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in dimensions three and four
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Abstract. The unique continuation property for solutions of the Schridinger equations (or
inequalities) in dimensions three and four is proved. The L,-conditions assumed for the strong
uniqueness are shown to be optimal The main result follows from the Carleman type
inequalities, which are obtained from L ,-estimates of integral operators.

1. Introduction. The study of the unique continuation property of
solutions to differential equations with nonanalytic coefficients began with a
paper by Carleman [4] (in 2 dimensions), in which he introduced the
important method of weighted inequalities. Then the unique continuation
theorem was proved for the second order elliptic equations under the
assumption that the coefficients of the lower order terms are of class L. The
case where the leading part is the Laplacian was considered by Miiller [12]
and Heinz [8] while Aronszajn [2] and Cordes [5] studied equations whose
leading part had variable coefficients. The sufficiency of the Lipschitz
continuity was shown by Hormander [9] and in a stronger form by
Aronszajn, Krzywicki and Szarski [3]. An example given by Pli§ [13] shows
that it is almost a necessary condition.

There are partial results on the unique continuation for the equations
with unbounded lower order coefficients. Sufficient conditions are given e.g.
by Schechter and Simon [14], Amrein, Berthier and Georgescu [1] and
Ho6rmander [10]. Our result on the strong uniqueness concerns rather special
cases but the L,-conditions on the coefficients are sharp.

In this paper we consider differential inequalities of the form

(1.n [du(x)] < a(x) |u(x)]

where the function a(x) is assumed to be of class Ly, # is a function on
a connected subset 2 of R" (n> 3), and 4 is the Laplacian. Without loss
of generality one may replace inequality (1.1) by the Schrsdinger equation
du+Vu =0 with |V(x) < a(x).

We prove the strong uniqueness for solutions of (1.1) under the
assumption o 2> n/2 for n = 3 or 4. This improves a result of [1], where it is
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assumed that ¢ > n/2. We also give some examples that show the theorem
does not hold for ¢ <n/2 (n > 3).
We use the Carleman type inequalities of the form

(12) (fllxl=*0 (0] dx) ™ < C (]l v ()" dx) ™

where v is a function of class C§ (R"—{0}) and k =1, 2, ... The uniqueness
theorems are derived from (1.2) in a routine manner (Lemma 1.1).

DerFmniTioN 1.1. A function u is said to have zero of infinite order in
L,-sense at xeQ if for any positive integer k the functions |x— xo| "*u(x) are
of class L. If g < co can be arbitrary we say that u ‘has zero of infinite
order.

One says that (1.1) has the strong unique continuation property if every
function u satisfying (1.1) and having zero of infinite order must vanish
identically. Inequality (1.1) has the unique continuation property if every
function u satisfying (1.1) and equal to zero on some open set is identically
zero on L.

By saying that a function u satisfies (1.1) we mean here that uel,,, for
any g < oo, 4du (distributionally) is a locally integrable function and
inequality (1.1) is fulfilled almost everywhere in £,

The following lemma is proved in Section 6.

Lemva 1.1 Let ael,,,, 1< o< o, Inequality (1.1) has the strong
unique continuation property provided there exist real numbers p, q, C, R such
that 1< p, g <o0, 1fo=1/p—1/q, R>0 and inequality (1.2) holds for all
ve C(Bg~{0}) where By = {x: |x| <R}.

We prove (1.2) with 1/p—1/q = 2/n (n = 3, 4). The proof is based on L,
estimates of some majorizing integral operators given in Section 3. (The case
n=4 was presented in [15]). The case n > 4 cannot be treated in the same
way because of the lack of an appropriate majorization. The discussion of
this case will be given elsewhere.

Remark 11. By a homothetic change of variable in (1.2) we con-
clude that if inequality (1.2) holds for all ve CF(Bg —{0}) with a constant
C=C, then (1.2) holds for all veC¥(By 4’_{0%)' with the constant
C = Co(R/Ro)* "!r=19 Hence it follows that inequality (1.2) cannot be
proved if 1/p—1/q > n/2. Moreover, if 1/p—1/q < n/2 then the constant C
may be taken arbitrarily small.

Remark 1.2. The condition that u has zero of infinite order in the L,
sense at xoe is equivalent to the following: for any positive integer k
1.3) [ Ju)%dx =0 as e—0.

|x=xg| <&

2. Estimates of Taylor remainders. Now we prove some estimates of
"Taylor remainders which give us estimates of the kernels of the integral
operators involved in our considerations.
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We introduce the following1 operators in the complex domain:

| 2.1) Jif(z)=Re2n~! A=) 2 f(Rez+itImz)dt,
1 0
2.2) J2 f(2) =Re [f (Rez+itImz)dt,
0

which allow us to reduce the problem to an investigation of the complex
geometric series.

Lemma 2.1. (i) J, Re(z) (m = 1, 2) are homogeneous polynomials of degree
1 in the variable z 1=0, 1, ..).

(iiy If f(2) is an analytic function with real values for real arguments then

23) J2(f'(2) =Im f(z)/Imz (Imz 5 0).
(iii) The following equalities hold:

(24) J((1—2)"*) =sign(1—Rez)|1—z"¢,

(25) Jo((1=2)7%) = 1-2"2,

(iv) The following inequality is true:

Imz ’
1||1—2"1.
1-RezD+ JI 4

Proof. It is easy to check (i) and (ii), then (2.5) follows from (ii). We get
(24) substituting a = Imz/(1—Rez) in the formula

(2.6) J1(|1~z|"1)<2|:10g(1+

1
211—1 j‘(l__t2)~1/2(1+a212)-—1dt =(1+a2)—1/2
0

which can be obtained by means of the well-known methods of integration.

(iv): The following inequality is obtained by means of integration by
parts and by applying the estimate arc sint < nt/2:

1 1
2n™t (L=t~ 2 (L a2 12" 2 dE < (T+a?) "2 4 fo? 2 (L+a?2) ™32 dt.
V] 0
For the last term we have
1
Jlo £(1+a? 63~ dt = %|a|~* log (1 +0?)
0

(1 +ay) Y24 2log(1 +|af) (1403)~ 112,
Putting o = Im z/(1—Re z) in these inequalities we get (iv). .
One can observe that the operator J, can be expressed as a compositlo_n
of the operator of fractional integration of order 4 along the imaginary axis
and some elementary operators.
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Lemma 2.2. Let &, be the k-th Taylor polynomial at the origin of the
function 1)1 —z™ (m=1,2, k=0,1,..). Then
Izlk+1
)]ll—zl’

Imz
1—-Rez

(2.8) [1=z72=®,4(2) <lal**?[1 =27} |Imz| ™"

Proof. By Lemma 2.1 (i)-(iif)

@2.7) t—21"" =&, , ) <2[2+1og<1+

d
Dy (2)=J (14 ... +29, ‘pz,k(z)=J2(~

k+1
{4tz )).

If Rez <1 we have
M—z|™ =@y () = J; (ZF (1=2)71)
and for Rez>1
1=z 7 =By, (z) = J, (T (1—2)" )+ 2|1~ 2.
Then (2.7) is a consequence of (2.6) and the obvious properties of the

operator J,.
Estimate (2.8) follows immediately from the identity

[1=2]72 =&, (2) = (Im 2)"* Im(2** 2 (1 —2)~ ),

which results from (2.5) and (2.3).

Lemma 23. Let M,y be the kth Taylor polynomial at the origin of the
Junction x+s[x—y|™™ in R"*2 (y £ 0). Then

() hni(x, y) is harmonic in the variable y,

(i) hyy(x, ) = V" Ppi(z), where Rez=xyly”% Imzs=(x>y*—
—(xy)z)”2 I¥~2% and @, are the polynomials introduced in Lemma 2.2.

(iii) ||)C—J/|—1 ”"hl,k(x’ y)|

2,2 2|1/2 h k+1
sz[log(1+—~———|x )f —Co )+2J('—’ﬂ> =yt
y*—xyl Iy

—yl—2 || AN
||x yl hl,k (x7 y)I < Ix"yl (xzyz__(xy)z)ll.z (m) .

Proof. (i) is a consequence of the harmonicity of the derivatives of
[x—y~"™
For any 4>0

(29) hm,k qu, Ay) = Aimhm,k (x” y)s
and for any orthogonal matrix A4

(210) hm,k(Ax! Ay) = hm,k (xa J’)

icm°®
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There exists an orthogonal matrix 4 such that Ay = |y[(1, 0, 6) and
Ax =|y|(Rez, Imz, 6) (0 is the origin in R™). Now by (2.9) and (2.10) and the
obvious equality

Py (2) = hpy((Rez, Imz, 0), (1, 0, 0))
we get (ii).
Substituting the identities |z~1| ={x—y|/|yl, lz| = |x//|y| and &, ,(z)
= |p" hy i (X, ¥) into (2.7) and (2.8) we obtain (iii).
3. L,-estimates of the majorizing operators. We are interested in
L,-estimates of the integral operators M, M, in R" given formally by

(3.0) M, [(x) = [ k (-'~~--_-;—~—-~>|x—yl oL () dy

where k(1) =2 log(1+1)+4,
(B2 Maf (== flx—yl 7" [ (22 = ()T () dy
where 1 <0, 0y <o und | <0, o0, n23

Remark that |x| ™' (x? yz-—()cy)z)l/2 is the distance from the point y to the
straight line spanned by x and the origin.

First we prove iwo technical lemmas. If F is a function on the
interval [0, 2] we denote by |[F|S"" Y|, the L,(S""!)-norm of the function
& F(/$o—¢l) (this norm does not depend on ;). We shall use the following
formula (n= 2, 3,...)

2
(33) [ F(éo—Ehdowg = cpey [F(O)1" 2 (1= 32 dt,
sn—1 0 .
where dw is the surface element of §""* and ¢, is the surface measure of the
unit sphere S"71, & eS"T L. ,

This formula can easily be derived e.g. from the integral formula for a
plane wave function over the unit sphere ([11], Ch.).

Lemma 3.1, Let k(t) 2 0 be an increasing function on R, n=3 and
g > 1. Put

ky o () = k(2t |t +v]" 1) ((r —@)* +rot?) "%
where t, r, 0 >0 and v = 2(g~r)/r. There exists a constant C = C(a, n) such
that for any a, 20, a+f=n—1 '
(3.4) 1K el S™~ s < Cglr—el ™t r~*"

where

o0

%= ke (1) (£ + 1)~ L de)e.
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Proof. By (3.3)

2
IVer, ol 8" 2112 < ey [hig "™ 2dt.
-0

Put

ky(t) = ko (2t [e2 ]| ") 02 +£H) 7L
Denote by I,, I, the integrals of the function k,(t) over the intervals
0<t <) and G <t < 2, respectively.

If t <(FP)M? then t]®~[v||~! < 2¢|v|~%. By the change of the variable
t=s[v] and the last estimate we obtain

<yt }ok"(4s)(1+s2)" Lds.
b

I GW)"?<r<2 then (V471 <2p~L Since t]e2—|yl|~! <i—
—[v[*?| 7" then, we have | 1<l

2
<27 J k2T dr < Ol v L
~2
Adding I, and I, we get

2
(3.5) [k, (f)dt < CZly| 2.
1]

If 3 < ofr <2 then |v| < 2./2|r—0|(rg)” /% Therefore
72 (r—0)?+rot?) "2 < 8 (ro) "2 (2 41y~ L.
From this and (3.5) we obtain
Z[k;’.a(t)t"'zdt < CxZrP=miz g=ni2iy _ 5 =1
and (34) follows from r27"m/2g=n2 < Cp=ay=#,

h If o/r <3 or g/r > 2 then r* ¢ < (2r—ol)"" and it is enough to prove
a

jk;’a(t)t" 2dt < Cxdlr—gl™",

which immediately. results from the inequality
eg(®) < Ir—2 ="k (2]t~ I3 7Y),
LemMa 3.2, Let
hng(®) = ((r =) +rgt?) ™" (gt (4— 1 112) 72
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where 0 <t <2, 1 <0y <00, 1<0,<0, n23. If l/o=1/5,+1/0, <1,
03/0, < n—1, then there exists a real constant C = C(n, 0y, 0,) such that for
any o, B with a+f =n-1, « 20, 8 > no/o, we have

(3.6) llkrol 8"l < Clr—gl ™t r=g7".

Proof. We begin with an auxiliary fact that for any I > 1 there exists a
constant C(J) such that

3.7 fr’ Ylr—gl*+ro®)" ¥ dt < C(hfr—o|~tr "t o™

for any ay, f; 20 with a; +f; = I—1.

Substituting ¢ = slr—gl (r)"'"* one can estimate the left-hand side of
(3.7) by [r—ol"'(re)* "', the estimate by |r—g| ' is obvious. (3.7) follows by
applying the first estlmate if $ <gofr <2 and the second otherwise.

In view of (3.3) we have to estimate the integral of the function

kr‘-n (t) " 2 (4 - t2)(n- 3)/2

along the interval [0, 2]. The integral from 0 to 1 may be estimated directly
from (3.7), and that from 1 to 2 can be reduced to the first one by a suitable
estimation.

The L,-estimates of the invariant integral operators on the unit sphere
will be derived from the following variant of the Young inequality ([6], Th.
9.5.1).

Let K be a symmetric function on a set X x X and let 2" be the integral
operator corresponding to the kernel K and some measure u on X. If
1<p,q,0 <00 and 1/p—1/g=1-~1/o then

(3.8) ' AL NS, < ess SUP(’};!K(Q " dug)'.
"

We shall also make use of the Hardy-Littlewood inequality ([7]):

f sz%@z < Clloll, v,
0

where A =2—1/p~1/s, 1/p+1/s>1, 1 <p,s <o and ~1+1fs<y<l—
~1/p. The constant C depends only on p, s and .

TueoreM 3.1, Let M, M, be integral operators in R (n 3) given by
(3.1y and (3.2).

If 1<p<oflo—1), 1/g=1/p—(c—1)/o then there exists a constant
C =C(p, q, n) such that

(3.9) M Sl oy < C IS gy
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If ¢, and o, satisfy the assumptions of Lemma 3.2 and
1 1 1 1 1 1 11
1

e — <= < l——, =l

o2 gy 0,

then there exists a constant C = C(p, q, n, 04, 0,) such that
(3.10) I3 1, gy, < CUSI, -
Proof. Denote by K, (x, y) the kernel of the operator M. Then

1€=nll+4]

lE—nl*+|

and K, (r¢, on) < k, (€ —nl) where k,, is given in Lemma 3.1.
Let feL,(R", geL,(R") (1/g9'+1/q =1), and put

e@=( | 1flenltdw,}'?, yr)=( [ g dwg).
1 -1

sn— sn

Kits am zk( )((r-@)“rw!f—nlz)'"/z"

From the Young inequality (3.8)
(3.1) [Hero (€ =) £ (en) g (&) devg do, < |1k, | S Y]], 9 (@) (7)
where 1/6+1/p+1/q' = 2. By (3.4) we have for some Y
G127 koS M, 0 (@) ¥ ()

: S Cr/e) Ir—gl =17 g~ V1P o (@) rin= 'y ).
Putting o = (n—1)0/q, f=(n—1)c/p’ we get y=0. Combining this with
(3.11) and using the Hardy-Littlewood inequality we obtain

JIK (x, 9) f () g ) dxdy < ClIfl, liglly

so that v(3.9) is proved.

The proof of (3.10) goes similarly but we cannot allow y to be 0 in
inequality (3.12).

4. Weighted inequalities and unique continuation.
TreoreM 4.1, If 1/q = 1/p~2/n, n=3, 4,
l<p<3 for n=3,
and
$<p<?2 for n=4,

then there exists a constant C = C(p, q) such that the weighted inequalities
(1.2) are satisfied for all functions ve CP(R"—{0}) and k=0, 1, ...

Proof. Put u,(x) = |x|"*v(x), JeO) = ly|"*dv(y) and
G (%, ) = (Px =y ™" = Ry (¢, 1) (W1

icm
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where n=m-+2. By the harmonicity of h,,(x, y) in the variable y
1 - .
v(x) = —— j(lx—-yl "= hy-1 (X, ¥))40(y)dy
me,

or

g (%) = ——

n

1
[gk(x, Wh»dy.

From this and from Lemma 23 (iii) one gets
1
|mw<%ﬁhmmm@ (m=1,2)

Now, our weighted inequalities (1.2) are consequences of Theorem 3.1
(c=n=3o0roy=0,=n=4),

Remark 4.1. The weighted inequalities (1.2) can be proved even for
k=1, =2,... Instead of h,,(x, y) one should use h,,(y, x) (a duality
argument). Taking gy (x, y) with the factor (|y|/|x])’ we may prove inequality
(1.2) for noninteger k.

As a corollary to Theorem 4.1 and Lemma 1.1 we get the strong
uniqueness theorem.

TueoREM 4.2. Let Q be a connected open subset of R, n=73,4. If
ae Ly, (Q) then any function u satisfying (1.1) and having zero of infinite
order in Q wvanishes identically in Q.

5. Example. We give an example of a differential equation which shows

‘that the assumption on the function a in Theorem 4.2 cannot be weakened.

TueoreM 5.1. There exists a function a such that aeL, . (R") for any
p <n/2 and a function ue C*(R" such that u(x) > 0 for x # 0, u(x) has zero
of infinite order at the origin, and

du+au =0,
Proof. We put u(x) = ¢(|x|) where () = [o'~"*"*5"'/@dg. Then
0

(1%
a(x) = — du ()u(x) = 2|x|“1log|x{—((%(%l—;%.
The integrability assumption on the function a(x) is satisfied because for any

e>0
r1+"(p’(r)/tp(r)—>‘0 as r— 0.

6. Appendix. Proof of Lemma 1.1. Let {(x) be a C®function such that
{(x)=0 for |x] <1 and {(x) =1 for |x| = 2.
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We prove (1.2) under the assumption that ve H3* A L, and v, 4v have
zero of infinite order at the origin in L, -sense and L,-sense, respectively. If
v(x) =0 for small |x{ then this follows by a density argument. Put v,(x)
={(e" " x)v(x) for & > 0. Setting v = v, in (1.2) and taking & — 0 we get (1.2)
in the general case. The convergence follows from (1.3).

We prove that if aeL, ., u satisfies (1.1) and has zero of infinite order
at xoe£2 then u=0 in any ball B, = {x: |[x—x,| <r} where r is such that
B, c By,

1
4 o o~
(61) ([laCor o) <5
and C is the constant from inequality (1.2). One can assume that Xp = 0.
Let {; be a C@-function such that {;(x) =1 for xeB,, supp {, < B;. Put
00 =L (u) X7 fi (x) =IxI"*dvo(x) (k =0, 1, ...). Denote by y the
characteristic function of B,. By Theorem 4.1 and (1.1)

lxwdly < ClAllL, < Clllxavdl,+ 11— 1) fill,)-
From the Holder inequality [lav, ]|, < (Ixalls llxvll, and from (6.1)

llxvidly < 2C 111 =2) £ill,-
Therefore

(| Iu(x)2dx)"/s < const-(g/r)t

Ix| <e

for any @ <r. Taking k— o0 we obtain u=0 on B,. By a standard
connectedness argument u = 0 in the whole Q.

Added in proof. Professor Lars Hormander has recently informed the author that David
Jerison and Carlos E. Kenig established the unigue continuation property for Schrédinger
equations in any dimension with optimal exponents.
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