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Uniformly non-I") Orlicz spaces with Luxemburg norm

by
HENRYK HUDZIK (Poznaf)

Abstract. K. Sundaresan [15] has given a criterion for an Orlicz space L®(y) over an
atomless measure yx and generated by an Orlicz function ¢ satisfying the corresponding
condition 4, to be uniformly non-K". This paper gives some simpler criteria for this property of
Orlicz spaces over an atomless as well as a purely atomic measure x and generated by arbitrary
Orlicz functions (the necessity of the corresponding condition 4, is proved here).

0. Introduction. N is the set of positive integers, R is the set of real
numbers, (T, 7, u) is a space of positive measure. A function @: R— [0,
+ o0] is said to be an Orlicz function if it is not identically zero and is even,
convex, and vanishing and continuous at zero. The Orlicz space L*(y) is then
defined as the set of all equivalence classes of 7 -measurable functions x: T
— R such that [®(kx(#))dpu < +oo for some k > 0 depending on x. Under

T

the so-called Luxemburg norm || ||, defined by

Ixllg =inf{r > 0: [ (r™* x(r))du < 1}
T

the Orlicz space L®(y) is a Banach space (see [12, 13]).
Let us write I(x) = I,(x) = [ ®(x(2))dp for any xe L®(u). The functional
T

I is a convex modular on L®(y) (see [14]).
We define the subspace E®(y) of the Orlicz space L?(y) by

E®(y) = {xe L®(): I(kx) < + oo for any k > 0}.

Recall that an Orlicz function @ satisfies condition 4, for all ue R (at infinity)
[at zero] if the inequality @ (2u) < K& (u) holds for all ue R (for u satisfying
|yl = vo) [for u satisfying |u| <wv,], where K and v, are some positive
constants and @ (vy) > 0 (see [12, 13]).

0.1. LemMma (see [4, 5] and [10]). Let ¢ be an Orlicz function and
xe L®(u). The condition I{x) =1 iff ||x|l¢ = 1 holds iff & satisfies condition 4,
for all ue R (at infinity) [at zero] in the case of a measure space atomless and
infinite (atomless and finite) [purely atomic with measure of atoms equal to
one), respectively(').

') In the purely atomic case we assume that ®(c) =1 for some ¢ > 0.
P!
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An arbitrary Banach space (X, || ||) is said to be wniformly non-IV
(ne N, n > 2) if there exists an ¢ > 0 such that for any members x,, ..., x, in
X with {|x;l <1 we have for some choice of signs

Iy £ . 0l < n(l—).

Uniformly non-/ Banach spaces are called uniformly non-square (see [8]
and [16]).

A Banach space (X, || ||} is called uniformly convex if for each ¢&(0, 2)
there exists a 6(s)e(0, 1) such that ||x+y|| < 2(1—5(c)) whenever x, ye X,
max(||x]l, lIyl) <1 and |jx—y|| > e.

A Banach space (X, || ||) is said to be B-convex (see [2]) if it is uniformly
non-I{" for some integer n > 2.

A Banach space (X, || ||} is said to be strictly convex (rotund) if for any
elements x, ye X such that x s y and ||x|]| =[lyl| = 1 we have ||x+y| < 2.

Each uniformly convex Banach space (X, || ||) is uniformly non-square,
because for any members X, y in X such that max(||x|, lyl) < 1,

x—y x+ yl

1 /1
2 4 2 <1~—b<§>.

Taking ¢ = min(3, 6(3), we bave min(|(x+y/2), ll(x—)/2l) < 1-e¢.

The inverse statement is not true. In fact, there exists a uniformly
non-square Banach space which is not rotund. For let X = R* and ||x|
= |(x1, X2)|| = max(2|x,], |x1|-|—|x2|). We have

B(1) = {xe R ||x|| < 1}

= {(xe R il <4 A xal S 1) A fxe R2: g+l < 1.

<

Since the unit ball B(1) is compact, and min(||x+y|l, ||x—y|l) <2 for any
x+y| [x—y

x, ye B(1),
sup min , <1,
vl 78 ( 2 ) 2 D

ie, the norm || || is uniformly non-square. It is obvious that this norm is not
rotund.

Any uniformly non-I{"’ Banach space (X, || ||) is uniformly non-},.
Indeed, let ¢ > 0 be the number from the definition of the term “uniformly
non-i” and let x,, ..., X,+; be members of the unit ball in X. Then, for
some choice of signs, we have ||x; % ... +x,/| < n(1—¢). So

n+1

L. Uniformly non-I{" Orlicz spaces. First, we shall prove an auxiliary
lemma.

% . X X ] < (L= 8) 1 =(n+1)[1--ﬁa~].
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L.1. LeMMmA. Any Orlicz function & satisfying condition A, for all ue R (ar
infinity) [at zero] satisfies the condition

Jlim {21+ 1) uye )} = 1

uniformly with respect to ue R (with respect to large values of lu]) [with respect
to small values of |u|].

Proof. We shall prove only the case of condition 4, at infinity. Let
K, up >0 be such that &(2u) < K&(u) for all ju| >u,. Let ¢ denote the
right-hand derivative of @. Since

§<p<§)<¢(u)<mp(u)

for all ueR, ¢ also satisfies condition 4, for |u] >u, with some positive

constant K. We have for all ke N and |u| > u,
. {1+ 1/k)|u .

1+k~
S((1+ 1/ u)fdw) =1+ o (t)dt/P(u) < I+M

k® (u)

uf

Kiluo(u) . K@)

<
<1+ oW S

< 1_’_K 1 K
kd () k °
and the proof is finished.

In the following we will use the inequality

p
(+) 45(%)6—}"—), where  ¢e(0, 1), neN, n>2, ueR.

1.2. THEOREM. Let @ be an Orlicz function. The Orlicz space L®(u) is
uniformly non-I iff:

(i) @ satisfies condition A, for all ue R and condition (+) for all ue R if
W is an atomless and infinite measure,

(ii) @ is finite, satisfies condition A, at infinity and inequality (+) for
uz® (n/u(T)) =sup{v>0: &) < n/u(T)} if u is an atomless and finite
measure,

(iii) @ satisfies condition 4, at zero and inequality (+) in some interval
[0, ug], where uy >0, if u is a purely atomic measure with infinite and
countable number of atoms of measure 1, and ®(c) =1 for some ¢ > 0.

+ Proof. Sufficiency. (i) First, note that it follows from inequality (+)
that ’

(D(M)g% i ®(u,)
. i=1

n
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for any uy, ..., u,e R and some choice of signs. Indeed, choose the signs in
such a manner that |u;+ ... +u,] < max |u|. Then we have by (+)

1<€isn

P max |uy o -
¢(u1_..._u,>< tD( : )<~—¢(max{u,]}=—~maxlb(u,-)
n n n i n

¢(u)

IIM:

=|q

Hence, we get
+ 2n-1 n
(L) Y ("‘ = ") <=2 T o),

where o = 1—(1—g)/2""!. Here and in the following the symbol > denotes
the summation operator over all possible choices of signs.
Now, let x;e L*(4) and Hx,“d, <lfori=1,...,n From (11), we get

(L2 Zcp("‘ UES (t)> e 2 @ (x,(1)
n nooi=y

for any te T Let ¢ > 0 be such that

(13) D (u/(1—e) < O (u)fa

for all ue R. By Lemma 1.1 such a number ¢ exists. Applying conditions (1.2)

and (1.3), we get
x ()t ... +x,(1) 2"‘ =z
Z( n(l—e) ; P (0)
for all te T Integrating both sides of this inequality over T we get,
X t...+x, -
I PAa
Z < —E) )\

Thus I((x;+...tx)n(l—e) <1, ie, |lx,+
choice of signs.

(i) Since @ is finite, it is continuous. Hence, there exists a constant
0e(0, 1) such that

o tx)le < n(l—e) for some

(1.4) @) > nd/u(T) implies & (%) < 44504).

Now, we shall prove that there exists 2 constant ne(0, 1) such that, for
any uy, ..., u,& R, we have

" o ANt
1.5 ; () > \([T) implies Z@(“lini“)s n"’;qﬁ(u,),

icm°®

.We have |u, +
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Let us consider two cases.
1° max @ (w;) > nf/u(T). Choose n—1 signs in such a manner that
i

[wy £ ... £u,} < max|u}. Then, by (1.4), we have for these signs

+...+ d
® (&.—T—_“_) < @ (maxu/n) < €¢(max ) < —‘?— Y &(u).
i i i=1
Hence, by the convexity of & for all other choices of signs, we get
., iy n
so(ttzt) Tt g,

where o = 1~(1—./0)/2"" L.
2> max @ (u;) < nf/p(T). Let

4 = min < 0—nd n )
(=) (T 2u(T) )
Then at least two of the numbers ¢ (u;), i=1, ...
than a. Otherwise, we have
= nb n./6—nb n\/a
D () <——+(n— 1a<~————+ =
£ <y e St - Ve =
a contradiction. Let v, and v, be positive numbers such that ¢ (v,) = a and
@ (v;) = nB/u(T) (it may be assumed that 6> 3). Let

Q = [0, v3] x [0, 011 x[0, 0,1 x ... X[0, 0]

~
n— 2times

, n, have values no smaller

The set @ is compact in R" and, moreover, the function

f) = maxd)(ui 2 D (u),

i=1

w=(ly, ..., U,),

is continuous and has values smaller than 1 on the set Q; = {ue R": |ueQ}
where [u] = (|uy], ..., |u,]). Thus, there exists a £eQ such that

sup {f (u): ueQ,} =sup{f(w): ueQ} =f(¢) <1.
Loty < max lu;| for some choice of signs. Hence
70 ¥ o).

i=1

)] <[{£_i:__n__i_‘_'_{,_;) @(max Jul/n) < max & (u) <

Hence, we get

po(tuti) TS o),
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where f=1-(1-f(8)/2""'e(0, 1). Putting #=max(x, f), we obtain
condition (1.5).
We may restrict ourselves in the definition of the uniform non-/{Y

property of a Banach space X to elements x, ..., x, of the unit sphere of X
(for the case n=2, see [16]). So, let ||x;]lp =... = [|Ix,[l, = 1. We have, by
Lemma 1.1, I(x)) =...=1I(x,) = 1. Define

E={teT i D (x; () = n\/a/,u(’lj}-.

Since Y I(x;yrp) < n\/é, Y I(xxp) 2 n—;1\/§. Hence and from (1.5) we
i=1 i=1
get

e Zl(xlj_— ...ix,,) _ i I(x,»)-zf(fli n ix,,)
=1
x

n no;

This means that :

X t...+x,

zl(ﬁ—*)s 1= =n)(1=/0) = 2"~ 1(1-0),

n

whert? o=(1 ~n)(1—\/5). Applying Lemma 1.1 to the interval [vp, +00) for
sufficiently small v,, we conclude that there exists a constant ¢ > 0,
independent of x;, such that

X1t ... tx
n < n—1
ZI( n(l—e) ) 7

ie., ”;’f}i o Ex)le < n(l—¢g) for some choice of signs.
(iii) Assume without loss of generality that & (up) < 1. It is clear that

(1.6) ‘ qs(%) <-:;<D(u)

for every u > 0 such that &(u) > 0. Otherwise, we have @ (u/n) = ®(u)/n for
some u>0, and so (see e.g. [5], Lemma 18) ¢(mir1 (u, uo)/n)
= @ (min (4, ug))/n, a contradiction with inequality (+) for ue[0, uy].

Let us consider on the interval (4o, ] the function

S () = n®(u/n)/d (u).
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By condition (1.6) we can see that f(u) <1 on this interval Since & is
continuous, there exists a number ¢e[u, ¢] such that

sup {f(): ueluy, c]} =1 (&) < 1.

Hence and from (+) for the interval [0, uy] we get

) ¢<E> <2
n n
for any ue[0, ], where o = max(q, f(&)e(0, 1). By Lemma 1.1 we get
(1.8) Vn>13¢>1 Vuel0, c]: &(Eu) < nd(u).
Let x;, i =1, ..., n, be elements of the unit sphere of L?(y). In the same

manner as in the proof of sufficiency in case (i), we get

t..dx,)_2ly
ZI(XL_ __x>< Y Z I(xi)<2"‘1v,
h nooi=1

where y = 1—(1—a)/2""'e(0, 1). Applying condition (1.8), we get

X +...tx, 1
—— R g 2
21( ),

so for some choice of signs
Ixi ... £xllo < n(1—¢)

with absolute ¢ > 0. The proof of sufficiency is finished.

Necessity. If ¢ does not satisfy the corresponding condition 4, or if @
is infinite in the case of y atomless, then L®(u) contains an isometric copy of
I* (see [5, 6] and [117), and so it is not uniformly non-£, because I is not
such (see [3]).

" Now, we shall' prove the necessity of the inequality (+) in the
corresponding intervals. We shall consider two cases.

(i) or (ii). If ® does not satisfy (+) for all ue R (or for uc[d~* (n/u(T)),
+o0) if u(T) < + o0), then for every sequence (o), 0,71 as k1 + o0, there
exist sequences (1) of positive numbers and A4,, ..., 4, of J-measurable and
pairwise disjoint subsets of T such that

1 U

W) =g and ¢(71_) > % a(u)

for keN and i=1, ..., n. Defining x; =wu,y, for i=1, ..., n, we have

n
I(M);iz;(ﬁ)=il(ﬁ>=lJ¢(ﬂ)du>l,
* b Noy Oy =1 \1 o, \n [ nj/.

AL
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and so |{[x;t ... +x,|ls > no, for any choice of signs. This means that L2 (1)
is not uniformly non-IV.

(iii). Assume that & satisfies inequality (+) in no neighbourhood of zero.
Let us put

i f1 1
u,f=<15 l(z), 0'),=1~E; k:1,2,
Then there exists a sequence (v,), 0 < v, < uy, such that
Uy O
—]>—=a¢
(19) (b(n) > " ()

for k=1,2,... Let m, denote the integer part of 1/®(v,) for k = 1,2,...
Then

(1.10) m®@w)<1l and (m+1)P(v)>1
for any ke N. Next, we define

my

%= %lirg-tmpy I=1,...m,

j=1
for an arbitrary fixed ke N, where ¢;=(0,...,0,1,0,..) is the jth basic
sequence. Obviously, x;e L®(y) for i =1, ..., n, and moreover
(1.11) o<Ix)<1, i=1,..,n
Applying conditions (1.9) and (1.11), we get for any choice of signs

XX\ e 5\ oy ok ,
(1.12) I ~————)= Y o ~)>~ Y &) > of.
n i=1 \I hi=y

Since I(x) <|[xll, for any xeL®(x) with I(x) <1, we get by (L.12)
X1 % ... £ x)lp = not for any choice of signs. So the space L®(u) is not
uniformly non-I. The proof of the theorem is complete. '

2. B-convexity of Orlicz spaces. The author and A. Kamifiska in [7]
have proved that the Musielak-Orlicz space L®(u) is B-convex iff it is
reflexive. Thus, every reflexive Orlicz space is uniformly non-K" for some
integer n > 2. However, it does not follow from these results for what n this
holds. We shall give below a solution of this problem in the case of an
atomless and infinite measure yu. This method may also be used in all other
cases of measure .

2.1. TueoREM. Let u be an atomless and infinite measure and let ® be an
Orlicz function. Then the space L*(y) is B-convex iff it is reflexive, ie., the
Junction @ and its complementary function ¥ satisfy condition 4, for all ue R,

Moreover, if K =su10)[?’(2u)/ Y] < +oo and  satisfies condition 4,

u>

icm°®
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for all ue R, then the space L®(u) is at least uniformly non-IM, where n = E(K)
+1 (E(K) denotes here the integer part of K).

Finally, if K = sup [V (2u)/¥ (u)] <4 and & satisfies condition A, for all
u>0

ue R, then the space L® () is uniformly non-square; thus it is uniformly non-KV
Jor any integer n> 2 (see the note added in proof).

Proof. Let L?(u) be reflexive. Then the Orlicz functions & and ¥ éatisfy
condition 4, for all ue R (see e.g. [13]). Denote K = sup[¥ (2u)/¥ (w)]. We
u>0 )

have for all ue R

v>0

2 2 1 @
ey o (-,gu) = sup [7%9— !I’(v)] < g sup[2w—¥(20)] = —Ig’—)

Hence, for any ue R,

w124 (L2 oW
22 ‘p(f)‘q)(E K)<2¢<K>< 2K
Let n = E(K)+1. We have by (2.2) .
oK 8 ) Kp(2) 20
(2.3) @(;)—45(; K)< n¢<K>< n

for all ue R, ie., & satisfies the assumption of Theorem 1.2 (i) with ¢ = 1. So,
the space L®() is uniformly non-K with n = E(K)+1.
If, additionally, K <4, we have by (2.1)

u K 2u\ K _(2u Pw o
“’(§)=4’(z'f><7“’(f)< s 3%

for all ue R, where ¢ = . Thus, it follows from Theorem 1.2 (i) that L®(y) is
uniformly non-square.

Conversely, let L®(y) be B-convex, ie, uniformly non-IV for some
integer n > 2. Then, by Theorem 1.2 (i), ¢ satisfies condition 4, for all ue R
and condition (+) for all ueR. Hence for all ue R

oo o)l T-so <[220 ()]

Let le N be such that 2 < ¢~% Then, by (2.4);
YQu) < Plo 'y < (—) W (u),

n
o

for all ue R, ie., ¥ satisfies condition 4, for all ue R, and so the space L®(u)
is reflexive (see [13]).

4 ~ Studia Mathematica LXXXI.3
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3. Corollaries and examples.

3.1. CorOLLARY. Let @, and &, be Orlicz functions and let ¥ =&, - ®,,
Then the Orlicz space L¥ (u) is uniformly non-square iff ®; and &, satisfy the
corresponding condition A, (see Theorem 1.2).

Proof. Note that ¥ satisfies the corresponding condition 4, iff both
functions @, and &, satisfy it. Moreover, for any ueR

o) el

ie., the function ¥ satisfies inequality (+) for all ue R with o = 4.

3.2. Lemma. If ¢ is a nonnegative and nondecreasing function defined on
an interval [a, b] < R, then for each number ce[a, b] the following inequality
holds:

b b
1 1
el > dt.
s owar> 5 fow

¢ a

Proof. Since the function f(u) = uf(u+v) is increasing for v > 0,

b
fowad {co(t)dt (b—0)0(c)
b ¢

b c
Jomdt  [o@di+ [e@dt [e@)di+(b—c)p(c)

a ¢

b—0e _b-c
T e—ae@+b-el) b-a’
and the proof is finished.

3.3. LeMMA. Every Orlicz function & vanishing only at zero, which has the
right-hand derivative ¢ satisfying the condition :

(€RY o (ku) > ko (u)
for all ue R with an absolute constant k > 2, satisfies (+) for all ueR, with
n=k if k is an integer and with n = E(k)+ 1, otherwise.

Proof. We have, for every u > 0,

(32) B (uyd (k) = (S w/k)+ /y 9 (0)dt)/d (u/k) = 1+ ;‘ 0O ey (u/k).
ulk o,
Putting t = ks in the last integral, we get

(33) ] e®)dt =k uf @(ks)ds > k? u_/fk @(s)ds.

ufk ufk? ufk?
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Applying Lemma 3.2 with a =0, b = ufk and ¢ = u/k?, we get

ufk ufk
k-1
j o(s)ds Z—k——J o(s)ds.
e 0

Hence, by (3.3), we obtain
u u/k
Jo@dt=k(k=1) [ p()dt = k(k—1)®(u/k)
ufk 0

for any u > 0. Applying this inequality in condition (3.2), we get
U k 1
(p -l —_—
(k) Ske-De1 k7@

for all ueR, ie., P satisfies inequality (+) for all ueR with ¢ = kf(k(k—

 —1)+1).

Let k be noninteger. Denoting n = E(k)+1, where E (k) is the integer

part of k, we get
u k u k_(u 4
i . —-—— <= — < =
(p(n) (p(n k) nQ(k)\nQ(u)

for all u, where ¢ = kf(k(k—1)+1). Thus, the proof is finished.

3.4. CoroLLARY. Every Orlicz function ® satisfying the corresponding
condition A, and possessing a convex right-hand derivative @ generates a
uniformly convex (hence uniformly non-square) Orlicz space.

Indeed, since ¢ vanishes at zero and is convex,

(34 o1+ u)> 1 +e) ()
for any ¢, u > 0. Thus, the function & is uniformly convex on R (see [1]) and,
by the corresponding condition 4,, the space L®(y) is uniformly convex (see

[9]). Uniform non-squareness of L®(y) can also be obtained immediately by
(34) and Theorem 1.2.

3.5. ExampLE. For each integer n> 2 there exists a uniformly non-I¥
Orlicz space L®(u) which is not rotund.
Indeed, define the right-hand derivative ¢ of & by

n for re[nk, nt*1), k=0,1,2,...,
o) = {n"‘ for te[n™%, n™**Y), k=1,2,..,
0 for t =0.

We have ¢(nt)/o(t) = n for an'y t > 0. Thus, & satisfies condition 4, for all
ueR and inequality (+) for all ueR (see Lemma 3.3). Hence, L®(y) is
uniformly non-I for an arbitrary positive measure u. However, this space is
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not strictly convex, because the function @ is not strictly convex (see [4],
[10], [17] and {18]). :

3.6. ExampLe. There exists a strictly convex Orlicz space L®(u) which is
not B-convex.

Indeed, let @ (u) = |u|log(l+|u|) for ueR. This function satisfies con-
dition 4, for all ue R and is strictly convex on the interval [0, + o). So,
L®(w) is a strictly convex (rotund) space for any positive measure u (see
[4], [10] and [17, 18]). However, by L’'Hospital’s formula we have

hm (n(b (u/n)/® () = 1 for any neN, ie, ¢ does not satisfy condition (+)

for large values of u. So, L®(p) is not B-convex for any atomless measure y,
Let us note that L®(y) is uniformly non-square for a purely atomic measure
as in Theorem 1.2, because
lim (2 (u/2)/® () = %
u—+0
3.7. CoroLLARY. Let @ be an Orlicz function and u a positive measure.
The subspace E®(u) is uniformly non-IV iff L®(y) possesses this property.
Proof. It suffices to prove that L®(y) is uniformly non-i{! if E®(u)
. possesses this property. Assume that E®(u) is uniformly non-£!. Then E®(u)
is reflexive, because any B-convex Banach space with unconditional Schauder
basis is reflexive (see [3]). So, & and its complementary function ¥ satisfy
the corresponding condition 4,. Moreover, it follows from the proof of
Theorem 1.2 that & satisfies inequality (+) in the corresponding interval
according to the measure y. Thus, L?(y) is uniformly non-£" by Theorem 1.2.
3.8. CoroLiary. Call a modular I =1, uniformly non-KY if there
exists a constant € >0 such that for each x;eL®(u) with I(x)=1 for
i=1,...,n we have 'I((xl t...tx,)/n)<1—¢ for some choice of signs.
Theorem 1.2 is true with the modular I in place of the norm || || without the
corresponding condition 4,.
This follows immediately from the proof of Theorem 1.2.

3.9. CoroLLARY. Let p be a finite and atomless measure. For any integer
> 2 there exists an Orlicz function @ such that the space L®(y) is B-convex
and is not uniformly non-Kb.
It sufﬁces to assume that ®(u)=0 for O<u<n/u(T) and @)
(n//,t(T)) for u 2n/u(T) (see Theorem 1.2 (ii)).

4. Added in proof. The following theorem (stronger than Th. 2.1) holds:

4.1. THEOREM. B-convexity and uniform non-squareness of Orlicz spaces over an atomless
infinite measure and over a purely atomic measure as in Theorem 1.2 (iii) coincide,

Proof. We shall prove only the sequence case. The proof in the case of an atomless
infinite measure is analogous (but simpler), so it is omitted here. Let I® be a B-convex Orlicz
space. Then [° is reflexive (see [7]), and so & and its complementary function ¥ satisfy
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condition 4, at zero (see [13]). We may assume that ¢ and ¥ have finite values and satisfy
the condition

4.1) llm (tP (u)/u) = hm (T(u)/u) =

Otherwise we define a new Orlicz function &, by &, (u)=®(u) for Pu)<1 and
&, (4) = bu+c for ®(u)> 1, where b and ¢ are positive numbers such that &, is a convex
and continuous function. Obviously, the Orlicz function &, and its complementary
function ¥, satisfy condition (4.1), and the spaces (L% || ||) and (L y |l lo,) are isometric.
Take arbltrary number o > 0. By condition (4.1) there exists a number v, > 0 such that

4.2 Y({) 2 upv for any v > v,.
Moreover, by Lemma 1.1, we have

4.3) 3a>1VO0<o<ve: P(au) < 2a¥ (u).
Applying conditions (4.2) and (4.3), we get for |ul < u,

@ (u/2) = sup [w/2—¥ ()] = sup [ww—¥()] < sup [uv/2— ¥ (av)/(2a)]
vz0 0<r<ug

=(2a)™! sup [uai—¥(ar)] =(22)"" P(u).

_ 0<v<ng
Now, it suffices to apply Theorem 1.2 (iii).

4.2. COROLLARY. In the case of measure as in Theorem 4.1 uniform non-squareness of Orlicz
spaces coincides with reflexivity.
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Invariant states for positive operator semigroups
by
KLAUS E. THOMSEN (Aarhus)

Abstract. A characterization is given of the semigroups of normal positive contractive
operators on a von Neumann algebra- that admit a faithful family of normal states invariant
under the action of the semigroup. It is shown that the family (when it exists) may be chosen to
consist of one single state if the algebra is o-finite.

Introduction. In the study of *-automorphism groups on C*-algebras,
invariant states play an important role. Especially the existence of a faithful
invariant state or set of states has been a useful tool in the investigation of
such groups. In more recent years the existence of a faithful invariant state
has been assumed also in connection with positive operator semigroups (see
e.g. [6], [7], [15]). Therefore the question arises as to which positive
semigroups of operators actually admit a single invariant faithful state, or at
least a faithful family of invariant states. In 1972 Stgrmer [16] characterized
the automorphism groups with a faithful family of invariant normal states on
a von Neumann algebra. In this paper we will do the same for positive
operator semigroups.

In fact we shall give three conditions which are equivalent to the
existence of a faithful family of normal invariant states. Since we prove that
such a family. (if it exists) can be chosen orthogonal, it follows that we may
assume that the family consists of one state only if the algebra is o-finite. If
the algebra is not c-finite, no faithful normal state can exist. Our results
generalize and improve results in [11], [12] and [16].

For the readers not especially interested in semigroups, we remark that
our results apply to normal positive contractive operators as well. If namely
m is such an operator, {z"| ne N} is a semigroup of the form considered in
this paper.

We first recall some definitions and fix the notation.

(1) Let .# be a von Neumann algebra acting on the Hilbert space #°
and & a semigroup of positive normal contractive operators on . By
(M) we denote the space of bounded operators on .4 and by £, (.#) the
subspace of % (.#) consisting of normal operators. A bar ~ will denote the
closure in the point-weak topology of % (.#). By [10] the unit ball % (.4),
is compact in this topology.
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