider the ¢-perfect boundedness of (x,)
as the stronger property meaning the boundedness of countable sums of
x,’s, ie, »

{> x,; F<T and F is at most countable} bounded.

yeF
Of course one has to be able to specify in L the meaning of the series
considered (in our case above Z x, =(0)- Z x,€ L). Then, in order to infer

the o-perfect boundedness of (x ,,) it is not sufﬁcnent in general to check the
corresponding “disjoint boundedness”. However, if = is e.g. locally convex,.
such a criterion is still valid.
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Added in pl:oof. The proof of Theorem 2.6 is not correct. In its final part it is asserted that
the set g(4 s #) is nowhere dense. It is not clear why this should be so since the function x *#
peed' not be, a priori, constant on equivalence classes. In fact, it can be shown that Theorem 2.6
implies the non-existence of measurable cardinals (cf. the beginning of § 2).
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The Lie structure of C* and Poisson algebras
. by
JANUSZ GRABOWSKI (Warszawa)

Abstract. Associative algebras with a Lie structure are considered. In particular, we
describe the form of maximal Lie ideals of C* algebras, maximal Lie ideals and maximal finite-
codimensional Lie subalgebras of Poisson algebras of functions on symplectic manifolds.

* 1. Notation and preliminaries. There are many natural algebraic objects
which carry both an associative and a Lie ring structure. For example, every
associative ring A can also be regarded as a Lie ring with the Lie bracket
[X,Y]:=XY-YX.

It is easy to see that in this case ady is a derivation of the associative
ring A for all Xe A, ie,

(1.1) [X,YZ]=[X, YI1Z+Y[X, Z].
We also have the identity
(1.2 [X, YZ]+[Y, ZX]+[Z, XY]=0.

Another example is the associative ring C*(M) of all smooth functions on a
symplectic manifold M with a Lie ring structure given by the Poisson
bracket. In this case also ady is a derivation of C*(M) for all Xe C*(M).

More generally, by a Poisson ring we shall understand an associative
commutative ring A equipped with a Lie bracket which makes 4 a Lie ring
and is such that ady is a derivation of the associative ring A for all Xe 4.

One can check that (1.2) is then also satisfied.

Our aim in this note is to propose a general approach to investigations
of such structures (close to the methods used in [1] and [3]), which gives us
various results (partially well-known) concerning the relations between the
Lie and the associative structures.

The above examples lead to the following definition:

(1.3) DeFINITION. An associative ring (algebra) 4 equipped with a Lie
bracket which makes A a Lie ring (algebra) and satisfies (1.1) and (1.2) will be
called an AL-ring (algebra). )

A topological AL-ring (algebra) is defined in the natural way.

(1.4) DEFINITION. An associative ideal K of an AL-ring (algebra) A4 which
is also a Lie ideal of A will be called an AL-ideal of A. An AL-homomorphism

“
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